JPS63282173A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPS63282173A
JPS63282173A JP62115051A JP11505187A JPS63282173A JP S63282173 A JPS63282173 A JP S63282173A JP 62115051 A JP62115051 A JP 62115051A JP 11505187 A JP11505187 A JP 11505187A JP S63282173 A JPS63282173 A JP S63282173A
Authority
JP
Japan
Prior art keywords
oxide
oxide superconductor
superconductor
perovskite structure
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62115051A
Other languages
Japanese (ja)
Other versions
JPH07115949B2 (en
Inventor
Kazuo Eda
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62115051A priority Critical patent/JPH07115949B2/en
Publication of JPS63282173A publication Critical patent/JPS63282173A/en
Publication of JPH07115949B2 publication Critical patent/JPH07115949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having superior uniformity, superior reproducibility of productivity, and superior temperature characteristics by calcining a molded product of powdery body obtd. by subjecting slurry of a material for an oxide superconductor having laminar perovskite structure. CONSTITUTION:Slurry is prepd. by mixing a soln. of one kind of elements for a material for an oxide superconductor having laminar perovskite structure with other residual raw material in powder form. Obtd. slurry is atomized into a vessel at high temp. through a small sized pipe with pressurized gas and the slurry scatters in the vessel as fine particles and is dried while falling down in the vessel. An aimed superconductor is obtd. by molding and calcining the powder obtd. by the drying. The oxide superconductor having laminar perovskite structure to be used is A-Ba-Cu oxide (wherein A is Y, rare earth element), etc. Examples for the rare earth element are La, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu, Sm, Nd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、均一性、生産の再現性、温度特性に優れた酸
化物超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconductor with excellent uniformity, production reproducibility, and temperature characteristics.

従来の技術 従来の酸化物超電導体焼結体の製造方法は、原料となる
酸化物もしくは炭酸化物の粉末をめのうの乳鉢で粉砕、
混合し、バインダーを加え粒状化した後、金型で成型し
、高温の空気中で焼成するというものである。
Prior art The conventional method for manufacturing sintered oxide superconductors involves pulverizing raw material oxide or carbonate powder in an agate mortar.
After mixing, adding a binder and granulating it, it is molded in a mold and fired in high-temperature air.

発明が解決しようとする問題点 しかし、従来のこのような製造方法に基づ(ものでは、
均一性および生産の再現性に問題があった。たとえば、
直径32鶴、厚み3Qtaの円柱状焼結体を作り、その
内部の超電導体としての特性の均一性を調べると、きわ
めて悪かった。またその平均値も生産ロフトごとに大き
く異なるという・問題があった。
However, the problems that the invention aims to solve are based on the conventional manufacturing method (such as
There were problems with uniformity and production reproducibility. for example,
A cylindrical sintered body with a diameter of 32 mm and a thickness of 3 Qta was made, and when the uniformity of its internal properties as a superconductor was examined, it was found to be extremely poor. There was also the problem that the average value varied greatly depending on the production loft.

本発明はかかる点に鑑みなされたもので、均一性および
生産の再現性、温度特性に優れた酸化物超電導体の製造
方法を提供することを目的としている。
The present invention was made in view of the above, and an object of the present invention is to provide a method for manufacturing an oxide superconductor with excellent uniformity, production reproducibility, and temperature characteristics.

問題点を解決するための手段 本発明は上記問題点を解決するため、層状ペロブスカイ
ト構造酸化物超電導体用材料の内、一種類の元素を溶液
化し、残りの原料を粉体の形で混ぜ、泥しよう化し、得
られた泥しようを細管よりガス圧によって高温の容器の
中へ噴霧し、微粒子となって容器内を飛散、落下する過
程で乾燥することによって得られる粉末を、成型、焼成
することにより、均一性、生産の再現性、温度特性に優
れた酸化物超電導体の製造方法を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention solves the above-mentioned problems by liquefying one type of element among the materials for layered perovskite structure oxide superconductors and mixing the remaining raw materials in the form of powder. The resulting slurry is sprayed from a thin tube into a high-temperature container using gas pressure, and the resulting powder is shaped and fired by drying as it becomes fine particles that scatter and fall inside the container. This provides a method for producing an oxide superconductor with excellent uniformity, production reproducibility, and temperature characteristics.

作用 本発明は、前記した製造方法により、均一性。action The present invention achieves uniformity by using the above-described manufacturing method.

生産の再現性、温度特性に優れた大型酸化物超電導体を
得ることができる。
Large oxide superconductors with excellent production reproducibility and temperature characteristics can be obtained.

実施例 以下本発明の一実施例について図面を用いて詳細に説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

(実施例1) 硝酸イツトリウムの溶液を、酸化バリウムと酸化銅の粉
体に、イツトリウム、バリウム、#14の元素の比が、
それぞれYo、3 Bao、t Cu、の比で含むよう
に混合し、泥しよう (スラリー)とした。
(Example 1) A solution of yttrium nitrate was added to powder of barium oxide and copper oxide, and the ratio of elements yttrium, barium, and #14 was as follows:
They were mixed to contain Yo, 3 Bao, and t Cu, respectively, to form a slurry.

得られたスラリーを、送り込まれる熱風によって290
℃に保たれた容器の中へ、直径1鶴程度の細管より、圧
縮空気によって噴霧し、微粒子となって容器内を飛散、
落下していく過程で乾燥することにより、50〜100
μmの粒径の粉体を得た。
The obtained slurry is heated to 290°C by hot air.
It is sprayed with compressed air through a thin tube about 1 crane in diameter into a container kept at ℃, and becomes fine particles that scatter inside the container.
50 to 100 by drying during the falling process.
A powder with a particle size of μm was obtained.

このようにして得られた粉体を、900℃の空気中で5
時間焼成した。これをもう一度粉砕、混合した後、90
0℃の空気中で12時間焼成し、再度粉砕した。これに
バインダー(ポリビニルアルコール)を、5重量%加え
、造粒して直径40鶴の金型を用いて、200に+r/
cliの圧力で、厚み30mの円板状に成型した0次に
この成型体を電気炉に入れ、930℃の空気中で、12
時間焼成した。室温まで冷却後、900℃で、5時間熱
処理を行なった。
The powder obtained in this way was heated in air at 900°C for 5 minutes.
Baked for an hour. After crushing and mixing this again, 90
It was calcined in air at 0° C. for 12 hours and ground again. Add 5% by weight of binder (polyvinyl alcohol) to this, granulate it, and use a mold with a diameter of 40 cranes to make 200 +r/
This molded body was molded into a disk shape with a thickness of 30 m at a pressure of cli and placed in an electric furnace and heated in air at 930°C for 12
Baked for an hour. After cooling to room temperature, heat treatment was performed at 900° C. for 5 hours.

次にこの焼結体の電気抵抗を液体窒素(77K )温度
で測定した結果、超電導性を示した。すなわちこのよう
な方法で形成した焼結体は、超電導体であった。得られ
た焼結体を、X線解析で調べたところ、層状ペロブスカ
イト構造を示していた。
Next, the electrical resistance of this sintered body was measured at a temperature of liquid nitrogen (77K), and the result showed superconductivity. That is, the sintered body formed by such a method was a superconductor. When the obtained sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

第1図は、本実施例の結晶構造である層状ペロブスカイ
ト構造の構成要素である、ペロブスカイト構造を示した
もので、図において、1はCu。
FIG. 1 shows a perovskite structure which is a component of the layered perovskite structure which is the crystal structure of this example. In the figure, 1 is Cu.

2はO13はYまたはBaである。層状ペロブスカイト
構造は、この構成要素がある周期をもって層状に積み重
なったものである。実際超電導体となっているものは、
この構造において、酸素が適当にぬけていると考えられ
る。
2 is O13 is Y or Ba. A layered perovskite structure is a structure in which these components are stacked in layers with a certain period. What is actually a superconductor is
It is thought that oxygen escapes appropriately in this structure.

この材料について、酸化物粉末を出発原料とし、めのう
の乳鉢で1時間混合したものを、本実施例と同様のプロ
セスで成型以降の処理を行ったものを作成し、その焼結
体内部の特性の均一性およびロフト間の特性のバラツキ
を、測定比較した。その結果、本実施例の方法で得たも
のは、めのう乳鉢混合法に比べ、焼結体内部の特性の均
一性およびロフト間の特性のバラツキとも大幅に向上し
ていた。焼結体内部の特性の均一性については、焼結体
を5fl角のブロックに切り出し、それぞれの臨界温度
を測定して比較した。めのう乳鉢混合法では、そのバラ
ツキが5%以上であったのに対し、本実施例のものは、
3%以下であった。またそれぞれ5個の焼結体をつくり
、その臨界温度のバラツキを測定したところ、めのう乳
鉢混合法では、そのバラツキが約10%以上であったの
に対し、本実施例のものは、7%以下であった。この理
由は、いずれも主として、本実施例の方法では、材料の
一部が溶液化されており、粉体と均一に混合されるのに
対して、めのう乳鉢混合法では、粉末と粉末の混合であ
るため、その均一性が著しく異なるためと考えられる。
Regarding this material, oxide powder was used as a starting material, mixed in an agate mortar for 1 hour, and processed after molding using the same process as in this example.The internal characteristics of the sintered body were The uniformity of the lofts and the variation in characteristics between lofts were measured and compared. As a result, compared to the agate mortar mixing method, the product obtained by the method of this example had significantly improved uniformity of properties inside the sintered body and variation in properties between lofts. As for the uniformity of the characteristics inside the sintered body, the sintered body was cut into 5 fl square blocks, and the critical temperatures of each block were measured and compared. In the agate mortar mixing method, the variation was 5% or more, whereas in this example,
It was less than 3%. In addition, when five sintered bodies were made for each and the variation in critical temperature was measured, the variation in the agate mortar mixing method was about 10% or more, but in this example, the variation was 7%. It was below. The reason for this is mainly that in the method of this example, a part of the material is dissolved and mixed uniformly with the powder, whereas in the agate mortar mixing method, the material is mixed with the powder. This is considered to be because the uniformity is significantly different.

さらに本実施例の方法を用いることにより、臨界温度の
向上が見られた。第2図は、超電導体の電気抵抗の温度
依存性を表したものである。臨界温度において、電気抵
抗が0となる。本実施例のロー界温度T c 1は、従
来の方法であるめのう乳鉢法で作成した超電導体の臨界
温度T c 2に比べ、約10%高温側になっていた。
Furthermore, by using the method of this example, an improvement in the critical temperature was observed. FIG. 2 shows the temperature dependence of the electrical resistance of a superconductor. At the critical temperature, the electrical resistance becomes zero. The low limit temperature T c 1 of this example was about 10% higher than the critical temperature T c 2 of the superconductor produced by the conventional agate mortar method.

臨界温度の高温化は、超電導の応用面から考えると、き
わめて有用であり、この改善は本発明の重要な効果の一
つである。
Increasing the critical temperature is extremely useful from the perspective of application of superconductivity, and this improvement is one of the important effects of the present invention.

(実施例2) 硝酸ランタンの溶液を、酸化バリウムと酸化銅の粉体に
、ランタン、バリウム、銅の元素の比が、それぞれLa
+、5aBao、+bCu+ の比で含むように混合し
、スラリーとした。得られたスラリーを、実施例1と同
様のプロセスを経て、粉体化し、ついで焼結体を得た。
(Example 2) A solution of lanthanum nitrate was added to powders of barium oxide and copper oxide, and the ratios of the elements of lanthanum, barium, and copper were respectively La.
+, 5aBao, and +bCu+ to form a slurry. The obtained slurry was pulverized through the same process as in Example 1, and then a sintered body was obtained.

得られた焼結体の電気抵抗を液体ヘリウム(4K)温度
で測定した結果、超電導性を示した。すなわちこのよう
な方法で形成した焼結体は、超電導体であった。得られ
た焼結体を、X線解析で調べたところ、層状ペロブスカ
イト構造を示していた。
The electrical resistance of the obtained sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity. That is, the sintered body formed by such a method was a superconductor. When the obtained sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

(実施例3) 希土類硝酸化物(Lu、Yb、Tm、Er。(Example 3) Rare earth nitrates (Lu, Yb, Tm, Er.

Ho、Dy、Gd、Eu、Sm、Ndの硝酸化物)の溶
液を、酸化バリウムと酸化銅の粉体に、希土類、バリウ
ム、銅の元素の比が、それぞれ0.4および0.6にな
るよう種々混合してスラリーとした。得られたスラリー
を、実施例1と同様のプロセスを経て、粉体化し、つい
で焼結体を得た。
A solution of nitrates of Ho, Dy, Gd, Eu, Sm, and Nd) was added to powder of barium oxide and copper oxide, and the ratios of rare earth, barium, and copper elements were 0.4 and 0.6, respectively. A slurry was prepared by mixing various ingredients. The obtained slurry was pulverized through the same process as in Example 1, and then a sintered body was obtained.

得られた焼結体の電気抵抗を液体ヘリウム(4K)温度
で測定した結果、超電導性を示した。
The electrical resistance of the obtained sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity.

すなわちこのような方法で形成した焼結体は、超電導体
であった。さらにX線解析で調べたところ層状ペロブス
カイト構造を示していた。
That is, the sintered body formed by such a method was a superconductor. Further X-ray analysis revealed that it had a layered perovskite structure.

−一トH鯵ト 以上述べたごとく、本発明の方法によれば、均一性、生
産の再現性、温度特性に優れた、酸化物超電導体を得る
ことができる。
- As described above, according to the method of the present invention, an oxide superconductor having excellent uniformity, production reproducibility, and temperature characteristics can be obtained.

本実施例の製造方法によれば、層状ペロブスカイト構造
を有する酸化物超電導体については、いずれの材料につ
いても適用できるものである。第1図は、実施例1の結
晶構造について、示したものであるが、実施例2〜3の
場合は、この構造において、Y、Baの代りに、それぞ
れの実施例で用いられた、Cu、O以外の元素で置き代
えたものである。
According to the manufacturing method of this example, any material can be applied to the oxide superconductor having a layered perovskite structure. FIG. 1 shows the crystal structure of Example 1, but in the case of Examples 2 and 3, Cu, which was used in each example, was used instead of Y and Ba in this structure. , in which elements other than O are substituted.

実施例2〜3のものについても、その焼結体内部の特性
の均一性およびロフト間の特性のバラツキを、測定比較
した。その結果、本実施例の方法で得たものは、めのう
乳鉢混合法に比べ、焼結体内部の特性の均一性およびロ
フト間の特性のバラツキとも大幅に向上していた。めの
う乳鉢混合法では、そのバラツキが5%以上であったの
に対し、本実施例のものは、やはり3%以下であった。
For Examples 2 and 3, the uniformity of the properties inside the sintered bodies and the variation in properties between lofts were also measured and compared. As a result, compared to the agate mortar mixing method, the product obtained by the method of this example had significantly improved uniformity of properties inside the sintered body and variation in properties between lofts. In the agate mortar mixing method, the variation was 5% or more, whereas in this example it was also 3% or less.

またそれぞれ5個の焼結体をつくり、その臨界温度のバ
ラツキを測定したところ、めのう乳鉢混合法では、その
バラツキが約10%以上であったのに対し、本実施例の
ものは、やはり7%以下であった。この理由は、いずれ
も主として、本実施例の方法では、材料の一部が溶液化
されており、粉体と均一に混合されるのに対して、めの
う乳鉢混合法では、粉末と粉末の混合であるため、その
均一性が著しく異なるためと考えられる。
In addition, when five sintered bodies were made for each and the variation in critical temperature was measured, the variation in the agate mortar mixing method was about 10% or more, whereas the variation in the critical temperature of this example was about 7%. % or less. The reason for this is mainly that in the method of this example, a part of the material is dissolved and mixed uniformly with the powder, whereas in the agate mortar mixing method, the material is mixed with the powder. This is considered to be because the uniformity is significantly different.

さらに実施例2〜3においても、実施例1の場合と同様
、臨界温度の向上が見られた0本実施例の臨界温度は、
いずれも従来の方法であるめのう乳鉢法で作成した超電
導体の臨界温度に比べ、実施例1の場合と同様約10%
高温側になっていた。
Furthermore, in Examples 2 and 3, an improvement in the critical temperature was observed as in Example 1.
Both are approximately 10% lower than the critical temperature of the superconductor made by the conventional method, the agate mortar method, as in Example 1.
It was on the high temperature side.

臨界温度の高温化は、超電導の応用面から考えると、き
わめて有用であり、この改善は本発明の重要な効果の一
つである。
Increasing the critical temperature is extremely useful from the perspective of application of superconductivity, and this improvement is one of the important effects of the present invention.

また本実施例では、硝酸化物を用いて原料を溶液化した
が、溶液化できれば、その原理から考えて本発明の方法
が適用でき、本発明の効果の得られることは、明らかで
ある。
Further, in this example, the raw material was made into a solution using nitrate, but it is clear that if it can be made into a solution, the method of the present invention can be applied considering the principle, and the effects of the present invention can be obtained.

また実施例1〜3より、本発明の方法は、層状ペロブス
カイト構造の酸化物超電導体であれば、いずれの材料で
あっても適用できると考えられる。
Further, from Examples 1 to 3, it is considered that the method of the present invention can be applied to any material as long as it is an oxide superconductor having a layered perovskite structure.

本発明では、原材料の内一種類のみを溶液化し、他の材
料を粉体の形で混合した。すべ′この原材料を溶液化し
てこの方法を適用しようとすると、蒸発させるべき水分
の量が、本発明のものよりもはるかに多くなる。そのた
め噴霧乾燥に多大の電力等のエネルギーを必要とし、好
ましくない。またすべてを液体の形で噴霧すると、その
乾燥時に溶解度の違いに応じて、一部材料の析出が起り
均一性が阻害され、好ましくない。本発明では一種類の
成分しか溶液化してないため、そのような偏析による不
均一は生じない。
In the present invention, only one of the raw materials was made into a solution, and the other materials were mixed in powder form. If this method were to be applied with all these raw materials in solution, the amount of water that would have to be evaporated would be much greater than in the present invention. Therefore, spray drying requires a large amount of energy such as electric power, which is not preferable. Furthermore, if all of the materials are sprayed in liquid form, some of the materials will precipitate due to the difference in solubility during drying, which will impede uniformity, which is not preferable. In the present invention, since only one type of component is dissolved, such non-uniformity due to segregation does not occur.

本実施例では、イツトリウムまたは希土類を溶液とした
が、これらは、粉体の形で加え、バリウムまたは銅を溶
液の形にして加えても良い。ただ熱風乾燥時のエネルギ
ー節約の観点から考えると、以上述べたごとく、本発明
は、層状ペロブスカイト横道酸化物超電導体用材料の内
、一種類の元素を溶液化し、残りの原料を粉体の形で混
ぜ、泥しよう化し、得られた泥しようを細管よりガス圧
によって高温の容器の中へ噴霧し、微粒子となって容器
内を飛散、落下する過程で乾燥することによって得られ
る粉末を、成型、焼成することにより、均一性、生産の
再現性、温度特性に優れた酸化物超電導体の製造方法を
提供するものである。
In this example, yttrium or rare earths were used as a solution, but these may be added in the form of a powder, and barium or copper may be added in the form of a solution. However, from the viewpoint of saving energy during hot air drying, as described above, the present invention is a material for layered perovskite transverse oxide superconductors, in which one element is made into a solution and the remaining raw materials are made into a powder form. The resulting slurry is sprayed from a thin tube into a high-temperature container using gas pressure, becoming fine particles that scatter inside the container, and dries as they fall.The resulting powder is then molded. The present invention provides a method for producing an oxide superconductor with excellent uniformity, production reproducibility, and temperature characteristics by firing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いた酸化物超電導体の結晶構造であ
る層状ペロプスカイト構造の構成要素であるペロブスカ
イト構造を示した構造図、第2図は本発明の臨界温度の
高温化の効果について示したグラフである。 1・・・・・・Cu、2・・・・・・0.3・・・・・
・YまたはBa。
Figure 1 is a structural diagram showing the perovskite structure, which is a component of the layered perovskite structure that is the crystal structure of the oxide superconductor used in the present invention, and Figure 2 shows the effect of increasing the critical temperature of the present invention. This is the graph shown. 1...Cu, 2...0.3...
・Y or Ba.

Claims (3)

【特許請求の範囲】[Claims] (1)層状ペロブスカイト構造酸化物超電導体用材料の
内、一種類の元素を溶液化し、残りの原料を粉体の形で
混ぜ、泥しょう化し、得られた泥しょうを細管よりガス
圧によって高温の容器の中へ噴霧し、微粒子となって容
器内を飛散、落下する過程で乾燥することによって得ら
れる粉末を、成型、焼成することを特徴とする酸化物超
電導体の製造方法。
(1) Among the layered perovskite structure oxide superconductor materials, one type of element is dissolved, the remaining raw materials are mixed in powder form, and the resulting slurry is heated to high temperature by gas pressure through a thin tube. 1. A method for producing an oxide superconductor, which comprises molding and firing a powder obtained by spraying it into a container and drying it as it becomes fine particles that scatter and fall inside the container.
(2)層状ペロブスカイト構造超電導体酸化物として、
A−Ba−Cu酸化物(ただしAは、Y、希土類)を用
いたことを特徴とする特許請求の範囲第(1)項記載の
酸化物超電導体の製造方法。
(2) As a layered perovskite structure superconductor oxide,
A method for manufacturing an oxide superconductor according to claim (1), characterized in that A-Ba-Cu oxide (where A is Y or a rare earth element) is used.
(3)希土類として、La、Lu、Yb、Tm、Er、
Ho、Dy、Gd、Eu、Sm、Ndを用いたことを特
徴とする特許請求の範囲第(2)項記載の酸化物超電導
体の製造方法。
(3) Rare earths include La, Lu, Yb, Tm, Er,
The method for manufacturing an oxide superconductor according to claim (2), characterized in that Ho, Dy, Gd, Eu, Sm, and Nd are used.
JP62115051A 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor Expired - Lifetime JPH07115949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62115051A JPH07115949B2 (en) 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115051A JPH07115949B2 (en) 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor

Publications (2)

Publication Number Publication Date
JPS63282173A true JPS63282173A (en) 1988-11-18
JPH07115949B2 JPH07115949B2 (en) 1995-12-13

Family

ID=14652964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115051A Expired - Lifetime JPH07115949B2 (en) 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor

Country Status (1)

Country Link
JP (1) JPH07115949B2 (en)

Also Published As

Publication number Publication date
JPH07115949B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPS63282173A (en) Production of oxide superconductor
JPS63282172A (en) Production of oxide superconductor
JPH01278458A (en) Production of superconductor
JPH01160876A (en) Production of superconductor parts
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPS63270346A (en) Production of oxide superconductor
JPS63310766A (en) Production of superconducting material
JP3164640B2 (en) Manufacturing method of oxide superconductor
JPH03153560A (en) Production of oxide superconductor
JPH01278461A (en) Production of superconductor
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH01278459A (en) Production of superconductor
JPS63270345A (en) Production of oxide superconductor
JPH0431371A (en) Production of oxide superconductor
JPH01278467A (en) Production of superconductor
JPH07232960A (en) Production of oxide superconductor
JPH01278463A (en) Production of superconductor
JPH01278465A (en) Production of superconductor
JPH01179719A (en) Oxide superconductor and its production
JPH01278468A (en) Production of superconductor
JPH01103947A (en) Y-ba-cu-o based ceramic containing bi
JPH02120228A (en) Production of bi-based oxide superconductor
JPH0288456A (en) Production of bi superconductor
JPS63288955A (en) Production of superconductor
JPH0280304A (en) Production of oxide superconducting material