JPS63282172A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPS63282172A
JPS63282172A JP62115049A JP11504987A JPS63282172A JP S63282172 A JPS63282172 A JP S63282172A JP 62115049 A JP62115049 A JP 62115049A JP 11504987 A JP11504987 A JP 11504987A JP S63282172 A JPS63282172 A JP S63282172A
Authority
JP
Japan
Prior art keywords
oxide
superconductor
perovskite structure
oxide superconductor
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62115049A
Other languages
Japanese (ja)
Other versions
JPH07115948B2 (en
Inventor
Kazuo Eda
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62115049A priority Critical patent/JPH07115948B2/en
Publication of JPS63282172A publication Critical patent/JPS63282172A/en
Publication of JPH07115948B2 publication Critical patent/JPH07115948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having superior uniformity, superior reproducibility of production, and superior temp. characteristics by evaporating a solvent from a soln. of cations for forming an oxide superconductor having laminar perovskite structure by a specified treatment and molding and calcining obtained powdery product. CONSTITUTION:A soln. contg. cations for forming an oxide superconductor having laminar perovskite structure, and the soln. is atomized into liquid N2 with pressurized gas. Generated frozen fine particles are charged to a vessel cooled by the liquid N2. A solvent component is evaporated by sublimation without bringing the frozen particles to liquid state again by evacuating the vessel to vacuum and elevating the temp. of the vessel while continuing evacuation of the vessel. An aimed superconductor is obtd. by forming an calcining the obtd. powder. A-Ba-Cu oxide (wherein A is Y, rare earth element, etc.), etc. is used for the superconductor having laminar perovskite structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、均一性、生産の再現性、温度特性に優れた酸
化物超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconductor with excellent uniformity, production reproducibility, and temperature characteristics.

従来の技術 従来の酸化物超電導体焼結体の製造方法は、原料となる
酸化物もしくは炭酸化物の粉末をめのうの乳鉢で粉砕、
混合し、バインダーを加え粒状化した後、金型で成型し
、高温の空気中で焼成するというものである。
Prior art The conventional method for manufacturing sintered oxide superconductors involves pulverizing raw material oxide or carbonate powder in an agate mortar.
After mixing, adding a binder and granulating it, it is molded in a mold and fired in high-temperature air.

発明が解決しようとする問題点 しかし、従来のこのような製造方法に基づ(ものでは、
均一性および生産の再現性に問題があった。たとえば、
直径32f1.厚み300の円柱状焼結体を作り、その
内部の@電導体としての特性の均一性を調べると、きわ
めて悪かった。またその平均値も生産ロフトごとに大き
く異なるという問題があった。
However, the problems that the invention aims to solve are based on the conventional manufacturing method (such as
There were problems with uniformity and production reproducibility. for example,
Diameter 32f1. When a cylindrical sintered body with a thickness of 300 mm was made and the uniformity of its internal properties as a conductor was examined, it was found to be extremely poor. There was also a problem in that the average value also differed greatly depending on the production loft.

本発明はかかる点に鑑みなされたもので、均一性および
生産の再現性、温度特性に優れた酸化物超電導体の製造
方法を提供することを目的としている。
The present invention was made in view of the above, and an object of the present invention is to provide a method for manufacturing an oxide superconductor with excellent uniformity, production reproducibility, and temperature characteristics.

問題点を解決するための手段 本発明は上記問題点を解決するため、層状ペロブスカイ
ト構造酸化物超電導体用陽イオンを含有する溶液を作り
、この溶液を、ガス圧によって液体窒素中に噴霧し、得
られた微粒子の氷結粉を、液体窒素で冷却した容器に入
れ、容器内部を真空にし、排気しながら容器温度を上げ
ていくことによって、前記氷結粉が再び液体状態に戻る
ことなく昇華によって溶媒成分を蒸発させることによっ
て得られる粉末を、成型、焼成することにより、均一性
、生産の再現性、温度特性に優れた酸化物超電導体の製
造方法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention prepares a solution containing cations for layered perovskite structure oxide superconductors, sprays this solution into liquid nitrogen by gas pressure, The obtained frozen powder of fine particles is placed in a container cooled with liquid nitrogen, the inside of the container is evacuated, and the temperature of the container is raised while evacuating. By sublimating the frozen powder without returning to the liquid state, the solvent is removed. The present invention provides a method for producing an oxide superconductor with excellent uniformity, production reproducibility, and temperature characteristics by molding and firing a powder obtained by evaporating components.

作用 本発明は、前記した製造方法により、均一性。action The present invention achieves uniformity by using the above-described manufacturing method.

生産の再現性、温度特性に優れた大型酸化物超電導体を
得ることができる。
Large oxide superconductors with excellent production reproducibility and temperature characteristics can be obtained.

実施例 以下本発明の一実施例について図面を用いて詳細に説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

(実施例1) 硝酸イツトリウム、硝酸バリウムと硝酸銅の溶液を、イ
ツトリウム、バリウム、銅の陽イオンが、それぞれY 
o 、s B a e 、Cu 1の比で含むように混
合し、その後、この溶液を、77にの液体窒素の中へ、
直径1籠程度の細管より圧縮空気によって噴霧し、微粒
子の氷結粉を得た。さらにこの氷結粉を、液体窒素温度
に冷却した容器の中に封入し、容器内を真空に引いた。
(Example 1) A solution of yttrium nitrate, barium nitrate, and copper nitrate was mixed with cations of yttrium, barium, and copper, respectively.
o , s Ba e , Cu in a ratio of 1, and then this solution was poured into liquid nitrogen at 77.
It was sprayed with compressed air through a thin tube with a diameter of about one basket to obtain frozen powder of fine particles. Furthermore, this frozen powder was sealed in a container cooled to liquid nitrogen temperature, and the inside of the container was evacuated.

次にこの容器内を真空にひきながら、氷結粉の昇華がす
みやかに起り、液化することなしに水分が氷結状態から
昇華していくような条件でゆっくりと昇温した。このよ
うにして得られた粉末を、900℃の空気中で5時間焼
成した。これをもう一度粉砕 jR合した後、900℃
の空気中で12時間焼成し、再度粉砕した。これにバイ
ンダー(ポリビニルアルコール)を、5重量%加え、造
粒して直径40mの金型を用いて、180kg/csa
の圧力で、厚み30mの円板状に成型した0次にこの成
型体を電気炉に入れ、950℃の空気中で、12時間焼
成した。室温まで冷却後、900℃で、5時間熱処理を
行なった。
Next, while evacuating the inside of this container, the temperature was slowly raised under conditions such that the frozen powder sublimated quickly and the water sublimated from the frozen state without liquefying. The powder thus obtained was calcined in air at 900° C. for 5 hours. After crushing this again and combining it with JR, 900℃
The mixture was calcined in air for 12 hours and ground again. Add 5% by weight of binder (polyvinyl alcohol) to this, granulate it and use a mold with a diameter of 40m to produce 180kg/csa.
This molded body, which was molded into a disk shape with a thickness of 30 m under a pressure of 100 m, was placed in an electric furnace and fired in air at 950° C. for 12 hours. After cooling to room temperature, heat treatment was performed at 900° C. for 5 hours.

次にこの焼結体の電気抵抗を液体窒素(77K)温度で
測定した結果、超電導性を示した。すなわちこのような
方法で形成した焼結体は、超電導体であった。得られた
焼結体を、X線解析で調べたところ、層状ペロブスカイ
ト構造を示していた。
Next, the electrical resistance of this sintered body was measured at liquid nitrogen (77K) temperature, and as a result, it showed superconductivity. That is, the sintered body formed by such a method was a superconductor. When the obtained sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

第1図は、本実施例の結晶構造である層状ペロブスカイ
ト構造の構成要素である、ペロブスカイト構造を示した
もので、図において、1はCu、2は0.3はYまたは
Baである。層状ペロブスカイト構造は、この構成要素
がある周期をもって、層状に積み重なったものである。
FIG. 1 shows a perovskite structure which is a component of the layered perovskite structure which is the crystal structure of this example. In the figure, 1 is Cu, 2 is 0.3 is Y or Ba. A layered perovskite structure is a structure in which these components are stacked in layers at a certain period.

実際超電導体となっているものは、この構造において、
酸素が適当にぬけていると考えられる。
What actually becomes a superconductor has this structure,
It is thought that oxygen is escaping appropriately.

この材料について、酸化物粉末を出発原料とし、めのう
の乳鉢で1時間混合したものを、本実施例と同様のプロ
セスで成型以降の処理を行ったものを作成し、その焼結
体内部の特性の均一性およびロフト間の特性のバラツキ
を、測定比較した。その結果、本実施例の方法で得たも
のは、めのう乳鉢混合法に比べ、焼結体内部の特性の均
一性およびロフト間の特性のバラツキとも大幅に向上し
ていた。焼結体内部の特性の均一性については、焼結体
を5fi角のブロックに切り出し、それぞれの臨界温度
を測定して比較した。めのう乳鉢混合法では、そのバラ
ツキが5%以上であったのに対し、本実施例のものは、
3%以下であった。またそれぞれ5個の焼結体をつくり
、その臨界温度のバラツキを測定したところ、めのう乳
鉢混合法では、そのバラツキが約10%以上であったの
に対し、本実施例のものは、5%以下であった。この理
由は、いずれも主として、本実施例の方法では、各材料
がイオンの状態で均一に混合されるのに対して、めのう
乳鉢混合法では、粉末粒子の大きさ、約1μmの状態で
混合されるため、その均一性が著しく異なるためと考え
られる。
Regarding this material, oxide powder was used as a starting material, mixed in an agate mortar for 1 hour, and processed after molding using the same process as in this example.The internal characteristics of the sintered body were The uniformity of the lofts and the variation in characteristics between lofts were measured and compared. As a result, the product obtained by the method of this example had significantly improved uniformity of properties inside the sintered body and variation in properties between lofts, compared to the agate mortar mixing method. As for the uniformity of the characteristics inside the sintered body, the sintered body was cut into 5fi square blocks, and the critical temperatures of each block were measured and compared. In the agate mortar mixing method, the variation was 5% or more, whereas in this example,
It was less than 3%. In addition, when five sintered bodies were made and the variation in their critical temperatures was measured, the variation was approximately 10% or more using the agate mortar mixing method, whereas the variation in the critical temperature of this example was 5% or more. It was below. The reason for this is mainly that in the method of this example, each material is mixed uniformly in an ionic state, whereas in the agate mortar mixing method, the materials are mixed in a powder particle size of approximately 1 μm. This is thought to be because the uniformity is significantly different.

さらに本実施例の方法を用いることにより、臨界温度の
向上が見られた。第2図は、超電導体の電気抵抗の温度
依存性を表したものである。臨界温度において、電気抵
抗がOとなる。本実施例の臨界温度T c 1は、従来
の方法であるめのう乳鉢法で作成した超電導体の臨界温
度T c 2に比べ、約15%高温側になっていた。臨
界温度の高温化は、超電導の応用面から考えると、きわ
めて有用であり、この改善は本発明の重要な効果の一つ
である。
Furthermore, by using the method of this example, an improvement in the critical temperature was observed. FIG. 2 shows the temperature dependence of the electrical resistance of a superconductor. At the critical temperature, the electrical resistance becomes O. The critical temperature T c 1 of this example was about 15% higher than the critical temperature T c 2 of the superconductor produced by the conventional agate mortar method. Increasing the critical temperature is extremely useful from the perspective of application of superconductivity, and this improvement is one of the important effects of the present invention.

(実施例2) 硝酸ランタン、硝酸バリウムと硝酸銅溶液を、La+、
5sBao、+bCulの比で含むよう混合の後、実施
例1と同様のプロセスを経て、焼結体を得た。
(Example 2) Lanthanum nitrate, barium nitrate and copper nitrate solution were mixed with La+,
After mixing to contain 5sBao and +bCul, the same process as in Example 1 was carried out to obtain a sintered body.

得られた焼結体の電気抵抗を液体ヘリウム(4K)温度
で測定した結果、超電導性を示した。すなわちこのよう
な方法で形成した焼結体は、超電導体であった。得られ
た焼結体を、X線解析で調べたところ、層状ペロプスカ
イト構造を示していた。
The electrical resistance of the obtained sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity. That is, the sintered body formed by such a method was a superconductor. When the obtained sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

(実施例3) 希土類硝酸化物(Lu、Yb、Tm、Er。(Example 3) Rare earth nitrates (Lu, Yb, Tm, Er.

Ho、DY、Gd、Eu、Sm、Ndの硝酸化物)、硝
酸バリウムと硝酸銅の溶液を、銅イオン1に対し、希土
類イオンとバリウムイオンが、0・4および0・6にな
るよう種々混合の後、実施例1と同様のプロセスを経て
、焼結体を得た。得られた焼結体の電気抵抗を液体ヘリ
ウム(4K)温度で測定した結果、超電導性を示した。
Nitoxides of Ho, DY, Gd, Eu, Sm, and Nd), barium nitrate, and copper nitrate solutions were mixed in various amounts such that the rare earth ions and barium ions were 0.4 and 0.6 per 1 copper ion. After that, the same process as in Example 1 was carried out to obtain a sintered body. The electrical resistance of the obtained sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity.

すなわちこのような方法で形成した焼結体は、超電導体
であった。さらにX線解析で調べたところ、層状ペロプ
スカイト構造を示していた。
That is, the sintered body formed by such a method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

一発嘲【H分乗− 以上述べた如く、本発明の方法によれば、均一性、生産
の再現性、温度特性に優れた、酸化物超電導体を得るこ
とができる。
As described above, according to the method of the present invention, an oxide superconductor having excellent uniformity, production reproducibility, and temperature characteristics can be obtained.

本実施例の製造方法によれば、層状ペロプスカイト構造
を有する酸化物超電導体については、いずれの材料につ
いても適用できるものである。第1図は、実施例1の結
晶構造について、示したものであるが、実施例2〜3の
場合は、この構造において、Y、Baの代りに、それぞ
れの実施例で用いられた、Cu、O以外の元素で置き代
えたものである。
According to the manufacturing method of this example, any material can be applied to the oxide superconductor having a layered perovskite structure. FIG. 1 shows the crystal structure of Example 1, but in the case of Examples 2 and 3, Cu, which was used in each example, was used instead of Y and Ba in this structure. , in which elements other than O are substituted.

実施例2〜3のものについても、その焼結体内部の特性
の均一性およびロフト間の特性のバラツキを、測定比較
した。その結果、本実施例の方法で得たものは、めのう
乳鉢混合法に比べ、焼結体内部の特性の均一性およびロ
フト間の特性のバラツキとも大幅に向上していた。めの
う乳鉢混合法では、そのバラツキが5%以上であったの
に対し、本実施例のものは、やはり3%以下であった。
For Examples 2 and 3, the uniformity of the properties inside the sintered bodies and the variation in properties between lofts were also measured and compared. As a result, compared to the agate mortar mixing method, the product obtained by the method of this example had significantly improved uniformity of properties inside the sintered body and variation in properties between lofts. In the agate mortar mixing method, the variation was 5% or more, whereas in this example it was also 3% or less.

またそれぞれ5個の焼結体をつくり、その臨界温度のバ
ラツキを測定したところ、めのう乳鉢混合法では、その
バラツキが約10%以上であったのに対し、本実施例の
ものは、やはり5%以下であった。この理由は、いずれ
も主として、本実施例の方法では、各材料がイオンの状
態で均一に混合されるのに対して、めのう乳鉢混合法で
は、粉末粒子の大きさ、約1μmの状態で混合されるた
め、その均一性が著しく異なるためと考えられる。
In addition, when five sintered bodies were made for each and the variation in critical temperature was measured, the variation in the agate mortar mixing method was about 10% or more, whereas the variation in the critical temperature of this example was 5% or more. % or less. The reason for this is mainly that in the method of this example, each material is mixed uniformly in an ionic state, whereas in the agate mortar mixing method, the materials are mixed in a powder particle size of about 1 μm. This is thought to be because the uniformity is significantly different.

さらに実施例2〜3においても、実施例1の場合と同様
、臨界温度の向上が見られた。本実施例の臨界温度は、
いずれも従来の方法であるめのう乳鉢法で作成した超電
導体の¥17.界温度に比べ、実施例1の場合と同様約
15%高温側になっていた。
Furthermore, in Examples 2 and 3, as in the case of Example 1, an improvement in the critical temperature was observed. The critical temperature in this example is
All of the superconductors made by the conventional agate mortar method cost ¥17. As in the case of Example 1, the temperature was about 15% higher than the ambient temperature.

臨界温度の高温化は、超電導の応用面から考えると、き
わめて有用であり、この改善は本発明の重要な効果の一
つである。
Increasing the critical temperature is extremely useful from the perspective of application of superconductivity, and this improvement is one of the important effects of the present invention.

また本実施例では、硝酸化物を用いて原料を溶液化した
が、溶液化できれば、その原理から考えて、本発明の方
法が適用でき、本発明の効果の得られることは、明らか
である。
Further, in this example, the raw material was made into a solution using nitrate, but it is clear that if it can be made into a solution, the method of the present invention can be applied and the effects of the present invention can be obtained, considering the principle thereof.

また実施例1〜3より、本発明の方法は、層状ペロプス
カイト構造の酸化物超電導体であれば、いずれの材料で
あっても適用できると考えられる。
Moreover, from Examples 1 to 3, it is considered that the method of the present invention can be applied to any material as long as it is an oxide superconductor having a layered perovskite structure.

本発明では、一旦氷結させた粉体を、再び液化すること
なく、昇華により脱水を図っている。このことは本発明
で本質的に重要なことである。もし途中で液化すると、
溶液には温度に依存したそれぞれの材料固有の溶解度が
あるため、溶解度の低いものから、順次析出し、せっか
くイオンレベルで均一に混合されたものが、それによっ
て不拘以上述べた如く、本発明は、層状ペロブスカイト
構造酸化物超電導体用陽イオンを含有する溶液を作り、
この溶液を、ガス圧によって液体窒素中に噴霧し、得ら
れた微粒子の氷結粉を、液体窒素で冷却した容器に入れ
、容器内部を真空にし、排気しながら容器温度を上げて
いくことによって、前記氷結粉が再び液体状態に戻るこ
となく昇華によって溶媒成分を華発させることによって
得られる粉末を、成型、焼成することにより、均一性。
In the present invention, once frozen powder is dehydrated by sublimation without liquefying it again. This is essentially important in the present invention. If it liquefies on the way,
Since each material in the solution has its own solubility that depends on the temperature, those with the lowest solubility precipitate in order, and even though they are mixed uniformly at the ion level, the present invention is not limited by this. , create a solution containing cations for layered perovskite-structured oxide superconductors,
This solution is sprayed into liquid nitrogen using gas pressure, the resulting frozen powder of fine particles is placed in a container cooled with liquid nitrogen, the inside of the container is evacuated, and the temperature of the container is raised while evacuating. Uniformity is achieved by molding and firing the powder obtained by exhaling the solvent components through sublimation without the frozen powder returning to a liquid state.

生産の再現性、温度特性に優れた酸化物超電導体の製造
方法を提供するものである。
The present invention provides a method for manufacturing an oxide superconductor with excellent production reproducibility and temperature characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いた酸化物超電導体の結晶構造であ
る層状ペロブスカイト構造の、構成要素であるペロブス
カイト構造を示した構造図、第2図は、本発明の臨界温
度の高温化の効果について、示したグラフである。 1・・・・・・Cu、2・・・・・・0,3・・・・・
・YまたはBa。
Figure 1 is a structural diagram showing the perovskite structure that is a component of the layered perovskite structure that is the crystal structure of the oxide superconductor used in the present invention. Figure 2 is a structural diagram showing the effect of increasing the critical temperature of the present invention. This is a graph showing the following. 1...Cu, 2...0, 3...
・Y or Ba.

Claims (3)

【特許請求の範囲】[Claims] (1)層状ペロブスカイト構造酸化物超電導体用陽イオ
ンを含有する溶液を作り、この溶液を、ガス圧によって
液体窒素中に噴霧し、得られた微粒子の氷結粉を、液体
窒素で冷却した容器に入れ、容器内部を真空にし、排気
しながら容器温度を上げていくことによって、前記氷結
粉が再び液体状態に戻ることなく昇華によって溶媒成分
を蒸発させることによって得られる粉末を、成型、焼成
することを特徴とする酸化物超電導体の製造方法。
(1) Prepare a solution containing cations for layered perovskite structure oxide superconductors, spray this solution into liquid nitrogen using gas pressure, and pour the resulting frozen powder of fine particles into a container cooled with liquid nitrogen. molding and firing of the powder obtained by evaporating the solvent component by sublimation without returning the frozen powder to a liquid state by evacuating the inside of the container and increasing the temperature of the container while evacuating the container. A method for producing an oxide superconductor characterized by:
(2)層状ペロブスカイト構造超電導体酸化物として、
A−Ba−Cu酸化物(ただしAは、Y、希土類)を用
いたことを特徴とする特許請求の範囲第(1)項記載の
酸化物超電導体の製造方法。
(2) As a layered perovskite structure superconductor oxide,
A method for manufacturing an oxide superconductor according to claim (1), characterized in that A-Ba-Cu oxide (where A is Y or a rare earth element) is used.
(3)希土類として、La,Lu,Yb,Tm,Er,
Ho,Dy,Gd,Eu,Sm,Ndを用いたことを特
徴とする特許請求の範囲第(2)項記載の酸化物超電導
体の製造方法。
(3) Rare earths include La, Lu, Yb, Tm, Er,
The method for producing an oxide superconductor according to claim (2), characterized in that Ho, Dy, Gd, Eu, Sm, and Nd are used.
JP62115049A 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor Expired - Lifetime JPH07115948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62115049A JPH07115948B2 (en) 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115049A JPH07115948B2 (en) 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor

Publications (2)

Publication Number Publication Date
JPS63282172A true JPS63282172A (en) 1988-11-18
JPH07115948B2 JPH07115948B2 (en) 1995-12-13

Family

ID=14652918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115049A Expired - Lifetime JPH07115948B2 (en) 1987-05-12 1987-05-12 Method for manufacturing oxide superconductor

Country Status (1)

Country Link
JP (1) JPH07115948B2 (en)

Also Published As

Publication number Publication date
JPH07115948B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPH02133367A (en) Oriented polycrystalline superconductor
US4943557A (en) Method of making a high density YBa Cu3 Ox superconductor material
JPS63282172A (en) Production of oxide superconductor
JPS63282173A (en) Production of oxide superconductor
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JPH02137762A (en) Oriented polycrystalline superconductor
JP2597578B2 (en) Superconductor manufacturing method
JPS63270346A (en) Production of oxide superconductor
JPS63270347A (en) Production of oxide superconductor
JPS63270345A (en) Production of oxide superconductor
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPH01160876A (en) Production of superconductor parts
JPH01278458A (en) Production of superconductor
JPH01242460A (en) Highly orientated ceramics superconducting at high temperature
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPS63310766A (en) Production of superconducting material
JPH02157151A (en) Production of thallium superconductor and raw material powder for sintering
JPH03153560A (en) Production of oxide superconductor
GB2219998A (en) Mixed phase ceramic compounds
JPH01278467A (en) Production of superconductor
JPH01278465A (en) Production of superconductor
JPH01141871A (en) Production of superconducting material
JPH0249316A (en) Manufacture of sheet and ceramic superconductor using the same
JPH035359A (en) Superconductive ceramic material, precursor composition of said material and manufacture
JPH01103947A (en) Y-ba-cu-o based ceramic containing bi