JPS63270347A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPS63270347A
JPS63270347A JP62106685A JP10668587A JPS63270347A JP S63270347 A JPS63270347 A JP S63270347A JP 62106685 A JP62106685 A JP 62106685A JP 10668587 A JP10668587 A JP 10668587A JP S63270347 A JPS63270347 A JP S63270347A
Authority
JP
Japan
Prior art keywords
pressure
oxide
binder
sintered body
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62106685A
Other languages
Japanese (ja)
Inventor
Kazuo Eda
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62106685A priority Critical patent/JPS63270347A/en
Publication of JPS63270347A publication Critical patent/JPS63270347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the titled superconductor having excellent processability, temperature characteristics and uniformity, by preliminarily forming a specific raw material granulated with a binder, subjecting to main molding under a pressure higher than the preliminary molding pressure, removing the binder and sintering the product. CONSTITUTION:A raw material for superconductor having a laminar perovskite structure composed of an A-Ba-Cu oxide (A is Y, Sc or rare earth element), La-B-Cu oxide (B is Ca or Sr) or Y-Sr-Cu oxide is added with a binder and granulated. The granulated raw material is filled in a mold and preliminarily molded under a pressure of 50-700kg/cm<2>. The preliminarily molded article is placed in a closed vessel having flexibility and shrinkability, the vessel is evacuated, sealed and put into a pressure vessel filled with a liquid and the article is subjected to the main molding under a pressure (300-2,000kg/cm<2>) higher than the preliminary molding pressure. The molded article is heated to remove the binder and sintered by heating at about 930 deg.C at a heating rate of <=100 deg.C/hr.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、加工性、温度特性、均一性に優れた、大型酸
化物超゛電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a large oxide superconductor having excellent processability, temperature characteristics, and uniformity.

従来の技術 従来の酸化物超電導体の製造方法として、焼結体および
薄膜の製造方法が知られている。焼結体の製造方法は、
酸化物原料にバインダーを加え粒状化した後、金型で成
型し、高温の空気中で焼成するというものである。一方
薄膜の製造方法は、スパッタリングによる製造方法が知
られている。
BACKGROUND ART As conventional methods for manufacturing oxide superconductors, methods for manufacturing sintered bodies and thin films are known. The manufacturing method of the sintered body is
After adding a binder to the oxide raw material and granulating it, it is molded in a mold and fired in high-temperature air. On the other hand, as a method for manufacturing a thin film, a method using sputtering is known.

これは、酸化物超電導体焼結体、たとえば、BaPt)
o、t Bia、:+ 03  (BPB)をターゲッ
トとし、酸素を少し含むアルゴンガス中でスパッタリン
グにより、基板上に薄膜を形成するものである。
This is an oxide superconductor sintered body (e.g. BaPt)
o, t Bia,: + 03 (BPB) as a target, and a thin film is formed on a substrate by sputtering in argon gas containing a small amount of oxygen.

発明が解決しようとする問題点 しかし、従来のこのような製造方法に基づくものでは、
加工性、温度特性、均一性および大型のものが得られな
いなどの問題があった。非常に小さな、たとえば、幅1
龍、長さl++m、厚さ100μmの薄板状の直方体を
作って超電導の回路部品としたい場合、従来のこのよう
な方法では製造困難であった。従来の焼結体方式で作る
と、緻密な焼結体が得られず、機械的強度が弱く、その
ため厚み100μmの薄板状に加工すると、はとんどこ
われてしまう。またスパッタリング方式では、その膜形
成速度が約1μm/時間と遅いことがら、厚み100μ
mのものを得ることは、実質的に困難であった。またス
パッタリングで形成すると、改質に問題があり、一般に
超電4になる臨界温度が焼結体よりも低下し、温度特性
が悪くなった。
Problems to be Solved by the Invention However, with the conventional manufacturing method,
There were problems with processability, temperature characteristics, uniformity, and inability to obtain large products. very small, e.g. width 1
If a thin plate-like rectangular parallelepiped with a length of l++m and a thickness of 100 μm was to be made into a superconducting circuit component, it would be difficult to manufacture it using conventional methods such as this. When made using the conventional sintered body method, a dense sintered body cannot be obtained and the mechanical strength is weak, so if it is processed into a thin plate with a thickness of 100 μm, it will break apart. In addition, with the sputtering method, the film formation rate is slow at about 1 μm/hour, so the film thickness is 100 μm/hour.
It was substantially difficult to obtain m. Furthermore, when formed by sputtering, there was a problem with modification, and the critical temperature for forming superelectric 4 was generally lower than that of a sintered body, resulting in poor temperature characteristics.

また生産性を上げるため焼結体の大型化を図ると、焼結
体内部の均一性が非常に悪くなるという問題もあった。
Furthermore, when increasing the size of the sintered body in order to increase productivity, there is also the problem that the uniformity inside the sintered body becomes extremely poor.

本発明はかかる点に鑑みなされたもので、加工性に優れ
ているため数10μm以上の任意の厚みのものが機械加
工によって容易に得られ、かつ温度特性、均一性に優れ
た大型酸化物超電導体の製造方法を提供することを目的
としている。
The present invention has been made in view of these points, and is a large oxide superconductor that has excellent workability and can be easily obtained by machining into any thickness of several tens of micrometers or more, and has excellent temperature characteristics and uniformity. The purpose is to provide a method for manufacturing the body.

問題点を解決するための手段 本発明は上記問題点を解決するため、バインダーにて粒
状化された層状ペロブスカイト構造酸化物超電導体用原
料を、金型にて圧力を加えて予備成型し、この予備成型
体を予備成型圧より大きな圧力の加圧液体によって本成
型し、本成型完了後バインダー除去を行い、その後徐々
に昇温して焼結することにより、加工性、温度特性、均
一性に優れた、大型酸化物超電導体の製造方法を提供す
るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention preforms a layered perovskite structure oxide superconductor raw material granulated with a binder by applying pressure in a mold. The preform is molded using a pressurized liquid with a pressure higher than the preform pressure, the binder is removed after the main molding is completed, and then the temperature is gradually raised and sintered to improve workability, temperature characteristics, and uniformity. The present invention provides an excellent method for producing large oxide superconductors.

作用 本発明は、前記した製造方法により、加工性2温度特性
、均一性に優れた大型酸化物超電導体を得ることができ
る。
Function: According to the present invention, a large-sized oxide superconductor having excellent two-temperature processability and uniformity can be obtained by the above-described manufacturing method.

実施例 (実施例1) 酸化イツトリウム(Y2O,)、酸化バリウム(B a
 O)と酸化銅(Cu O)を、Y o、 s B a
 6.7C13、の比で含むようそれぞれ秤量し、混合
の後、900℃の空気中で5時間焼成した。これをもう
一度粉砕、混合した後、900℃の空気中で12時間焼
成し、再度粉砕した。これにバインダー(ポリビニルア
ルコール)を、5重量%加え、造粒して50〜100μ
mの粒状とした。これは成型時の粉体粒子のすべりをよ
くし、成型の均一性をあげるためである。その後、直径
80璽艶の金型を用いて、180kH/adの圧力で、
厚み3011の円板状に予備成型した。この円板状予備
成型体をゴム袋に入れ、真空ポンプでゴム袋内部を真空
引きにし密閉した。これを水で満たした圧力容器内に入
れ、圧力容器内の水に外部から2000kir/−の圧
力を加え、ゴム袋内成型体に等友釣に上記圧力を加えた
。加圧終了後、成型体をゴム袋より取出し、550℃の
空気中で24時間加熱し、バインダーの除去を行った。
Example (Example 1) Yttrium oxide (Y2O, ), barium oxide (B a
O) and copper oxide (CuO), Y o, s Ba
They were each weighed so as to contain a ratio of 6.7C13, and after mixing, they were fired in air at 900°C for 5 hours. This was pulverized and mixed once again, then baked in air at 900°C for 12 hours, and pulverized again. Add 5% by weight of binder (polyvinyl alcohol) to this and granulate it to a size of 50 to 100μ.
It was made into a granular shape of m. This is to improve the sliding of the powder particles during molding and improve the uniformity of molding. After that, using a mold with a diameter of 80 mm and a pressure of 180 kHz/ad,
It was preformed into a disk shape with a thickness of 3011 mm. This disc-shaped preform was placed in a rubber bag, and the inside of the rubber bag was evacuated using a vacuum pump and sealed. This was placed in a pressure vessel filled with water, and a pressure of 2000 kir/- was applied from the outside to the water in the pressure vessel, and the above pressure was uniformly applied to the molded body inside the rubber bag. After the pressurization was completed, the molded body was taken out from the rubber bag and heated in air at 550°C for 24 hours to remove the binder.

次に、バインダー除去を行なった成型体を電気炉に入れ
、1時間あたり30℃の昇温速度で温度を上げ、930
℃に達したところで、24時間保持し、1時間あたり3
0℃以下の降温速度で室温まで冷却した。室温まで冷却
後、750℃で10時間熱処理を行なった。
Next, the molded body from which the binder was removed was placed in an electric furnace, and the temperature was raised at a rate of 30°C per hour to 930°C.
Once it reaches ℃, hold it for 24 hours and
The mixture was cooled to room temperature at a temperature decreasing rate of 0°C or less. After cooling to room temperature, heat treatment was performed at 750° C. for 10 hours.

次にこの焼結体をlfiXlmm、厚み300μmの焼
結体に、スライスにより切り出し、さらに研磨により厚
みを100μmとした。得られた薄板の電気抵抗を液体
窒素(77K)温度で測定した結果、超電導性を示した
。すなわちこのような方法で形成した¥IJ、板は、超
電導体であった。得られた薄板をX線解析で調べたとこ
ろ、層状ペロブスカイト構造を示していた。
Next, this sintered body was sliced into lfiXlmm, 300 μm thick sintered bodies, and further polished to a thickness of 100 μm. The electrical resistance of the obtained thin plate was measured at liquid nitrogen (77K) temperature, and the result showed superconductivity. In other words, the IJ plate formed by this method was a superconductor. When the obtained thin plate was examined by X-ray analysis, it showed a layered perovskite structure.

薄板の厚みは、本実施例では1008mとしたが、スラ
イスおよび研磨により、50 tt m程度の厚みのも
のまで得られた。
The thickness of the thin plate was 1008 m in this example, but by slicing and polishing, a thickness of about 50 tt m could be obtained.

図は、本実施例の結晶構造である層状ペロブスカイト構
造の構成要素である、ペロブスカイト構造を示したもの
で、図において、1はCu、2は0.3はYまたは)3
aである。N状ペロブスカイト構造は、この構成要素が
ある周期をもって、層状に積み重なったものである。実
際超電導体となっているものは、この構造において酸素
が適当にぬけていると考えられる。
The figure shows a perovskite structure that is a component of the layered perovskite structure that is the crystal structure of this example. In the figure, 1 is Cu, 2 is 0.3 is Y or )3
It is a. The N-type perovskite structure is a structure in which these constituent elements are stacked in layers at a certain period. In actual superconductors, it is thought that oxygen is appropriately removed from this structure.

この材料について、同じプロセスで液体による加圧本成
型を行わなかったものを作成し、その温度特性を測定比
較した。その結果、本実施例の方法で得たものは、本成
型を行わなかったものに比べ、その超電導のfp界温度
が約8%向上した。この理由は主として、液体を用いて
の加圧により、成型体全体に等方向に圧力カ稍■わった
ことにより、均一な緻密化が進んだことによると考えら
れる。
A version of this material was created using the same process without pressure molding using liquid, and its temperature characteristics were measured and compared. As a result, the superconducting fp boundary temperature of the material obtained by the method of this example was improved by about 8% compared to the material obtained without the main molding. The reason for this is thought to be that, due to pressurization using a liquid, pressure was uniformly distributed over the entire molded body, resulting in uniform densification.

本実施例の方法では、さらに焼結体内部での特性の均一
性が大幅に向上した。焼結体を5fl角のブロックに切
り出し、各部の臨界温度を測定した結果、本実施例の焼
結体における臨界温度のバラツキは、焼結体のごく表面
を除くと3%以内であったが、液体による本成型を行わ
なかったものは5%以上のバラツキがあった。これは、
本成型時の圧力が予備成型時の圧力よりも高く、かつ等
方向に加わるため、予備成型時の金型による圧力むらが
是正され、その結果、均一性が向上するものと思われる
In the method of this example, the uniformity of characteristics within the sintered body was further improved significantly. The sintered body was cut into 5 fl square blocks and the critical temperature of each part was measured. As a result, the variation in critical temperature in the sintered body of this example was within 3%, excluding the very surface of the sintered body. In the case where the main molding using liquid was not performed, there was a variation of 5% or more. this is,
Since the pressure during main molding is higher than the pressure during preforming and is applied in the same direction, pressure unevenness due to the mold during preforming is corrected, and as a result, it is thought that uniformity is improved.

本実施例のものについて、予備成型圧力と本成型圧力の
関係を測定した。その結果本実施例のように加工性、温
度特性、均一性に優れた超電導体の得られるのは、予備
成型圧が50〜700 kg / cfll 。
Regarding the products of this example, the relationship between the preliminary molding pressure and the main molding pressure was measured. As a result, a superconductor with excellent workability, temperature characteristics, and uniformity as in this example can be obtained at a preforming pressure of 50 to 700 kg/cfll.

本成型圧がそれよりも高くかつ300〜2000 kg
 / ctAの範囲であった。この場合焼結体の密度が
、本成型圧力を加えない場合に比べ、約3%以上増加し
ており、焼結体が緻密となっており、その結果機械的強
度が向上し、その他の特性も向上したものと考えられる
。予備成型圧が50kg/−以下の場合、成型体の機械
的強度が十分でなかった。また700kg/cII+以
上の場合、あとで液体による加圧本成型を行ってもその
効果は明瞭でなかった。これは予備成型圧が高すぎると
、あとから本成型を行っても、予備成型時の圧力むらが
除去されないためと考えられる。また本成型圧が300
kg/ad以下と低い場合、やはりその効果が明瞭でな
かったが、これは本成型圧力が低すぎると、十分内部ま
で圧力分布が均一に及ばないためによると考えられる。
Main molding pressure is higher than that and 300 to 2000 kg
/ctA range. In this case, the density of the sintered body has increased by about 3% or more compared to the case where the main molding pressure is not applied, and the sintered body has become denser, resulting in improved mechanical strength and other properties. It is thought that this has also improved. When the preforming pressure was 50 kg/- or less, the mechanical strength of the molded body was insufficient. Moreover, in the case of 700 kg/cII+ or more, the effect was not clear even if pressurized main molding with liquid was performed later. This is thought to be because if the preforming pressure is too high, the pressure unevenness during the preforming will not be removed even if the main molding is performed later. Also, the main molding pressure is 300
When the molding pressure was as low as kg/ad or less, the effect was still not clear, but this is thought to be because if the main molding pressure was too low, the pressure distribution would not be uniform enough to reach the inside.

また本成型圧力を2000 kg/cj以上にした場合
、はぼその効果は飽和した。
Moreover, when the main molding pressure was set to 2000 kg/cj or more, the effect of bulging was saturated.

(実施例2) 酸化ランタン(L a 20g ) 、酸化バリウム(
B a O)と酸化IP(CuO)を、L a 1.s
nB ao、+bc ’ Iの比で含むようそれぞれ秤
量し、混合の後、実施例1と同様のプロセスを経て、薄
板状焼結体を得た。得られた薄板状焼結体の電気抵抗を
液体ヘリウム(4K)温度で測定した結果、超電導性を
示した。すなわちこのような方法で形成した薄板状焼結
体は、超電導体であった。さらにX線解析で調べたとこ
ろ、層状ペロブスカイト構造を示していた。
(Example 2) Lanthanum oxide (La 20g), barium oxide (
B a O) and oxidized IP (CuO), L a 1. s
They were weighed so as to contain nB ao and +bc 'I, respectively, and after mixing, the same process as in Example 1 was carried out to obtain a thin plate-shaped sintered body. The electrical resistance of the obtained thin plate-shaped sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity. That is, the thin plate-shaped sintered body formed by such a method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

(実施例3) 酸化ランタン(L a 203 ) 、62化カルシウ
ム(Ca203)と酸化銅(Cu O)を、La+、*
4Cao、+1Culの比で含むようそれぞれ秤量し、
混合の後、実施例1と同様のプロセスを経て、薄板状焼
結体を得た。得られた薄板状焼結体の電気抵抗を液体ヘ
リウム(4K)温度で測定した結果、超電導性を示した
。すなわちこのような方法で形成した薄板状焼結体は、
超電導体であった。さらにX線解析で調べたところ、層
状ペロブスカイト構造を示していた。
(Example 3) Lanthanum oxide (La203), calcium 62ide (Ca203) and copper oxide (CuO) were combined with La+, *
Weighed each to contain at a ratio of 4 Cao and +1 Cul,
After mixing, the same process as in Example 1 was carried out to obtain a thin plate-shaped sintered body. The electrical resistance of the obtained thin plate-shaped sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity. In other words, the thin plate-like sintered body formed by this method is
It was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

(実施例4) 酸化ランタン(L a 20B ) 、酸化ストロンチ
ラム(SrO)と酸化iM(CuO)を、L a 1.
@4S r o、+bc u 1の比で含むようツレぞ
れ秤量し、混合の後、実施例1と同様のプロセスを経て
、薄板状焼結体を得た。得られた薄板状焼結体の電気抵
抗を液体ヘリウム(4K)温度で測定した結果、超Mi
性を示した。すなわちこのような方法で形成した薄板状
焼結体は、超電導体であった。さらにX線解析で調べた
ところ、層状ペロブスカイト構造を示していた。
(Example 4) Lanthanum oxide (L a 20B ), strontillam oxide (SrO) and iM oxide (CuO) were mixed into L a 1.
The pieces were weighed so that they were contained in a ratio of @4S r o, +bc u 1, and after mixing, the same process as in Example 1 was carried out to obtain a thin plate-shaped sintered body. As a result of measuring the electrical resistance of the obtained thin plate-shaped sintered body at liquid helium (4K) temperature, it was found that ultra-Mi
showed his sexuality. That is, the thin plate-shaped sintered body formed by such a method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

(実施例5) 酸化インドリウム(Y2O2)、酸化スカンジウム(S
C2o3)、酸化バリウム(B a O)と酸化銅(C
ub)を、(YS C)6.4 B ao、h Cu+
の比で含むようそれぞれ秤量し、混合の後、実施例1と
同様のプロセスを経て、薄板状焼結体を得た。得られた
薄板状焼結体の電気抵抗を液体ヘリウム(4K)温度で
測定した結果、超電導性を示した。すなわちこのような
方法で形成した薄板状焼結体は、超電導体であった。さ
らにX線解析で調べたところ、層状ペロブスカイト構造
を示していた。
(Example 5) Indium oxide (Y2O2), scandium oxide (S
C2o3), barium oxide (B a O) and copper oxide (C
ub), (YS C)6.4 B ao, h Cu+
After mixing, the same process as in Example 1 was carried out to obtain a thin plate-shaped sintered body. The electrical resistance of the obtained thin plate-shaped sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity. That is, the thin plate-shaped sintered body formed by such a method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

(実施例6) 希土類酸化物(Lu、 Yb、 Tm、 Er、 Ho
(Example 6) Rare earth oxides (Lu, Yb, Tm, Er, Ho
.

Dy、Gd、Eu、Sm、Ndの酸化物)、酸化バリウ
ム(Bad)と酸化銅(Cu O)を、酸化銅1に対し
、希土類酸化物と酸化物バリウムが0.4および0.6
になるよう種々秤量し、混合の後、実施例1と同様のプ
ロセスを経て、FiI!板状焼結体を得た。得られた薄
板状焼結体の電気抵抗を液体ヘリウム(4K)温度で測
定した結果、超電導性を示した。すなわちこのような方
法で形成した薄板状焼結体は、超電導体であった。さら
にX線解析で調べたところ、層状ペロブスカイト構造を
示していた。
oxides of Dy, Gd, Eu, Sm, Nd), barium oxide (Bad) and copper oxide (CuO), rare earth oxides and barium oxides are 0.4 and 0.6 to 1 copper oxide.
After mixing, the same process as in Example 1 was carried out to obtain FiI! A plate-shaped sintered body was obtained. The electrical resistance of the obtained thin plate-shaped sintered body was measured at liquid helium (4K) temperature, and the result showed superconductivity. That is, the thin plate-shaped sintered body formed by such a method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

(実施例7) 酸化インドリウム(Y2O2)、酸化ストロンチウム(
SrO)と酸化銅(Cub)を、Yo、a S r o
、h Cu lの比で含むようそれぞれ秤量し混合の後
、実施例1と同様のプロセスを経て、薄板状′焼結体を
得た。得られた1板状焼結体の電気抵抗を液体ヘリウム
(4K)温度で測定した結果、超電導性を示した。すな
わちこのような方法で形成した薄板状焼結体は、超電導
体であった。
(Example 7) Indium oxide (Y2O2), strontium oxide (
SrO) and copper oxide (Cub), Yo, a S r o
, h Cu l, and after mixing, the same process as in Example 1 was carried out to obtain a thin plate-like sintered body. The electrical resistance of the obtained single plate-shaped sintered body was measured at liquid helium (4K) temperature, and as a result, it showed superconductivity. That is, the thin plate-shaped sintered body formed by such a method was a superconductor.

さらにX線解析で調べたところ、層状ペロブスカイト構
造を示していた。
Further X-ray analysis showed that it had a layered perovskite structure.

→すHHわト 以上述べたごとく、本発明の方法によれば、加工性、温
度特性、均一性に優れた大型酸化物超電導体を得ること
ができる。
→SHH As described above, according to the method of the present invention, a large oxide superconductor having excellent workability, temperature characteristics, and uniformity can be obtained.

本実施例の製造方法によれば、層状ペロブスカイト構造
を有する酸化物超電導体については、いずれの材料につ
いても適用できるものである。図は、実施例1の結晶構
造について示したものであるが、実施例2〜7の場合は
、この構造においてY、Baの代りに、それぞれの実施
例で用いられた、Cu、O以外の元素で置き代えたもの
である。
According to the manufacturing method of this example, any material can be applied to the oxide superconductor having a layered perovskite structure. The figure shows the crystal structure of Example 1, but in the case of Examples 2 to 7, instead of Y and Ba, other than Cu and O used in each example were used. It is replaced by an element.

実施例2〜7で示したそれぞれの材料についても、予備
成型圧と液体による本成型圧の関係を測定した結果、本
実施例のような効果の得られるのは、いずれの材料にお
いても実施例1の場合と同様であった。すなわち、予備
成型圧が50〜700kg/cd、本成型圧がそれより
も高くかつ300〜2000kg/−の範囲であった。
For each of the materials shown in Examples 2 to 7, the relationship between the pre-molding pressure and the main molding pressure due to liquid was measured, and it was found that the effects similar to those in this example can be obtained in any of the materials. It was the same as in case 1. That is, the preliminary molding pressure was 50 to 700 kg/cd, and the main molding pressure was higher than that and in the range of 300 to 2000 kg/-.

この場合焼結体の密度が、やはり実施例1の場合と同様
に、本成型圧力を加えない場合に比べ約3%以上増加し
ており、焼結体が緻密となっており、その結果a械的強
度が向上し、その他の特性も向上したものと考えられる
In this case, as in the case of Example 1, the density of the sintered body has increased by about 3% or more compared to the case where the main molding pressure is not applied, and the sintered body has become dense, resulting in a It is thought that the mechanical strength was improved and other properties were also improved.

実施例2〜7のものについても、同じプロセスで液体に
よる本成型を加えなかったものを作成し、その温度特性
を測定比較した。その結果いずれの材料についても、そ
の超電導の臨界温度が約8%以上向上した。この理由は
主として、実施例1の場合と同様と考えられる。
Examples 2 to 7 were also made using the same process without the addition of main molding using liquid, and their temperature characteristics were measured and compared. As a result, the critical temperature of superconductivity of each material increased by about 8% or more. The reason for this is thought to be mainly the same as in the case of the first embodiment.

実施例2〜7のものについても、同じプロセスで液体に
よる本成型を加えなかったものを作成し、その均一性を
測定比較した。その結果いずれの材料についても、実施
例1の場合と同様に、その超電導の臨界温度の均一性の
バラツキが、液体による本成型を加えなかったものが5
%以上であったのに対して、本発明の方法によるもので
は3%以下となっており、均一性が大幅に向上していた
Examples 2 to 7 were also made using the same process without the main molding using liquid, and their uniformity was measured and compared. As a result, for each material, as in Example 1, the variation in the uniformity of the critical temperature of superconductivity was 5.
% or more, whereas in the method of the present invention, it was 3% or less, and the uniformity was significantly improved.

この理由はやはり実施例1の場合と同様であると考えら
れる。
The reason for this is considered to be the same as in the case of the first embodiment.

本実施例のような良好な特性の大型焼結体の得られるの
は、いずれの材料においても焼成時の1時間あたりの昇
温速度が100℃以下の場合であった。それ以上昇温速
度が速くなると、焼結体が部分的に変形したり、ヒビが
はいるなどの欠陥が生じ、本実施例のような良好な特性
の大型焼結体は得られなかった。したがって、昇温速度
として1時間あたり100℃以下とすることが必要であ
る。
A large sintered body with good properties as in this example was obtained when the heating rate per hour during firing was 100° C. or less for all materials. If the temperature increase rate was increased beyond that, defects such as partial deformation or cracking of the sintered body occurred, and a large sintered body with good characteristics as in this example could not be obtained. Therefore, it is necessary to set the temperature increase rate to 100° C. or less per hour.

また本実施例では、液体として水を用いたが、他の液体
を用いても同様の効果の得られることは明らかである。
Further, in this embodiment, water was used as the liquid, but it is clear that similar effects can be obtained using other liquids.

また本実施例では、ゴム袋を用いて本成型を行ったが、
ゴムのように可とう性および収縮性のあるものであれば
同様の効果の得られ状化された層状ペロブスカイト構造
酸化物超電導体用原料を、金型にて圧力を加えて予備成
型し、この予備成型体を予備成型圧より大きな圧力の加
圧液体によって本成型し、本成型完了後バインダー除去
を行い、その後徐々に昇温して焼結することにより加工
性、温廣特性、均−性に優れた、大型酸化物超電導体の
製造方法を提供するものである。
In addition, in this example, the actual molding was performed using a rubber bag, but
If it is flexible and contractible like rubber, the raw material for the layered perovskite structure oxide superconductor, which has the same effect as rubber, is preformed by applying pressure in a mold. The preform is molded using a pressurized liquid with a pressure higher than the preform pressure, and after the main molding is completed, the binder is removed, and then the temperature is gradually raised and sintered to improve workability, thermal properties, and uniformity. The present invention provides a method for producing a large oxide superconductor with excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に用いた酸化物超電導体の結晶構造である層
状ペロブスカイト構造の、構成要素であるペロブスカイ
ト構造を示した説明図である。 l・・・・・・Cu、2・・・・・・0.3・・・・・
・YまたはBa。
The figure is an explanatory diagram showing a perovskite structure that is a component of a layered perovskite structure that is a crystal structure of an oxide superconductor used in the present invention. l...Cu, 2...0.3...
・Y or Ba.

Claims (6)

【特許請求の範囲】[Claims] (1)バインダーにて粒状化された層状ペロブスカイト
構造酸化物超電導体用原料を、金型にて圧力を加えて予
備成型し、この予備成型体を予備成型圧より大きな圧力
の加圧液体によって本成型し、本成型完了後バインダー
除去を行い、その後徐々に昇温して焼結することを特徴
とする酸化物超電導体の製造方法。
(1) The raw material for a layered perovskite structure oxide superconductor, which has been granulated with a binder, is preformed by applying pressure in a mold, and this preform is then molded using a pressurized liquid with a pressure higher than the preforming pressure. A method for manufacturing an oxide superconductor, which comprises molding, removing the binder after the main molding is completed, and then gradually increasing the temperature and sintering.
(2)層状ペロブスカイト構造超電導体酸化物として、
A−Ba−Cu酸化物(ただしAは、Y、Sc、希土類
)、またはLa−B−Cu酸化物(ただしBは、Ca、
Br)、またはY−Sr−Cu酸化物を用いたことを特
徴とする特許請求の範囲第(1)項記載の酸化物超電導
体の製造方法。
(2) As a layered perovskite structure superconductor oxide,
A-Ba-Cu oxide (where A is Y, Sc, rare earth) or La-B-Cu oxide (where B is Ca,
Br) or Y-Sr-Cu oxide is used. The method for producing an oxide superconductor according to claim (1).
(3)希土類として、La、Lu、Yb、Tm、Er、
Ho、Dy、Gd、Eu、Sm、Ndを用いたことを特
徴とする特許請求の範囲第(2)項記載の酸化物超電導
体の製造方法。
(3) Rare earths include La, Lu, Yb, Tm, Er,
The method for manufacturing an oxide superconductor according to claim (2), characterized in that Ho, Dy, Gd, Eu, Sm, and Nd are used.
(4)予備成型圧を50〜700kg/cm^2とし、
本成型圧を300〜2000kg/cm^2とすること
を特徴とする特許請求の範囲第(1)項記載の酸化物超
電導体の製造方法。
(4) Preforming pressure is 50 to 700 kg/cm^2,
The method for manufacturing an oxide superconductor according to claim (1), characterized in that the main molding pressure is 300 to 2000 kg/cm^2.
(5)焼結時の昇温速度を1時間あたり100℃以下と
することを特徴とする特許請求の範囲第(1)項記載の
酸化物超電導体の製造方法。
(5) The method for manufacturing an oxide superconductor according to claim (1), characterized in that the temperature increase rate during sintering is 100° C. or less per hour.
(6)予備成型体を可とう性と収縮性を有する密閉容器
内に収納しかつ容器内を真空にして密閉し、前記容器を
液体を充填した加圧容器内に収納した後、前記液体に圧
力を加えて本成型することを特徴とする特許請求の範囲
第(1)項記載の酸化物超電導体の製造方法。
(6) Storing the preform in a flexible and contractible airtight container, evacuating the inside of the container and sealing it, and storing the container in a pressurized container filled with liquid; The method for producing an oxide superconductor according to claim (1), wherein the main molding is performed by applying pressure.
JP62106685A 1987-04-30 1987-04-30 Production of oxide superconductor Pending JPS63270347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106685A JPS63270347A (en) 1987-04-30 1987-04-30 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106685A JPS63270347A (en) 1987-04-30 1987-04-30 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPS63270347A true JPS63270347A (en) 1988-11-08

Family

ID=14439915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106685A Pending JPS63270347A (en) 1987-04-30 1987-04-30 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPS63270347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476949A (en) * 1987-09-17 1989-03-23 Mitsubishi Cable Ind Ltd Production of superconducting substance
US5415828A (en) * 1989-04-14 1995-05-16 Ngk Insulators, Ltd. Jig and method for isostatically pressing ceramic powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270318A (en) * 1987-04-28 1988-11-08 Fujikura Ltd Production of superconductive material of oxide type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270318A (en) * 1987-04-28 1988-11-08 Fujikura Ltd Production of superconductive material of oxide type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476949A (en) * 1987-09-17 1989-03-23 Mitsubishi Cable Ind Ltd Production of superconducting substance
US5415828A (en) * 1989-04-14 1995-05-16 Ngk Insulators, Ltd. Jig and method for isostatically pressing ceramic powder

Similar Documents

Publication Publication Date Title
JPH02133367A (en) Oriented polycrystalline superconductor
KR950011339B1 (en) Target used for formation of super conductive oxide film process of producing therfof
JPS63270347A (en) Production of oxide superconductor
EP0309169A2 (en) Superconducting shaped article
JPS63270450A (en) Production of thick film oxide super conductor
JPS63270346A (en) Production of oxide superconductor
JPH03159954A (en) Manufacture of product having improved physical characteristics and superconductivity
JPH029720A (en) Metal oxide material
JP2519742B2 (en) Manufacturing method of superconducting material
RU2020141C1 (en) Process for preparing superconductive oxide material
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPS63270345A (en) Production of oxide superconductor
JP3069905B2 (en) Manufacturing method of oxide superconducting sintered body
JPH01160876A (en) Production of superconductor parts
EP0500966A1 (en) Oxide superconductor and method of manufacturing said superconductor
JPS63282172A (en) Production of oxide superconductor
JP2519741B2 (en) Manufacturing method of superconducting material
JPH05270828A (en) Rare earth superconductor
JPH03137050A (en) Manufacture of oxide superconductor
JPS63270318A (en) Production of superconductive material of oxide type
JPH013062A (en) Method for manufacturing superconducting materials
JPH03126623A (en) Metal oxide material
JPH08181487A (en) Manufacturing method of magnetic shield
JPS63282173A (en) Production of oxide superconductor
JPS63288940A (en) Production of oxide superconductor