JPH03193605A - Production of target material for forming oxide superconducting thin film - Google Patents

Production of target material for forming oxide superconducting thin film

Info

Publication number
JPH03193605A
JPH03193605A JP33076989A JP33076989A JPH03193605A JP H03193605 A JPH03193605 A JP H03193605A JP 33076989 A JP33076989 A JP 33076989A JP 33076989 A JP33076989 A JP 33076989A JP H03193605 A JPH03193605 A JP H03193605A
Authority
JP
Japan
Prior art keywords
target material
oxide
thin film
temp
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33076989A
Other languages
Japanese (ja)
Other versions
JP2791407B2 (en
Inventor
Akitaka Tanimoto
谷本 聡香
Saburo Nagano
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33076989A priority Critical patent/JP2791407B2/en
Publication of JPH03193605A publication Critical patent/JPH03193605A/en
Application granted granted Critical
Publication of JP2791407B2 publication Critical patent/JP2791407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the reduction of an oxide in production and to obtain a target material for forming a high density superconducting thin film excellent in dimensional stability by calcining the powder of the oxides of the elements constituting an oxide superconductor, hot-pressing and then sintering the powder in a carbon die several times os that the sintering temp. is increased in stages. CONSTITUTION:An oxide superconducting thin film based essentially on RE- Ba-Cu-O (RE is Y and rare-earth elements) is formed from a target material by sputtering. In this case, the mixed powder of the oxide, carbonate, nitrate, etc., of the component elements is calcined. The calcination product is placed in a carbon die, hot-pressed and then sintered with the sintering temp. increased from a low temp. to the regular temp. of the desired sintered body in stages to obtain the target material. The regular sintering temp. is preferably controlled to 750-850 deg.C when a YBa2Cu3O7-delta target material is formed, and the initial temp. is preferably adjusted to <=450 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Y −B a −Cu−0系等の酸化物超電
導薄膜をスパッタリング法により形成する場合に用いら
れるターゲット材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a target material used when forming an oxide superconducting thin film such as Y-B a -Cu-0 based by a sputtering method.

(従来の技術) 酸化物超電導薄膜の形成には、CVD法、レーザービー
ム蒸着法、反応性蒸着法、スパッタリング法等が採用さ
れる。これらのうちスパッタリング法は、ターゲット材
に対しイオン等を照射し、ターゲットを構成する原子又
は分子をたたき出し所定の基板上に薄膜を形成させんと
するものである。上記超電導体のように複合酸化物から
成る薄膜を得る場合、例えば、得ようとする薄膜組成と
同一組成から成るバルク体(焼結体)をターゲット材と
して用いるか、或いは上記ターゲットの他に補正用ター
ゲットを設置し、これらのターゲットから発生する原子
又は分子量を調整しながら形成させる方法が一般に用い
られている。
(Prior Art) A CVD method, a laser beam evaporation method, a reactive evaporation method, a sputtering method, etc. are employed to form an oxide superconducting thin film. Among these methods, the sputtering method is a method in which a target material is irradiated with ions or the like to knock out atoms or molecules constituting the target to form a thin film on a predetermined substrate. When obtaining a thin film made of a composite oxide like the above-mentioned superconductor, for example, a bulk body (sintered body) having the same composition as the thin film to be obtained is used as the target material, or a correction material is used in addition to the above-mentioned target. Generally, a method is used in which targets are set up and the atomic or molecular weight generated from these targets is adjusted.

従来、この種のターゲット材の製造方法としては、酸化
物超電導体構成元素の酸化物若しくは酸化物形成化合物
(炭酸塩若しくは硝酸塩等)の粉末を仮焼した後、ホッ
トプレス焼成若しくは普通焼成(成形用バインダーを添
加混合して焼成)する方法が一般に採用されている。
Conventionally, methods for manufacturing this type of target material include calcining powder of oxides or oxide-forming compounds (carbonates, nitrates, etc.) of oxide superconductor constituent elements, followed by hot press firing or ordinary firing (molding). A method is generally adopted in which a binder is added, mixed, and then fired).

(発明が解決しようとする課題) ところで、上記ターゲット材に要求される特性としては
、成膜速度を高めることができるようそれ自体が高密度
(理論密度に対する相対密度が約60%以上)であるこ
とが望ましく、また寸法的にも同一形状のものが生産で
きることが要求される。 然し乍ら、上記製造法は以下
のような問題点を内包していた。即ち、ホットプレス焼
成法の場合、カーボン型を用いたホットプレスに於いて
は、緻密体を得る為に高温でホットプレスすると、試料
とカーボン型との接触面で酸化物が還元され、カーボン
型と固着することがある。この固着を避ける為に焼成温
度を下げると密度が低下し、ターゲット支持体とのボン
ディングの際の強度が不足する。また、カーボン以外の
アルミナや炭化珪素セラミックの型を用いた場合、焼結
体の中に型から異元素が拡散し、これをターゲットとし
て用いた場合、得られ薄膜に悪影響を及ぼす。
(Problem to be Solved by the Invention) By the way, the characteristics required of the above-mentioned target material are that it itself has a high density (relative density to the theoretical density is about 60% or more) so that the film formation rate can be increased. This is desirable, and it is also required that products of the same size can be produced. However, the above manufacturing method included the following problems. That is, in the case of the hot press firing method, when hot pressing using a carbon mold is performed at high temperature to obtain a dense body, oxides are reduced at the contact surface between the sample and the carbon mold, and the carbon mold is heated. It may get stuck. If the firing temperature is lowered to avoid this sticking, the density will decrease and the strength during bonding with the target support will be insufficient. Further, when a mold made of alumina or silicon carbide ceramic other than carbon is used, foreign elements diffuse from the mold into the sintered body, and when this is used as a target, it has an adverse effect on the thin film obtained.

一方、普通焼成法の場合、成形時に添加するバインダー
が焼成中分解するが、その分解ガスの発生により割れや
反り等が生じ、目的の形状を得ることが難しい。また、
焼成時の寸法収縮が大きく、しかも収縮度は組成及び成
形体の密度により変化する為、焼成後の形状物を機械加
工して目的寸法に調製する必要がある。この時、機械加
工によるクラック破壊の問題が新たに発生する。
On the other hand, in the case of the normal firing method, the binder added during molding decomposes during firing, and the generation of decomposed gas causes cracks, warping, etc., making it difficult to obtain the desired shape. Also,
Since the dimensional shrinkage during firing is large and the degree of shrinkage varies depending on the composition and density of the molded body, it is necessary to machine the shaped body after firing to adjust it to the desired dimensions. At this time, a new problem of crack breakage due to machining occurs.

(発明の目的) 本発明は、上記に鑑みなされたものであり、製造時にカ
ーボン型により酸化物が還元されることなく、ターゲッ
ト支持体とのボンディング際に割れや反りを生じること
のない高密度且つ寸法安定性に優れた酸化物超電導薄膜
形成用ターゲット材の製造方法を提供せんとするもので
ある。
(Objective of the Invention) The present invention has been made in view of the above, and is a high-density product that does not reduce oxides due to carbon mold during manufacturing and does not cause cracking or warping during bonding with a target support. Moreover, it is an object of the present invention to provide a method for manufacturing a target material for forming an oxide superconducting thin film that has excellent dimensional stability.

(課題を解決する為の手段) 上記目的を達成する本発明は、酸化物超電導体を構成す
る元素(酸素を除く)の酸化物粉末若しくは酸化物形成
化合物(炭酸塩、硝酸塩等)粉末の1種若しくは複数種
から成る混合粉末を仮焼した後。
(Means for Solving the Problems) The present invention, which achieves the above-mentioned object, is a method of using oxide powders or oxide-forming compound (carbonate, nitrate, etc.) powders of elements (excluding oxygen) constituting an oxide superconductor. After calcining the seed or mixed powder consisting of multiple seeds.

焼成温度が段階的に高くなるよう設定されたカーボン型
による数回のホットプレス焼成を行なうことを特徴とす
る酸化物超電導薄膜形成用ターゲット材の製造方法にあ
る。
The present invention provides a method for producing a target material for forming an oxide superconducting thin film, which is characterized by carrying out hot press firing several times using a carbon mold in which the firing temperature is set to increase stepwise.

本発明方法によって得たターゲット材は、主にRE−B
a−Cu−0系(RELY及び希土類元素)酸化物超電
導薄膜をスパッタリング法により形成する場合に用いら
れるものを対象とし、従って、この場合は、上記酸化物
超電導体を構成する元素とは、希土類元素(イツトリウ
ムを含む)、アルカリ土類元素(バリウム)及び銅元素
を相称する。
The target material obtained by the method of the present invention is mainly RE-B
The target is those used when forming a-Cu-0 series (RELY and rare earth element) oxide superconducting thin films by sputtering. Therefore, in this case, the elements constituting the oxide superconductor are rare earth Commonly refers to elements (including yttrium), alkaline earth elements (barium), and copper elements.

ホットプレスによる焼成は、上記の如く数段階に分は実
施されるが、その焼成温度は低温度から出発し、段階を
経る毎に高く設定され、最終段階では目的焼結体の正規
の焼成温度とされる。ここでの正規の焼成温度は作成す
るターゲット組成により変るが、例えばY B a 2
 Cu 307− aターゲットを作成する場合は75
0〜850℃が望ましく、また初期段階の温度は450
℃以下が望ましい。
Firing by hot press is carried out in several stages as described above, but the firing temperature starts from a low temperature and is set higher with each stage, until the final stage reaches the regular firing temperature of the target sintered body. It is said that The regular firing temperature here varies depending on the composition of the target to be created, but for example, YB a 2
75 when creating a Cu 307-a target
The temperature is preferably 0 to 850°C, and the initial temperature is 450°C.
Desirably below ℃.

また、各焼成段階の終了後は一旦室温まで冷却して大気
中で保持し、その後火の焼成段階に移行する。
Further, after each firing stage is completed, the product is once cooled to room temperature and held in the atmosphere, and then the firing stage is started.

(作用) 上記製造方法に於いて、焼成の初期の段階では温度が低
い為に、還元雰囲気下にあっても原料酸化物がカーボン
型の炭素により還元されることがない。また、この段階
である程度緻密化されるから、その後の焼成段階で温度
を段階的に高くしても高温での保持時間を短縮できるこ
とから上記炭素による還元作用を受けにくく、最終焼成
段階を経た後はカーボン型との固着もなく極めて緻密な
焼結体が得られる。しかも、型内で焼成されるから、型
の寸法を所定のターゲット寸法に合致させておけば、焼
結後の機械加工が不要であり、またバインダーを使用し
ないから割れや反り等が発生することもない。更に、カ
ーボン型を使用しているから、焼結体中への異元素の拡
散も生じない。
(Function) In the above manufacturing method, since the temperature is low in the initial stage of firing, the raw material oxide is not reduced by carbon-type carbon even in a reducing atmosphere. In addition, since it is densified to some extent at this stage, even if the temperature is increased stepwise in the subsequent firing stage, the holding time at high temperature can be shortened, making it less susceptible to the reducing action of the carbon mentioned above, and after passing through the final firing stage. An extremely dense sintered body can be obtained without sticking to the carbon mold. Moreover, since the sintering is done in the mold, if the mold dimensions match the predetermined target dimensions, there is no need for machining after sintering, and since no binder is used, there is no need for cracking or warping. Nor. Furthermore, since a carbon type is used, diffusion of foreign elements into the sintered body does not occur.

(実施例) 次に実施例により本発明を更に詳述する。(Example) Next, the present invention will be explained in further detail with reference to Examples.

(実施例−1) (i)Y、O,: BaC:O,: Cu0=0.5 
: 2 :3(モル比)の混合粉末を大気中900℃で
5時間仮焼し粉砕した後、再度同条件で仮焼し、ジェッ
トミル粉砕して平均粒径3μmの仮焼粉末を得た。
(Example-1) (i) Y, O,: BaC:O,: Cu0=0.5
: A mixed powder of 2:3 (mole ratio) was calcined in the air at 900°C for 5 hours and crushed, then calcined again under the same conditions and crushed by a jet mill to obtain a calcined powder with an average particle size of 3 μm. .

(…)上記仮焼粉末的240gをカーボン型(直径1o
IIIII+)に充填し、圧力50kg/a#をかけ。
(...) 240g of the above calcined powder was put into a carbon mold (diameter 1o)
III+) and applied a pressure of 50 kg/a#.

誘導加熱により昇温速度20℃/ m i nで昇温し
、400℃で15分間保持した。その後室温にまで冷却
した。上記と同圧力及び同昇温速度で再度ホットプレス
し600℃に15分間保持した。これを室温にまで冷却
し、更に同圧力及び同昇温速度でホットプレスし800
℃で15分間保持した。
The temperature was raised by induction heating at a temperature increase rate of 20°C/min and held at 400°C for 15 minutes. It was then cooled to room temperature. Hot pressing was performed again at the same pressure and temperature increase rate as above and held at 600° C. for 15 minutes. This was cooled to room temperature, and then hot pressed at the same pressure and temperature increase rate to 800
It was held at ℃ for 15 minutes.

斯かる3段階のホットプレス焼成の後室温にまで冷却し
、焼結体を取り出した。
After the three-step hot press firing, the sintered body was cooled to room temperature and taken out.

(市)得られた焼結体の直径は101m、厚さ6゜5面
であり、理論密度に対する相対密度は73%であった。
(City) The diameter of the obtained sintered body was 101 m, the thickness was 6°, and the relative density was 73% of the theoretical density.

また、カーボン型との固着やクラックは見られなかった
。Xls回折によれば、表面に若干のBaCO3の生成
を示すピークが観測されたが、焼結体試料の表面を0.
2m++削った内部層では、YBa、Cu30yの明確
なピークのみが観測された。
Furthermore, no adhesion or cracks with the carbon mold were observed. According to Xls diffraction, a peak indicating the formation of some BaCO3 was observed on the surface;
In the inner layer shaved 2m++, only clear peaks of YBa and Cu30y were observed.

〈比較例1−1〉 (i)実施例−1(i)の仮焼粉末を上記と同じカーボ
ン型に充填し、実施例1と同圧力及び同昇温速度でホッ
トプレスし、800℃で15分間保持した。
<Comparative Example 1-1> (i) The calcined powder of Example-1(i) was filled into the same carbon mold as above, hot pressed at the same pressure and temperature increase rate as in Example 1, and heated to 800°C. Hold for 15 minutes.

(ii)得られた焼結体には、カーボン型との部分的な
固着があり、理論密度に対する相対密度は52%であっ
た。
(ii) The obtained sintered body had partial adhesion to the carbon mold, and the relative density to the theoretical density was 52%.

く比較例1−2〉 (i)比較例1−1に於けるホットプレス条件を900
℃で15分間保持に変えてホップレス焼成した。
Comparative Example 1-2> (i) The hot press conditions in Comparative Example 1-1 were changed to 900
Hopless firing was performed by holding at ℃ for 15 minutes.

(ii)得られた焼結体は、カーボン型との固着が激し
く、その界面は赤銅色を呈していた。表面を削り内部を
X線回折により解析したところ、BaCO3,Cu、O
lY 2 B a Cu Os、Y B a2Cu。
(ii) The obtained sintered body was strongly adhered to the carbon mold, and the interface had a coppery color. When the surface was scraped and the interior was analyzed by X-ray diffraction, it was found that BaCO3, Cu, O
lY 2 B a Cu Os, Y B a2Cu.

0y等が検出され、これにより還元分解反応があったこ
とが推察された。
0y etc. were detected, which suggested that a reductive decomposition reaction had occurred.

く比較例1−3〉 (i)比較例1−1に於けるホットプレス条件を800
℃で30分間保持に変えてホップレス焼成した。
Comparative Example 1-3> (i) The hot press conditions in Comparative Example 1-1 were changed to 800
Hopless firing was performed by holding at ℃ for 30 minutes.

(ii)得られた焼結体は、カーボン型との固着が激し
く、また内部の相対密度は65%であった。
(ii) The obtained sintered body was strongly adhered to the carbon mold, and the internal relative density was 65%.

(実施例−2) (i)BaCO,:Cu○=1 : 1(モル比)の混
合粉末を大気中900℃で5時間仮焼して粉砕し、この
仮焼粉砕を3回繰り返しBaCuO,の合成粉末を得た
(Example-2) (i) A mixed powder of BaCO,:Cu○=1:1 (molar ratio) was calcined and crushed in the air at 900°C for 5 hours, and this calcined and crushed process was repeated three times to produce BaCuO, A synthetic powder was obtained.

(■)この合成粉末的230gを上記と同様のカーボン
型に充填し、400℃・15分間保持及び660℃・1
5分間保持の2段階のホットプレス焼成を行ない、直径
101m、厚さ6.5Iの焼結体を得た。この場合いず
れも圧力50kg/cd、昇温速度20℃/ m i 
nとした。
(■) Fill 230g of this synthetic powder into the same carbon mold as above, hold at 400℃ for 15 minutes, and hold at 660℃ for 1
Two-step hot press firing was performed for 5 minutes to obtain a sintered body with a diameter of 101 m and a thickness of 6.5 I. In both cases, the pressure is 50 kg/cd, and the temperature increase rate is 20°C/mi.
It was set as n.

(iii)得られた焼結体の理論密度に対する相対密度
は70%であった。また、X線回折によれば。
(iii) The relative density of the obtained sintered body to the theoretical density was 70%. Also, according to X-ray diffraction.

表面に若干のB a COzの生成が見られたが、内部
は全てB a Cu O□であった。
Although some generation of B a COz was observed on the surface, the inside was entirely B a Cu O□.

く比較例2−1〉 (i)実施例2(i)の合成粉末をカーボン型に充填し
、660℃・15分間のホットプレス焼成を行なった。
Comparative Example 2-1> (i) The synthetic powder of Example 2(i) was filled into a carbon mold and hot press fired at 660°C for 15 minutes.

(n)得られた焼結体の理論密度に対する相対密度は4
9%であり、極めて脆く、ボンディング時に割れが発生
した。また、X線回折によると、内部にもBaC0,が
生成していることが観測された。
(n) The relative density of the obtained sintered body to the theoretical density is 4
It was 9%, extremely brittle, and cracks occurred during bonding. Moreover, according to X-ray diffraction, it was observed that BaC0 was also generated inside.

(実施例−3) (i)実施例−2(i)における原料混合粉末を、Ba
C0,:Cu0=2: 3(モル比)とし、実施例−2
と同条件で仮焼し、結晶相がBaCuO□とCuOとの
混合相から成る合成粉末を得た。
(Example-3) (i) The raw material mixed powder in Example-2(i) was
C0,:Cu0=2:3 (molar ratio), Example-2
The powder was calcined under the same conditions as above to obtain a synthetic powder whose crystal phase was a mixed phase of BaCuO□ and CuO.

(ii)この合成粉末を実施例−2(it)と同様にホ
ットプレス焼成して焼結体を得た。
(ii) This synthetic powder was hot press fired in the same manner as in Example 2 (it) to obtain a sintered body.

(■)得られた焼結体は、カーボン型との固着もなく、
理論密度に対する相対密度は75%で極めて緻密であっ
た。
(■) The obtained sintered body does not stick to the carbon mold,
The relative density to the theoretical density was 75%, which was extremely dense.

(実施例−4) (i)実施例−2(i)における原料混合粉末を、Ca
Co3:Cu○=2:1(モル比)とし、実施例−2と
同条件で仮焼し、結晶相がCa 、 Cu O3単相の
仮焼粉末を得た。
(Example-4) (i) The raw material mixed powder in Example-2(i) was
Co3:Cu◯=2:1 (molar ratio) and calcined under the same conditions as in Example 2 to obtain a calcined powder with a single crystal phase of Ca and CuO3.

(ii)との仮焼粉末を400℃、600℃及び700
℃(保持時間はいずれも15分)の3段階ホットプレス
焼成して焼結体を得た。
(ii) Calcined powder at 400℃, 600℃ and 700℃
A sintered body was obtained by three-step hot press firing at 15°C (holding time: 15 minutes).

(iii)得られた焼結体は、カーボン型との固着もな
く、また理論密度に対する相対密度は63%であった。
(iii) The obtained sintered body did not adhere to the carbon mold and had a relative density of 63% with respect to the theoretical density.

上記実施例1乃至4、比較例1−1〜3及び比較例2−
1の結果を纏めて第1表に示す。
Examples 1 to 4, Comparative Examples 1-1 to 3 and Comparative Example 2-
The results of 1 are summarized in Table 1.

(以下余白) 尚、実施例−1によって得たターゲット材は、Y−Ba
−Cu−Q系超電導薄膜をスパッタリング法によって作
成する場合の主たるターゲットとして用いられる。また
、実施例−2〜4によるターゲットは、例えばY−Ba
−Cu−0系ターゲット共に配置され、生成される薄膜
が所定の組成となるように制御するための補正用ターゲ
ットとして用いられる。
(Left below) The target material obtained in Example-1 was Y-Ba
It is used as the main target when creating a -Cu-Q based superconducting thin film by sputtering. Further, the targets according to Examples 2 to 4 are, for example, Y-Ba
The -Cu-0 system target is also placed and used as a correction target for controlling the produced thin film to have a predetermined composition.

(発明の効果) 叙上の如く、本発明のターゲット材の製造方法に於いて
は、カーボン型によるホットプレス焼成工程が数段階に
別れ、しかも焼成温度が段階毎に高くなるよう設定され
ているから、焼成の初期段階で被処理品がある程度緻密
化され、その後の昇温によってもカーボン型の炭素の還
元作用を受けず、カーボン型との固着のない極めて緻密
な焼結ターゲット材が得られる。しかも、型内で焼結さ
れるから、焼結体をそのまま所定の形状とすることが出
来、機械的な加工を不要とする。また、バインダーを使
用していないから1割れや反りなどを生じず、更にカー
ボン型を使用しているから、焼結体中へ異元素が拡散す
る懸念もない。
(Effects of the Invention) As described above, in the method for manufacturing a target material of the present invention, the hot press firing process using a carbon mold is divided into several stages, and the firing temperature is set to be higher in each stage. Therefore, the target material is densified to some extent in the initial stage of firing, and even when the temperature is raised thereafter, it is not affected by the reducing effect of carbon in the carbon type, and an extremely dense sintering target material that does not stick to the carbon type can be obtained. . Moreover, since sintering is performed in a mold, the sintered body can be formed into a predetermined shape as it is, eliminating the need for mechanical processing. Furthermore, since no binder is used, no cracking or warping occurs, and since a carbon mold is used, there is no concern that foreign elements will diffuse into the sintered body.

このように本発明によって得たターゲット材は、酸化物
超電導薄膜をスパッタリングにより形成する場合に極め
て優れた適正を発揮するものであり。
As described above, the target material obtained according to the present invention exhibits extremely excellent suitability when forming an oxide superconducting thin film by sputtering.

その有用価値は頗る大である。Its useful value is enormous.

一以上一one or more one

Claims (3)

【特許請求の範囲】[Claims] 1.酸化物超電導体を構成する元素の酸化物粉末若しく
は酸化物形成化合物粉末の1種若しくは複数種から成る
混合粉末を仮焼した後、焼成温度が段階的に高くなるよ
う設定されたカーボン型による数回のホットプレス焼成
を行なうことを特徴とする酸化物超電導薄膜形成用ター
ゲット材の製造方法。
1. After calcining a mixed powder consisting of one or more types of oxide powder or oxide-forming compound powder of the elements constituting the oxide superconductor, the number of carbon molds set so that the firing temperature is increased stepwise. A method for producing a target material for forming an oxide superconducting thin film, the method comprising performing hot press firing twice.
2.上記酸化物超電導体を構成する元素が、希土類元素
、アルカリ土類元素及び銅元素である請求項1記載の製
造方法。
2. 2. The manufacturing method according to claim 1, wherein the elements constituting the oxide superconductor are rare earth elements, alkaline earth elements, and copper elements.
3.上記希土類元素がイットリウムである請求項2記載
の製造方法。
3. 3. The manufacturing method according to claim 2, wherein the rare earth element is yttrium.
JP33076989A 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film Expired - Lifetime JP2791407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33076989A JP2791407B2 (en) 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33076989A JP2791407B2 (en) 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH03193605A true JPH03193605A (en) 1991-08-23
JP2791407B2 JP2791407B2 (en) 1998-08-27

Family

ID=18236336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33076989A Expired - Lifetime JP2791407B2 (en) 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2791407B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747425A (en) * 1993-08-03 1998-05-05 Midwest Superconductivity Inc. High Tc superconductor magnetic shields and method of making same
JP2013133267A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Manufacturing method for target, target, and manufacturing method for oxide superconductor
JP2013136816A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Method for producing target for superconductive film formation, target for superconductive film formation, and method for producing oxide superconductive conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747425A (en) * 1993-08-03 1998-05-05 Midwest Superconductivity Inc. High Tc superconductor magnetic shields and method of making same
JP2013133267A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Manufacturing method for target, target, and manufacturing method for oxide superconductor
JP2013136816A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Method for producing target for superconductive film formation, target for superconductive film formation, and method for producing oxide superconductive conductor

Also Published As

Publication number Publication date
JP2791407B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
KR19980041994A (en) Sputtering Target for Welding of Ferroelectric Films
JPH03193605A (en) Production of target material for forming oxide superconducting thin film
JP3420377B2 (en) Method for producing yttrium-aluminum-garnet sintered body
JP3214927B2 (en) Translucent yttrium-aluminum-garnet sintered body, method for producing the same, and window material for watch
CN111943674B (en) Large-diameter rare earth barium copper oxide superconducting target and preparation method thereof
JP4017220B2 (en) BaxSr1-xTiO3-y target material for sputtering
JP3127820B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JP3127824B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JP3127831B2 (en) Sputtering target for high dielectric film formation
JP2791409B2 (en) Method for producing target material for forming oxide superconducting thin film
JP2595584B2 (en) Manufacturing method of target material for forming superconducting film without residual strain
JPH10310471A (en) Sputtering target for forming high dielectric film
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JP2794679B2 (en) Method for producing high-density ITO sintered body
JP2948943B2 (en) Mold for oxide superconductor target
JPS59156961A (en) Manufacture of alumina sintered substrate
JPH0940460A (en) Production of titanic acid based sintered body
JP2001003164A (en) Sputtering target for forming high dielectric film free from generation of cracking even in the case of high speed film formation
JP3232134B2 (en) Lithium zirconate sintered body and method for producing the same
JPH09165676A (en) Production of sputtering sintered target material for forming (a, b)o3 type oxide dielectric thin film low in content of residual carbon
JPS62105955A (en) Manufacture of transparent high density ceramic
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPS63100061A (en) Manufacture of light permeable ceramics