JPH02141420A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH02141420A
JPH02141420A JP63295383A JP29538388A JPH02141420A JP H02141420 A JPH02141420 A JP H02141420A JP 63295383 A JP63295383 A JP 63295383A JP 29538388 A JP29538388 A JP 29538388A JP H02141420 A JPH02141420 A JP H02141420A
Authority
JP
Japan
Prior art keywords
soln
superconductor
water
oxalic acid
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63295383A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sawada
沢田 和彦
Satoshi Marukawa
丸川 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP63295383A priority Critical patent/JPH02141420A/en
Publication of JPH02141420A publication Critical patent/JPH02141420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide an oxide superconductor having high critical current density by mixing an aq. soln. of water-soluble salt of each component corresponding to a compsn. of a rare-earth element-Ba-K-Cu type superconductor, with a soln. of oxalic acid in a lower alcohol and using a precipitate produced from the mixture. CONSTITUTION:An aq. soln. of each water-soluble salt of each component corresponding to a compsn. expressed by the formula I (R is a rare earth element; x is 0.01-0.2) is prepd. Concrete examples for the water-soluble salt are yttrium nitrate, barium nitrate, potassium nitrate, copper nitrate, etc. Then, the aq. soln. is mixed with a soln. of oxalic acid in a lower alcohol (e.g., methanol). Produced precipitate comprising oxalate of each component is used as the starting material powder, which is calcined provisionally, molded and then sintered. Thus, an oxide superconductor consisting of an oxide expressed by the formula II (wherein y is 6.7-6.93), which has a higher critical current density than that of superconductors obtd. by a solid phase process and has a same compsn., is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、組成式: RBaz−XKXCu、IOy 
(但し、Rは希土類元素を、Xは0.01〜0.2を、
yは6.7〜6.93を表わす)で表される酸化物から
なる超電導体に関し、評言すれば上記組成の原料粉末(
酸素を除く)を特定の方法で調製した沈殿物から得、こ
の沈殿物から作製した上記組成式で表される酸化物から
なる超電導体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has the following compositional formula: RBaz-XKXCu, IOy
(However, R is a rare earth element, X is 0.01 to 0.2,
Regarding a superconductor made of an oxide represented by
The present invention relates to a superconductor made of an oxide expressed by the above compositional formula and produced from a precipitate prepared by a specific method (excluding oxygen).

〔従来の技術〕[Conventional technology]

現在、各種の酸化物系超電導物質が知られており、その
一つに組成式: RBaz−XKX CL+30y  
(但し、Rは希土類元素を、Xは0.01〜0.2を、
yは6.7〜6.93を表わす)で表される酸化物があ
る。
Currently, various oxide-based superconducting materials are known, one of which has the composition formula: RBaz-XKX CL+30y
(However, R is a rare earth element, X is 0.01 to 0.2,
y represents 6.7 to 6.93).

この物質を超電導体として線材やテープなどの長尺体に
成形加工する実用化研究が盛んに行われている。一般に
この成形加工は、原料粉末の仮焼、仮焼体の粉砕、仮焼
体粉末の成形、該成形体の焼結の工程で行われる。
Research into the practical application of this material as a superconductor by forming it into elongated bodies such as wire rods and tapes is actively being conducted. Generally, this shaping process is carried out in the steps of calcination of the raw material powder, pulverization of the calcined body, shaping of the calcined body powder, and sintering of the molded body.

一方、超電導体が示す超電導現象は成る温度以下で電気
抵抗が全く無くなる現象をいうが、この超電導現象はそ
れが起こる温度(臨界温度)が材料によってそれぞれ異
なる。臨界温度が高い材料はど冷却が容易であるため、
できるだけ臨界温度の高い材料の開発が特に最近隆盛を
極めている。
On the other hand, the superconducting phenomenon exhibited by superconductors is a phenomenon in which electrical resistance completely disappears below a certain temperature, but the temperature at which this superconducting phenomenon occurs (critical temperature) differs depending on the material. Materials with high critical temperatures are easy to cool, so
The development of materials with as high a critical temperature as possible has been particularly active recently.

上記組成式で表される酸化物においてもその組成にみら
れるように、本来のRBaCu O系の構成元素のうち
Baの一部をKで置換することによって純粋なRBaC
u O系よりも高い臨界温度を得ている。
As can be seen in the composition of the oxide represented by the above compositional formula, pure RBaC can be obtained by substituting a part of Ba among the constituent elements of the original RBaCu O system with K.
It has a higher critical temperature than the uO system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

酸化物系超電導物質の製造で原料粉末の仮焼に供する原
料粉末を得るには同相法を利用する方法がある。周知の
ように固相法は、乳鉢、ボールミルなどで原料粉末を混
合して粉砕するものである。
In the production of oxide-based superconducting materials, there is a method using the in-phase method to obtain raw material powder for calcination of raw material powder. As is well known, the solid phase method involves mixing and pulverizing raw material powders in a mortar, ball mill, or the like.

上記組成からなる酸化物超電導体も固相法によって得ら
れた原料粉末から製造することが試みられている。
Attempts have also been made to manufacture oxide superconductors having the above composition from raw material powder obtained by a solid phase method.

しかしながら、同相法では原料粉末を粉砕して均一に混
合するには限界がある。また、固相法では原料粉末の粒
径が大きく、しかも固相反応が粒子の接触部分付近のみ
で進行するという欠点がある。これがため、固相法によ
って得られた原料粉末を用いて作製した超電導体の臨界
電流には限度がある。
However, in the same phase method, there is a limit to the ability to grind and uniformly mix raw material powders. In addition, the solid phase method has the disadvantage that the particle size of the raw material powder is large and the solid phase reaction proceeds only near the contact area of the particles. Therefore, there is a limit to the critical current of a superconductor manufactured using raw material powder obtained by the solid phase method.

ところが、高い臨界温度だけでなく超電導状態類元素を
、Xは0101〜0.2を、yは6.7〜6.93を表
わす)の組成式で表される酸化物からなる超電導体を作
製することで、臨界電流の向上がみられることを見出し
、本発明を完成するに至った。
However, in addition to having a high critical temperature, it was also difficult to fabricate a superconductor made of an oxide with a superconducting state class element, where X represents 0101 to 0.2, and y represents 6.7 to 6.93. It was discovered that the critical current was improved by doing so, and the present invention was completed.

本発明の酸化物超電導体は、RBat−* K *Cu
* Ov(R,x、yは前記と同意義)の組成における
各成分の水溶性塩の水溶液と蓚酸の低級アルコール溶液
とを混合し、生成した蓚酸塩よりなる沈殿物を原料粉末
として使用することによって作製したものであることを
特徴とする。本発明の超電導体は上記組成に対応する各
成分の水溶性塩の水溶液と蓚酸の低級アルコール溶液と
を混合することによって原料粉末を生成するので、固相
法で得られた原料粉末上比較して一般に成分元素の分布
が均一で、より微細な粉末が得られる。従って、各成分
の微粒子が均一に密集した超電導体を作製することがで
きるので、従来の如(RBilz−xKイCu、、Oy
系であって原料粉末を固相法によって作製した酸化物か
らなる超電導体よりも臨界電流が高くなる。
The oxide superconductor of the present invention is RBat-*K*Cu
* Mix an aqueous solution of water-soluble salts of each component with a composition of Ov (R, x, y have the same meanings as above) and a lower alcohol solution of oxalic acid, and use the resulting precipitate made of oxalate as a raw material powder. It is characterized in that it is produced by. Since the superconductor of the present invention produces raw material powder by mixing an aqueous solution of water-soluble salts of each component corresponding to the above composition and a lower alcohol solution of oxalic acid, the raw material powder obtained by the solid phase method is compared. In general, a finer powder with a uniform distribution of component elements can be obtained. Therefore, it is possible to fabricate a superconductor in which fine particles of each component are uniformly densely packed.
The critical current is higher than that of a superconductor made of an oxide based on a solid-phase method using raw material powder.

本発明において、組成: RBaz−x KX Cu3
(但で流せる上限の電流(臨界電流)もセラミックス材
料の実用化の重要なポイントとなる。これは実用化には
たとえば線材にしなければならないが、セラミックス材
料は単位断面積当りに流せる電流が小さいため、どれだ
け高い臨界電流が得られるかが実用化への大きな鍵を握
っているからである。
In the present invention, composition: RBaz-x KX Cu3
(However, the upper limit of current that can be passed (critical current) is also an important point in the practical application of ceramic materials. For practical use, it must be made into a wire, for example, but ceramic materials have a small current that can be passed per unit cross-sectional area.) Therefore, the key to practical application is how high a critical current can be obtained.

それ故、RBaz−x KX Cu、、 Oy系超超電
導体おける臨界電流にも未だ改良の余地がある訳である
Therefore, there is still room for improvement in the critical current in RBaz-x KX Cu, Oy-based superconductors.

従って本発明の目的は、以上の点を鑑みて、RBa2□
KX C1130y系超超電導において、従来よりも高
い臨界電流を示す超電導体を提供することにある。
Therefore, in view of the above points, the object of the present invention is to
The object of the present invention is to provide a KX C1130y superconductor that exhibits a higher critical current than conventional superconductors.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明者らは鋭意研究に努
めた結果、RBaz−x Kx Cu、、  (但し、
Rは希土類元素を、Xは0.OI〜0.2を表わす)の
組成に対応する各成分の水溶性塩の水溶液と蓚酸の低級
アルコール溶液とを混合することによって/4゜成した
上記成分の蓚酸塩よりなる沈殿物を原料粉末としてRB
az−++ Kx Cu、lOy  (但し、Rは希土
し、R,xは前記と同意義)におけるRに関して希土類
元素としては、イツトリウム、ランタン、ネオジム、プ
ロメチウム、サマリウム、ユウロピウム、ガドリニウム
、ジスプロシウム、ホルミウムなどが例示される。
In order to achieve the above object, the present inventors made extensive research efforts and found that RBaz-x Kx Cu, (However,
R is a rare earth element, and X is 0. By mixing an aqueous solution of a water-soluble salt of each component corresponding to the composition of OI ~ 0.2) and a lower alcohol solution of oxalic acid, a precipitate consisting of the oxalate of the above component was prepared as a raw material powder. as RB
az-++ Kx Cu, lOy (However, R is rare earth, and R and x have the same meanings as above). Rare earth elements for R include yttrium, lanthanum, neodymium, promethium, samarium, europium, gadolinium, dysprosium, and holmium. Examples include.

しかして、本発明においてR1(az−8KX Cu、
、  (但し、R,xは前記と同意義)の組成に対応す
る各成分の水溶性塩は水に可溶性である限り特に制限は
なく、イツトリウム成分である場合には、たとえば硝酸
イツトリウム、塩化インドリウム、耐酸イツトリウムな
ど、ランタン成分としては、たとえば硝酸ランタン、塩
化ランタンなどが例示される。また、バリウム成分とし
ては、たとえば塩化バリウム、硝酸バリウムなど、カリ
ウム成分としては、たとえば塩化カリウム、硝酸カリウ
ムなど、銅成分としては、たとえば塩化第二銅、硝酸銅
などが例示される。
Therefore, in the present invention, R1 (az-8KX Cu,
The water-soluble salt of each component corresponding to the composition (where R and x have the same meanings as above) is not particularly limited as long as it is soluble in water. Examples of lanthanum components such as lithium and acid-resistant yttrium include lanthanum nitrate and lanthanum chloride. Examples of the barium component include barium chloride and barium nitrate; examples of the potassium component include potassium chloride and potassium nitrate; and examples of the copper component include cupric chloride and copper nitrate.

特に、Rがイツトリウムである場合には、酸素を除く組
成がY:Ba:に:Cuであるが故、たとえば硝酸イツ
トリウム、硝酸バリウム、硝酸カリウム、硝酸銅が使用
される。
In particular, when R is yttrium, the composition excluding oxygen is Y:Ba::Cu, and therefore, for example, yttrium nitrate, barium nitrate, potassium nitrate, or copper nitrate is used.

」二記水溶性塩の水溶液と混合する蓚酸の低級アルコー
ル溶液の溶媒となる低級アルコールとしては、メタノー
ル、エタノール、プロパツールなどを用いればよい。蓚
酸の量は上記水溶性塩の水溶液中における各水溶性塩を
蓚酸塩に変更しうるに十分量であればよい。
As the lower alcohol serving as a solvent for the lower alcohol solution of oxalic acid to be mixed with the aqueous solution of the water-soluble salt 2, methanol, ethanol, propatool, etc. may be used. The amount of oxalic acid may be sufficient as long as it can convert each water-soluble salt in the aqueous solution of the water-soluble salt to oxalate.

水溶性塩の水溶液と蓚酸の低級アルコール溶液とを混合
することによって各成分の蓚酸塩が沈殿する。蓚酸塩は
、たとえば上記のY Ba K Cu系では、蓚酸イツ
トリウム、蓚酸バリウム、蓚酸カリウム、蓚酸銅が原料
粉末となる沈殿物である。
By mixing an aqueous solution of a water-soluble salt and a lower alcohol solution of oxalic acid, the oxalate of each component is precipitated. For example, in the Y Ba K Cu system described above, oxalate is a precipitate whose raw material powders are yttrium oxalate, barium oxalate, potassium oxalate, and copper oxalate.

蓚酸塩よりなる沈殿物である原料粉末から酸化物の超電
導体を製造する方法には、特に制限はなく、従来既知の
方法によればよい。たとえばプロセスとして、原料粉末
→仮焼結→成形→焼結という段階で行われる固体プロセ
スなどによって製造すればよい。
There are no particular limitations on the method for producing an oxide superconductor from a raw material powder that is a precipitate of oxalate, and any conventionally known method may be used. For example, the process may be a solid-state process that includes the steps of raw material powder, temporary sintering, molding, and sintering.

次に、本発明の酸化物超電導体の製造方法の一例を述べ
る。
Next, an example of the method for manufacturing the oxide superconductor of the present invention will be described.

であるのでpH調整は必すしも必要ではなく、省略して
も構わない。
Therefore, pH adjustment is not necessarily necessary and may be omitted.

その後、混合液中の沈殿物を濾過によって採取するが、
混合後に直ぐに生成沈殿物を濾過すると濾過され難い程
に罪常に小さな結晶があるため、濾過されるに足る十分
な大きさの結晶に成長させるべく24時間程度放置して
おくことが好ましい。
After that, the precipitate in the mixture is collected by filtration,
If the formed precipitate is filtered immediately after mixing, there will always be crystals that are too small to be filtered, so it is preferable to leave the precipitate for about 24 hours to grow into crystals large enough to be filtered.

放置後、得られた沈殿物を濾過によって採取し、これを
乾燥する。乾燥は、たとえば140°C程度の熱風を約
2時間程度当てる、100°C程度にて2時間程度の真
空乾燥をする、などにて行えばよい。
After standing, the resulting precipitate is collected by filtration and dried. Drying may be performed, for example, by applying hot air at about 140° C. for about 2 hours, or by vacuum drying at about 100° C. for about 2 hours.

かくして、所望の組成の原料粉末が得られる。In this way, a raw material powder with a desired composition is obtained.

次いで上記原料粉末を、そのまま或いは加圧下でベレッ
ト状などに仮成形し、仮焼する。この仮焼は、高温下で
の反応拡散により各成分を分子レヘルで均一に混合する
目的で行われ、使用する原料粉末の種類並びに配合割合
に応じて適宜に温度が決定され、R11az−XK、 
(、u、Oy系の場合は通常850°C以上、好ましく
は850〜950°C1特に900°C前後が好ましい
。仮焼の時間は温度にも依るがまず、RBa2−XK、
 Cuz  (イHし、R,xは前記と同意義)の組成
において各配合組成に対応した水溶性金属塩の水溶液を
それぞれ作製する。各水溶液のモル濃度はRに選ぶ希土
類元素やXのイ16などによって決定されるが、0.0
01〜0.1 モル濃度程度である。蓚酸の低級アルコ
ール溶液は、溶媒に低級アルコールを用い、低級アルコ
ール溶液200〜800 ml程度に、通常蓚酸0.0
3−0.14モル程度、好ましくは前者400m1程度
に後者0,07モル程度を溶存させたものを用いる。得
られた蓚酸アルコール溶液に各水溶液を、好ましくは同
時かつ徐々に加え、各蓚酸塩を沈殿させる。
Next, the raw material powder is temporarily formed into a pellet shape or the like as it is or under pressure, and then calcined. This calcination is carried out for the purpose of uniformly mixing each component at a molecular level by reaction diffusion at high temperatures, and the temperature is appropriately determined depending on the type and blending ratio of the raw material powder used.
(In the case of , u, and Oy systems, the temperature is usually 850°C or higher, preferably 850 to 950°C, especially around 900°C. The calcination time depends on the temperature, but first, RBa2-XK,
Aqueous solutions of water-soluble metal salts corresponding to each compounding composition are prepared in the composition of Cuz (I, R, and x have the same meanings as above). The molar concentration of each aqueous solution is determined by the rare earth element selected for R, A16 for X, etc., but it is 0.0
01 to 0.1 molar concentration. A lower alcohol solution of oxalic acid is prepared by using a lower alcohol as a solvent, and adding 0.0 ml of oxalic acid to about 200 to 800 ml of the lower alcohol solution.
About 3 to 0.14 mol, preferably about 0.07 mol of the latter dissolved in about 400 ml of the former is used. Each aqueous solution is preferably simultaneously and gradually added to the obtained oxalic acid alcohol solution to precipitate each oxalate.

ここで、水溶性塩の水溶液と蓚酸アルコール溶液との混
合液のp Hが2よりも小さければItaなどのアルカ
リ土類金属は可溶性となるので沈殿率をより上げるため
には、沈殿生成溶液であるアルコール溶液に、たとえば
アンモニア水等を配合しておき、水溶液を混合した時の
p Hが2以上となるようにpHを調整する。実際には
、たとえば硝酸バリウム、蓚酸バリウムは低級アルコー
ルに難溶通常2〜40時間、好ましくは6〜15時間程
度である。また、この仮焼によって原料粉末中に残存す
る不要な有機成分、水蒸気などが消失するごとになる。
Here, if the pH of the mixed solution of the water-soluble salt aqueous solution and the oxalic acid alcohol solution is lower than 2, alkaline earth metals such as Ita become soluble. For example, aqueous ammonia or the like is added to a certain alcohol solution, and the pH is adjusted so that the pH of the mixture becomes 2 or more. In fact, for example, barium nitrate and barium oxalate are hardly soluble in lower alcohols, usually for about 2 to 40 hours, preferably about 6 to 15 hours. Further, this calcination causes unnecessary organic components, water vapor, etc. remaining in the raw material powder to disappear.

仮焼体は再度粉砕される。この粉砕により、平均粒子径
0.1〜2戸稈度の仮焼体微粉末を得る。
The calcined body is crushed again. By this pulverization, a fine calcined powder having an average particle size of 0.1 to 2 culms is obtained.

かくして得た仮焼体微粉末を所望の形状(たとえばコイ
ル状、線状、テープ状など)に成形し、最後に成形品を
焼結する。焼結は次の条件で行なうことが好ましい。即
ち、温度は900〜970°C(特に、920〜970
°C)であり、他の条件は前記仮焼の条件と略同じでよ
い。
The calcined fine powder thus obtained is molded into a desired shape (for example, a coil shape, a wire shape, a tape shape, etc.), and finally the molded product is sintered. Sintering is preferably performed under the following conditions. That is, the temperature is 900 to 970°C (particularly 920 to 970°C)
°C), and other conditions may be substantially the same as those for the calcination.

以上の手順によって、コイル状、線状、テープ状などの
酸化物超電導体が製造される。
By the above procedure, an oxide superconductor in a coil shape, a wire shape, a tape shape, etc. is manufactured.

〔実施例・実験例〕[Example/Experiment example]

以下に実施例を用いて本発明の酸化物超電導体を詳細に
説明するが、本発明は以下の実施例のみに限られるもの
ではない。
The oxide superconductor of the present invention will be described in detail below using Examples, but the present invention is not limited to the following Examples.

実施例1〜4 RBa2−XKXCu、3の組成においてRの希土類元
素及びXの値が表Iに示したような各組成系の各成分の
金属塩の水溶液として、同じく表Iに記載するモル濃度
、混合量の水溶液をそれぞれ作製する。次に、表Iに示
す如き蓚酸アルコール溶液に上記各金属塩の水溶液を徐
々に加え、各成分の蓚酸塩を同時に沈殿させる。
Examples 1 to 4 In the composition of RBa2-XKXCu, 3, the rare earth element of R and the value of , a mixed amount of aqueous solutions are prepared respectively. Next, an aqueous solution of each of the metal salts described above is gradually added to an oxalic acid alcohol solution as shown in Table I to simultaneously precipitate each component of oxalate.

ここで、実施例1においては、混合時点での沈殿生成液
のp Hは1前後であり、かつ生成液は金属の水溶液を
20体積%含有するため、沈殿生成液中にアンモニア水
(28%)を0.35m175秒の滴下速度で加え、生
成液のpHを4.6に調整した。
Here, in Example 1, the pH of the precipitation solution at the time of mixing is around 1, and since the solution contains 20% by volume of an aqueous metal solution, ammonia water (28% ) was added dropwise at a rate of 0.35 ml and 175 seconds, and the pH of the resulting solution was adjusted to 4.6.

混合生成液を24時間放置した後、沈殿物を濾過によっ
て収集し、140°Cの熱風を2時間当てて沈殿物を乾
燥した。乾燥によって得られた各組成比の原料粉末を9
00°Cで6時間酸素気流中で仮焼し、炉冷し、得られ
た仮焼物を粉砕して平均粒子径約1.0戸の微粉末を得
た。次にこの微粉末を所望の形状(たとえばコイル状)
に成形し、最後に成形品を950°Cで12時間酸素気
流中で焼結し、酸化物超電導体を製造した。得られた超
電導体の臨界型流密度(臨界温度77K)は表■に示す
通りである。
After the mixed product solution was left to stand for 24 hours, the precipitate was collected by filtration, and the precipitate was dried by applying hot air at 140°C for 2 hours. The raw material powder of each composition ratio obtained by drying was
The calcined product was calcined at 00°C for 6 hours in an oxygen stream, cooled in a furnace, and the resulting calcined product was pulverized to obtain a fine powder with an average particle size of about 1.0 units. Next, shape this fine powder into the desired shape (e.g. coil shape).
Finally, the molded product was sintered at 950°C for 12 hours in an oxygen stream to produce an oxide superconductor. The critical flow density (critical temperature 77K) of the obtained superconductor is as shown in Table 2.

比較例1〜4 上記実施例により得られた超電導体の臨界電流密度が優
れたものであることをより明確にするために、〔従来の
技術〕でも述べた如く同じS1■成で固相法を用いて得
られた原料粉末を用いて同様の実験を行った。
Comparative Examples 1 to 4 In order to make it clearer that the critical current density of the superconductor obtained in the above example is excellent, the solid phase method was performed using the same S1 configuration as described in [Prior Art]. A similar experiment was conducted using the raw material powder obtained using .

すなわち、固相法による原料粉末を仮成形し、900℃
で6時間酸素気流中で仮焼し、仮焼物を粉砕した後、実
施例と同様の形状に成形し、成形品を950°Cで12
時間酸素気流中で焼結した。得られた超電導体の臨界電
流密度(臨界温度77K)は表Iに示す通りである。
That is, the raw material powder is temporarily molded by the solid phase method, and heated to 900°C.
After calcining in an oxygen stream for 6 hours and pulverizing the calcined product, it was molded into the same shape as in the example, and the molded product was heated at 950°C for 12 hours.
Sintered in an oxygen stream for an hour. The critical current density (critical temperature 77K) of the obtained superconductor is as shown in Table I.

表Iから明らかなように、本発明による酸化物超電導体
の臨界電流密度は同じ組成で同相法を用いて得られた酸
化物超電導体の臨界電流密度よりも極めて高(なってい
ることが分かる。
As is clear from Table I, the critical current density of the oxide superconductor according to the present invention is much higher than that of the oxide superconductor obtained using the in-phase method with the same composition. .

(以下余白) 〔発明の効果〕 以上説明した如く、本発明の酸化物超電導体は、RBa
z−x Kx Cu3  (但し、Rは希土類元素を、
Xは0.01〜0.2を表わす)の組成に対応する各成
分の水溶性塩の水溶液と蓚酸の低級アルコール溶液とを
混合することによって生成した上記成分の蓚酸塩よりな
る沈殿物を原料粉末として作製したRBaz−x KX
 Cu30y (但し、Rは希土類元素を、Xは0.0
1〜0.2を、yは6.7〜6.93を表わす)の組成
酸化物からなることにより、同相法、その他の方法を用
いた同じ組成のYBa2−x KXCu、、 Oy系酸
化物超電導体における臨界電流よりも極めて高い臨界電
流を示し、この系の超電導体としては優秀な超電導特性
を呈するものである。
(The following is a blank space) [Effects of the invention] As explained above, the oxide superconductor of the present invention has RBa
z−x Kx Cu3 (However, R is a rare earth element,
X represents 0.01 to 0.2) A precipitate consisting of the oxalate of the above component produced by mixing an aqueous solution of a water-soluble salt of each component corresponding to the composition and a lower alcohol solution of oxalic acid is used as a raw material. RBaz-x KX prepared as powder
Cu30y (However, R is a rare earth element, X is 0.0
1 to 0.2, and y is 6.7 to 6.93). It exhibits a critical current that is extremely higher than that of superconductors, and exhibits excellent superconducting properties for this type of superconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)RBa_2_−_xK_xCu_3(但し、Rは
希土類元素を、xは0.01〜0.2を表わす)の組成
に対応する各成分の水溶性塩の水溶液と蓚酸の低級アル
コール溶液とを混合することによって生成した上記成分
の蓚酸塩よりなる沈殿物を原料粉末として作製してなる
RBa_2_−_xK_xCu_3O_y(但し、Rは
希土類元素を、xは0.01〜0.2を、yは6.7〜
6.93を表わす)の組成式で表される酸化物からなる
ことを特徴とする超電導体。
(1) Mix an aqueous solution of water-soluble salts of each component corresponding to the composition of RBa_2_-_xK_xCu_3 (where R represents a rare earth element and x represents 0.01 to 0.2) and a lower alcohol solution of oxalic acid. RBa_2_-_xK_xCu_3O_y (where R is a rare earth element, x is from 0.01 to 0.2, and y is from 6.7 to
A superconductor comprising an oxide represented by the composition formula (representing 6.93).
(2)前記組成式においてRがイットリウム(Y)であ
ることを特徴とする請求項(1)記載の超電導体。
(2) The superconductor according to claim 1, wherein R in the compositional formula is yttrium (Y).
JP63295383A 1988-11-22 1988-11-22 Oxide superconductor Pending JPH02141420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295383A JPH02141420A (en) 1988-11-22 1988-11-22 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295383A JPH02141420A (en) 1988-11-22 1988-11-22 Oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02141420A true JPH02141420A (en) 1990-05-30

Family

ID=17819915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295383A Pending JPH02141420A (en) 1988-11-22 1988-11-22 Oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02141420A (en)

Similar Documents

Publication Publication Date Title
JPH0791055B2 (en) Manufacturing method of complex metal oxide
JP4955142B2 (en) Rare earth / aluminum / garnet fine powder and sintered body using the powder
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
AU617357B2 (en) Process for preparing superconducting materials and materials thereby obtained
JPH02141420A (en) Oxide superconductor
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP2632514B2 (en) Manufacturing method of ceramic superconductor
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JP3444930B2 (en) Manufacturing method of oxide superconductor
JP3394297B2 (en) Method for producing superconductive composition
JP2978538B2 (en) Superconducting material with high density crystal structure
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JPH01197352A (en) Synthesis of superconducting ceramic
JPS63288912A (en) Production of inorganic oxide superconductor
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JP3286327B2 (en) Manufacturing method of oxide superconductor
JPS63307156A (en) Method for synthesizing superconducting ceramics
Sun et al. Synthesis of high purity 110 K phase in the Bi (Pb)-Sr-Ca-Cu-O superconductor by the sol-gel method
JP3165921B2 (en) Manufacturing method of oxide superconducting sintered body
JPS63303851A (en) Sintered body of superconducting ceramic
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JPS63288911A (en) Production of high temperature superconductor
JPH04193716A (en) Production of lead-containing copper oxide superconductor
JPH01108121A (en) Production of superconducting material
JPH01275411A (en) Method for synthesizing powdery starting material for oxide superconductor