JPH0248475A - Production of superconducting porous material - Google Patents

Production of superconducting porous material

Info

Publication number
JPH0248475A
JPH0248475A JP63197504A JP19750488A JPH0248475A JP H0248475 A JPH0248475 A JP H0248475A JP 63197504 A JP63197504 A JP 63197504A JP 19750488 A JP19750488 A JP 19750488A JP H0248475 A JPH0248475 A JP H0248475A
Authority
JP
Japan
Prior art keywords
superconducting
organic binder
temperature
porous material
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63197504A
Other languages
Japanese (ja)
Inventor
Masahiko Hasunuma
正彦 蓮沼
Akio Takeoka
武岡 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63197504A priority Critical patent/JPH0248475A/en
Publication of JPH0248475A publication Critical patent/JPH0248475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting porous material able to be cooled from the interior with a cooling gas by blending superconducting material powder containing a superconducting phase with a low-temperature decomposable organic binder and burning the blend at >= the decomposition temperature of the organic binder. CONSTITUTION:A superconducting material containing at least partially a superconducting phase is blended with an organic binder (e.g., acrylic resin) by a ball mill, etc., and molded into a given shape. Then the molded article is burnt at >= the decomposition temperature of the organic binder and the organic binder is destroyed by first. Consequently, the superconductor is made into a shape of matrix frame to give a superconducting porous material having voids continued in a three-dimensional way. A refrigerant can be sent to the voids, the superconducting porous material in a shape of matrix frame can be cooled from the interior and the porous material can be made into a large size with slight hindrance with respect to cooling.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は磁気シールド材等として利用することができる
超電導多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a superconducting porous body that can be used as a magnetic shielding material or the like.

(ロ)従来の技術 NbあるいはNb系合金よりなる超電導物質を利用した
工業材料の例として、超電導磁気シールド材が特開昭6
2−105487号公報に提案されている。しかし、N
bあるいはNb系合金よりなる超電導物質は液体ヘリウ
ム温度(4,2K  )下で超電導状態になるため、冷
却の困難さがその実用化を遅らせている。
(b) Conventional technology As an example of an industrial material using a superconducting substance made of Nb or a Nb-based alloy, a superconducting magnetic shielding material was published in Japanese Patent Laid-Open No. 6
This method is proposed in Japanese Patent No. 2-105487. However, N
Since superconducting materials made of Nb or Nb-based alloys become superconducting at liquid helium temperatures (4.2 K), the difficulty of cooling has delayed their practical application.

一方、近年液体窒素温度(77K)以上の温度で超電導
状態を示す酸化物超電導物質が発見され、その実用化研
究が進められている。しかし現状においては、超電導物
質を液体窒素に浸漬して超電導状態を得るものであり、
超電導物質の利用範囲が限られている。
On the other hand, in recent years, oxide superconducting materials that exhibit a superconducting state at temperatures higher than liquid nitrogen temperature (77 K) have been discovered, and research on their practical use is progressing. However, at present, superconducting materials are immersed in liquid nitrogen to obtain superconducting state.
The scope of use of superconducting materials is limited.

(ハ)発明が解決しようとする問題点 従来の超電導体はいずれも超電導体の表面から冷却する
ものであり、大面積の超電導体の冷却が困難となる。
(c) Problems to be Solved by the Invention All conventional superconductors are cooled from the surface of the superconductor, making it difficult to cool a large area superconductor.

本発明はかかる点に鑑み発明されたものにして、内部か
ら冷却することができる超電導多孔体を提供することを
解決課題とする。
The present invention was devised in view of these points, and an object to be solved is to provide a superconducting porous body that can be cooled from the inside.

(ニ)問題点を解決するための手段 本発明は、超電導相を少なくとも一部に含む超電導材粉
末と低温分解性の有機バインダーを混練した後、有機バ
インダーの分解温度以上の温度にて混練物を焼成し、超
電導多孔体を形成することを特徴とする。
(d) Means for Solving the Problems The present invention provides a method for kneading superconducting material powder containing at least a portion of a superconducting phase and a low-temperature decomposable organic binder, and then heating the kneaded product at a temperature equal to or higher than the decomposition temperature of the organic binder. The method is characterized in that it is fired to form a superconducting porous body.

また、第2の発明は、超電導相を少なくとも一部に含む
超電導粉末と低温無8M発泡剤を混練した後、この発泡
剤の発泡温度以上の温度にて混練物を焼成し、超電導多
孔体を形成することを特徴とする。
Further, the second invention is to knead a superconducting powder containing at least a part of a superconducting phase and a low-temperature non-8M foaming agent, and then firing the kneaded product at a temperature higher than the foaming temperature of the foaming agent to form a superconducting porous body. It is characterized by forming.

(ホ)作 用 第1の発明においては、超電導材粉末と有機バインダー
との混練物を、有機バインダーの分解温度以上の温度に
て焼成することにより、有機バインダーが分解焼失し、
超電導体はマトリクス枠状となり、三次元的に連続した
空孔を有する多孔体となる。
(E) Effect In the first invention, the organic binder is decomposed and burned away by firing the kneaded mixture of the superconducting material powder and the organic binder at a temperature higher than the decomposition temperature of the organic binder.
The superconductor becomes a matrix frame-like porous body having three-dimensionally continuous pores.

第2の発明においては、超電導材粉末と無機発泡剤との
混練物を、この発泡剤の発泡温度以上の温度にて焼成す
ることにより、無機発泡剤を発泡させて焼失させ5その
発泡焼失跡を三次元的に連続した空孔となし、マトリク
ス枠状の超電導多孔体を形成する。
In the second invention, by firing a kneaded mixture of superconducting material powder and an inorganic foaming agent at a temperature higher than the foaming temperature of the foaming agent, the inorganic foaming agent is foamed and burned out. are made into three-dimensionally continuous pores to form a matrix frame-shaped superconducting porous body.

これらの多孔体は三次元的に連続した空孔を有するため
、この空孔に冷媒を流すことができ、マトリクス枠状の
超電導多孔体を内部から冷却することが可能となり、多
孔体の大型化も冷却上支障が少ないものとなる。
Since these porous bodies have three-dimensionally continuous pores, a coolant can flow through these pores, making it possible to cool the matrix frame-shaped superconducting porous body from inside, which allows the porous body to become larger. Also, there will be less trouble in cooling.

(へ)実施例 [第1実施例] 本発明の第1実施例を第1図を参照して説明する。第1
図は製造工程図である。
(f) Example [First Example] A first example of the present invention will be described with reference to FIG. 1st
The figure is a manufacturing process diagram.

硝酸イツトリウムY (N O3) 3 5H20、硝
酸バリウムBa(NO3)2、硝酸銅Cu (N Oy
)z・3H20を夫々水に溶解し、Y、Ba−Cuがモ
ル比1:2:3になるように混合する(工程■)。つい
で蓚酸の水溶液をBa元素2モルに対し7モル加えて反
応させる(工程■)。
Yttrium nitrate Y (N O3) 3 5H20, Barium nitrate Ba (NO3)2, Copper nitrate Cu (N Oy
) Z.3H20 is dissolved in water and mixed so that the molar ratio of Y and Ba-Cu is 1:2:3 (Step 2). Next, 7 mol of an aqueous solution of oxalic acid is added to 2 mol of Ba element to cause a reaction (Step 2).

この反応により共沈した沈殿物を濾過し水洗したのち、
十分乾燥させ(工程■)、酸化雰囲気中において960
度で約3時間仮焼成〈工程■)を行った。
After filtering and washing the precipitate co-precipitated by this reaction,
Thoroughly dry (Step ■) and heat to 960°C in an oxidizing atmosphere.
Temporary firing (step ①) was performed for about 3 hours at 30°C.

これにて得られる塊状材料を乳鉢で粉砕後、さらにボー
ルミルで粉砕して平均粒径5μmの粉末を得た(工程■
)。この粉末は仮焼成条件により少なくとも超電導相を
一部に含む超電導材粉末である。
The resulting lumpy material was crushed in a mortar and then further crushed in a ball mill to obtain a powder with an average particle size of 5 μm (Step 1).
). This powder is a superconducting material powder that partially contains at least a superconducting phase depending on the pre-calcination conditions.

次に、この超電導材粉末100部に対し、低温分解性の
有機バインダーとしてのアクリル樹脂を100部添加し
く工程■)、ボールミルで混練した。この混!1!物を
所定形状、たとえば長さ50nya、中10mm、厚み
5mにプレス圧力1.5トン/’ cm 2でプレス成
型した(工程■)。
Next, 100 parts of an acrylic resin as a low-temperature decomposable organic binder was added to 100 parts of this superconducting material powder (Step (2)), and the mixture was kneaded in a ball mill. This mess! 1! The product was press-molded into a predetermined shape, for example, length 50 nya, medium 10 mm, and thickness 5 m at a press pressure of 1.5 tons/cm 2 (step ①).

この成型物を酸化雰囲気中で有機バインダーの分解温度
(140’C)以上の980℃で1時間焼成した後、酸
化雰囲気中で800℃3時間焼成して本焼成したく工程
■)。この本焼成により有機バインダーが焼失し、超電
導多孔体を得た。この多孔体は平均空孔径は直径0.5
mであり、空孔率は50%であった。また、この多孔体
は超電導状態を示す臨界温度が90にであり、この多孔
体に臨界温度(90K)以下のヘリウムガスを導入する
と、多孔体はマイスナー効果を示し、超電導状態である
ことを確認した。マイスナー効果を呈することから、こ
の多孔体が磁気シールド材として機能することがわかる
This molded product is fired in an oxidizing atmosphere at 980°C, which is higher than the decomposition temperature of the organic binder (140'C), for 1 hour, and then fired at 800°C in an oxidizing atmosphere for 3 hours to carry out the main firing (Step (2)). By this main firing, the organic binder was burned out, and a superconducting porous body was obtained. The average pore diameter of this porous body is 0.5
m, and the porosity was 50%. In addition, this porous body has a critical temperature of 90°C which indicates a superconducting state, and when helium gas below the critical temperature (90K) is introduced into this porous body, the porous body exhibits the Meissner effect, confirming that it is in a superconducting state. did. The Meissner effect indicates that this porous body functions as a magnetic shielding material.

超電導多孔体の平均空孔径及び空孔率は、超電導材粉末
の粒径及び有機バインダーの添加量により調整すること
ができる。この多孔体の構造体としての強度及び超電導
特性を損なわないようにするためには、平均空孔径1n
m以下、空孔率80%以下が望ましい。
The average pore size and porosity of the superconducting porous body can be adjusted by adjusting the particle size of the superconducting material powder and the amount of the organic binder added. In order not to impair the strength and superconducting properties of this porous body as a structure, the average pore diameter must be 1n.
m or less, and the porosity is preferably 80% or less.

この実施例では低温分解性の有機バインダーとして、ア
クリル樹脂を用いたが、この他にポリビニールアルコー
ル(分解温度200 ’C)を用いることもできる。
In this example, acrylic resin was used as a low-temperature decomposable organic binder, but polyvinyl alcohol (decomposition temperature: 200'C) may also be used.

[第2実施例] 第1実施例の工程■で得た平均粒径5μmの超電導材粉
末に、第1実施例の低温分解性有機バインダーに代えて
、低温無機発泡剤を添加し、その添加量を30部にした
点を除いて、第1実施例と同一条件にて超電導多孔体を
形成した。
[Second Example] A low-temperature inorganic foaming agent was added to the superconducting material powder having an average particle size of 5 μm obtained in step (1) of the first example in place of the low-temperature decomposable organic binder of the first example. A superconducting porous body was formed under the same conditions as in the first example except that the amount was changed to 30 parts.

低温無機発泡剤としては、炭酸水素アンモニウムを用い
たが、炭酸アンモニウムを使用してもよい。
Although ammonium hydrogen carbonate was used as the low-temperature inorganic foaming agent, ammonium carbonate may also be used.

この第2実施例で得た超電導多孔体は、本焼成時に発泡
剤が80°C位で発泡し、100乃至200℃位で焼失
することによって形成され、平均空孔径0 、5 mm
 、空孔率50%であり、また臨界温度も第1実施例と
同じであった。
The superconducting porous body obtained in this second example was formed by foaming the foaming agent at about 80°C during main firing and burning out at about 100 to 200°C, and had an average pore diameter of 0.5 mm.
, the porosity was 50%, and the critical temperature was also the same as in the first example.

尚、低温無機発泡剤の添加量を、超電導材粉末100部
に対し、30部としたが、10乃至50部用いてもでき
る。
Although the amount of the low-temperature inorganic foaming agent added was 30 parts per 100 parts of the superconducting material powder, it is also possible to use 10 to 50 parts.

以上の実施例においては、超電導相を少なくとも一部に
含む超電導材粉末を、共沈法により塊状材料から得たが
、粉末混合法で得た塊状材料から得るようにしてもよい
。ここにいう粉末混合法とは、たとえばLn2O3(L
nはY、Yb−Er、Gd、Dy、Ho、Eu、Sm、
Ndから選ばれるものである)とB a CO3とCu
Oとを混合して加圧成型した後、酸化雰囲気中で焼結し
てLnB a 2Cu 307−δで表わされる組成か
らなる超電導材物質を得る方法を意味する。
In the above examples, the superconducting material powder containing at least a portion of the superconducting phase was obtained from the bulk material by the coprecipitation method, but it may also be obtained from the bulk material obtained by the powder mixing method. The powder mixing method referred to here means, for example, Ln2O3 (L
n is Y, Yb-Er, Gd, Dy, Ho, Eu, Sm,
), B a CO3 and Cu
This refers to a method of obtaining a superconducting material having a composition represented by LnBa 2 Cu 307-δ by mixing with O and press-molding the mixture and then sintering it in an oxidizing atmosphere.

また超電導材粉末は超電導相を少なくとも一部に含むも
のであればよく、実施例の仮焼成においては、アニール
工程を十分にとっていないが、アニール処理により超電
導相の領域が前記粉末のほとんどを占めるものであって
もよいことは、いうまでもない。
In addition, the superconducting material powder may contain at least a part of the superconducting phase, and although the annealing process is not sufficiently performed in the pre-firing of the example, the superconducting material powder should be one in which the superconducting phase region occupies most of the powder due to the annealing treatment. Needless to say, it may be.

(ト)発明の効果 発明によれば、超電導相を少なくとも一部に含む超電導
材粉末と低温分解性有機バインダー又は低温無機発泡剤
を混練した後、有機バインダーの分解温度又は発泡剤の
発泡温度以上の温度にて混練物を焼成し、超電導多孔体
を形成するものであるから、冷却ガスを用いてこの多孔
体の内部から冷却することも可能となり、冷却する上で
大型化も可能であり、磁気シールド材等に利用すること
ができる。
(g) Effects of the invention According to the invention, after kneading a superconducting material powder containing at least a portion of a superconducting phase and a low-temperature decomposable organic binder or a low-temperature inorganic foaming agent, the temperature is higher than the decomposition temperature of the organic binder or the foaming temperature of the blowing agent. Since the kneaded material is fired at a temperature of It can be used for magnetic shielding materials, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の製造工程を示す工程図で
ある。
FIG. 1 is a process diagram showing the manufacturing process of a first embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)超電導相を少なくとも一部に含む超電導材粉末と
低温分解性の有機バインダーを混練した後、有機バイン
ダーの分解温度以上の温度にて混練物を焼成し、超電導
多孔体を形成することを特徴とする超電導多孔体の製造
方法。
(1) After kneading a superconducting material powder containing at least a portion of a superconducting phase and a low-temperature decomposable organic binder, the kneaded material is fired at a temperature higher than the decomposition temperature of the organic binder to form a superconducting porous body. A method for producing a featured superconducting porous body.
(2)超電導相を少なくとも一部に含む超電導材粉末と
低温無機発泡剤を混練した後、この発泡剤の発泡温度以
上の温度にて混練物を焼成し、超電導多孔体を形成する
ことを特徴とする超電導多孔体の製造方法。
(2) A superconducting porous body is formed by kneading a superconducting material powder containing at least a portion of a superconducting phase and a low-temperature inorganic foaming agent, and then firing the kneaded product at a temperature equal to or higher than the foaming temperature of the foaming agent. A method for producing a superconducting porous body.
JP63197504A 1988-08-08 1988-08-08 Production of superconducting porous material Pending JPH0248475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197504A JPH0248475A (en) 1988-08-08 1988-08-08 Production of superconducting porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197504A JPH0248475A (en) 1988-08-08 1988-08-08 Production of superconducting porous material

Publications (1)

Publication Number Publication Date
JPH0248475A true JPH0248475A (en) 1990-02-19

Family

ID=16375575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197504A Pending JPH0248475A (en) 1988-08-08 1988-08-08 Production of superconducting porous material

Country Status (1)

Country Link
JP (1) JPH0248475A (en)

Similar Documents

Publication Publication Date Title
US5409888A (en) Process for producing a high-temperature superconductor and also shaped bodies composed thereof
Sale et al. Citrate gel processing of oxide superconductors
JPH0259465A (en) Production of oxide high temperature superconductor
JPH0248475A (en) Production of superconducting porous material
US5064808A (en) Method of manufacturing oxide superconductors using self-propagating high-temperature synthesis
JP2677882B2 (en) Method for producing bismuth oxide superconductor
JPH02229722A (en) Method for synthesizing oxide fine particle by spray drying
JPH03505569A (en) High Tc superconductor and its manufacturing method
JPH01241716A (en) Manufacture of oxide superconductor wire
JPH02120227A (en) Production of bi-based oxide superconductor
JPH0238358A (en) Production of oxide superconductor
JP2677830B2 (en) Method for producing bismuth oxide superconductor
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JPS63277575A (en) Production of formed article of oxide superconductor
JPH01126258A (en) Production of oxide high-temperature superconductive material
JPS63295471A (en) Production of oxide superconducting material
JPS63282173A (en) Production of oxide superconductor
JPH01241712A (en) Manufacture of oxide superconductor wire
JPH01278467A (en) Production of superconductor
JPH02225368A (en) Production of superconducting ceramics
JPH02141420A (en) Oxide superconductor
JPH01278458A (en) Production of superconductor
JPH026304A (en) Production of compound oxide
JPH01138120A (en) Production of mixed powder for superconducting material
JPH01241717A (en) Manufacture of oxide superconductor wire