JP2948943B2 - Mold for oxide superconductor target - Google Patents

Mold for oxide superconductor target

Info

Publication number
JP2948943B2
JP2948943B2 JP3127743A JP12774391A JP2948943B2 JP 2948943 B2 JP2948943 B2 JP 2948943B2 JP 3127743 A JP3127743 A JP 3127743A JP 12774391 A JP12774391 A JP 12774391A JP 2948943 B2 JP2948943 B2 JP 2948943B2
Authority
JP
Japan
Prior art keywords
mold
sintered body
powder
oxide
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3127743A
Other languages
Japanese (ja)
Other versions
JPH04357160A (en
Inventor
聡香 谷本
佳典 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3127743A priority Critical patent/JP2948943B2/en
Publication of JPH04357160A publication Critical patent/JPH04357160A/en
Application granted granted Critical
Publication of JP2948943B2 publication Critical patent/JP2948943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Y−Ba−Cu−O系
等の銅を含有する酸化物超電薄膜をスパッタリング法に
より形成する場合に用いられるターゲットをホットプレ
ス焼成によって形成する場合に用いる型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a case where a target used for forming an oxide superconducting thin film containing copper such as Y--Ba--Cu--O by sputtering is formed by hot press firing. Regarding the type used.

【0002】[0002]

【従来技術】酸化物超電導薄膜の形成には、CVD法,
レーザービーム蒸着法,反応性蒸着法,スパッタリング
法等が採用されている。これらのうちスパッタリング法
は大面積化等が可能であることからその形成方法の確立
が進められている。このスパッタリング法は、ターゲッ
ト材に対してイオン等を照射し、ターゲット材を構成す
る原子又は分子をたたき出し所定の基板上に薄膜を形成
させんとするものである。
2. Description of the Related Art An oxide superconducting thin film is formed by a CVD method,
Laser beam evaporation, reactive evaporation, sputtering and the like are employed. Among them, the sputtering method is capable of increasing the area and the like, so that a method for forming the sputtering method is being established. In this sputtering method, ions or the like are irradiated to a target material to strike out atoms or molecules constituting the target material to form a thin film on a predetermined substrate.

【0003】一方、酸化物超電導材料としては、Y−B
a−Cu−O,Bi−Sr−Ca−Cu−O,Tl−C
a−Ba−Cu−O等の複合酸化物が知られているが、
このような酸化物超電導体のように複数の酸化物から構
成される薄膜を得る場合、例えば得ようとする薄膜組成
と同一組成からなる焼結体をターゲット材として用いる
か、或いは上記ターゲットの他に補正用ターゲットを設
置したり、さらには複数のターゲットを用いて、これら
のターゲットから発生する原子または分子の量を調整し
ながら形成させる方法が一般に用いられている。
On the other hand, as an oxide superconducting material, YB
a-Cu-O, Bi-Sr-Ca-Cu-O, Tl-C
Composite oxides such as a-Ba-Cu-O are known,
When obtaining a thin film composed of a plurality of oxides such as such an oxide superconductor, for example, a sintered body having the same composition as the thin film to be obtained is used as a target material, In general, a method is used in which a correction target is provided, or a plurality of targets are used to form while adjusting the amount of atoms or molecules generated from these targets.

【0004】従来、この種のターゲット材の製造方法と
しては、酸化物超電導体構成元素の酸化物或いは炭酸塩
や硝酸塩等の酸化物形成化合物の粉末を所望により仮焼
粉砕した後にホットプレス焼成や普通焼成する方法が採
用されている。
Conventionally, this type of target material is manufactured by calcining and pulverizing a powder of an oxide-forming compound such as an oxide of a constituent element of an oxide superconductor or an oxide such as a carbonate or a nitrate, followed by hot press firing or the like. Usually, a method of firing is adopted.

【0005】[0005]

【発明が解決しようとする問題点】このようなターゲッ
トに要求される特性としては、成膜速度を高めるために
それ自体の密度が高いこと(理論密度に対する相対密度
が約60%以上)、寸法的に同一形状のものが生産でき
ることが要求されることから、特にホットプレス焼成が
採用されている。
The characteristics required of such a target include a high density itself (relative density of about 60% or more with respect to the theoretical density) in order to increase the film formation rate, and a size. Since it is required that the same shape can be produced, hot press sintering is particularly adopted.

【0006】しかしながら、一般的なカーボン型を用い
たホットプレスで高温焼成する場合、試料中に銅あるい
は銅の酸化物が存在するとカ−ボンの存在により還元さ
れた試料中にクラックが生じたり、試料とカーボン型と
の固着を引き起こしたりする。また、このとき生成した
二酸化炭素との反応により、試料中のバリウムが炭酸バ
リウムに変化するという致命的問題があり、この結果、
高温焼成が不可能となり、高密度のターゲット材を得る
ことができないという問題があった。
However, when baking at a high temperature in a hot press using a general carbon mold, if copper or a copper oxide is present in the sample, cracks are generated in the sample reduced by the presence of carbon, It may cause the sample to stick to the carbon mold. In addition, there is a fatal problem that barium in the sample changes to barium carbonate due to the reaction with the carbon dioxide generated at this time.
There was a problem that high-temperature sintering became impossible, and a high-density target material could not be obtained.

【0007】[0007]

【問題点を解決するための手段】本発明者等は、上記の
現象に対してホットプレス型との固着を防止することの
できる方法について検討を加えた結果、カーボン型の代
わりに窒化珪素あるいは炭化珪素を主成分とする焼結体
からなる型を用いることにより、大気中焼成が可能であ
り、固着が有効に防止され、また試料中にバリウムが含
まれる場合においても、二酸化炭素による炭酸バリウム
の発生を抑制し、高温焼成が可能となることにより高密
度のターゲット材が得られることを知見した。
Means for Solving the Problems The present inventors have studied methods for preventing the above-mentioned phenomenon from sticking to a hot press mold, and as a result, have found that silicon nitride or silicon nitride can be used instead of the carbon mold. By using a mold composed of a sintered body containing silicon carbide as a main component, it is possible to sinter in the air, effectively prevent sticking, and even when barium is contained in the sample, barium carbonate by carbon dioxide is used. It has been found that a high-density target material can be obtained by suppressing the occurrence of sintering and enabling high-temperature sintering.

【0008】本発明により作成する酸化物超電導薄膜形
成用ターゲットは、具体的には、REBax CuY z
(2≦x≦4、3≦y≦10)やBaCuO2 仮焼粉等
からなり、主としてRE−Ba−Cu−O系(RE:希
土類元素)酸化物超電導薄膜の形成に有用である。その
場合、本発明における酸化物超電導体形成元素とは、希
土類元素、アルカリ土類元素および銅元素を指称する。
The target for forming an oxide superconducting thin film formed according to the present invention is, specifically, REBa x Cu Y O z
It consists (2 ≦ x ≦ 4,3 ≦ y ≦ 10) and BaCuO 2 calcinated etc., mainly RE-Ba-Cu-O system (RE: rare earth element) is useful in the formation of the oxide superconducting thin film. In that case, the oxide superconductor forming element in the present invention refers to a rare earth element, an alkaline earth element, and a copper element.

【0009】本発明の製造方法を詳述すると、まずター
ゲット形成用の混合粉末として前記酸化物超電導薄膜形
成元素の酸化物粉末あるいは焼成により酸化物を形成す
る炭酸塩や硝酸塩等の粉末を、得ようとする薄膜と同一
の組成からなるように混合するか、または、薄膜形成時
の補助的ターゲット材として銅酸化物、あるいは銅と他
の薄膜構成元素の1種またはそれ以上の酸化物を組合せ
て所定の割合で適宜混合する。
The production method of the present invention will be described in detail. First, as a mixed powder for forming a target, an oxide powder of the element for forming an oxide superconducting thin film or a powder of a carbonate or a nitrate which forms an oxide by firing is obtained. It is mixed so as to have the same composition as the thin film to be formed, or copper oxide or a combination of copper and one or more oxides of other thin film constituent elements as an auxiliary target material when forming the thin film. And mix appropriately at a predetermined ratio.

【0010】次に、この混合粉末を直接ホットプレスす
るか、または一旦プレス成形等の公知の方法で成形後に
ホットプレスする。また、混合粉末は焼成に付される前
あるいは成形する前に仮焼、粉砕し、得ようとする複合
酸化物焼結体と同一組成の粉末を作成することが望まし
い。
Next, the mixed powder is directly hot-pressed, or hot-pressed once after molding by a known method such as press molding. Further, it is desirable that the mixed powder is calcined and pulverized before being subjected to sintering or before forming to produce a powder having the same composition as the composite oxide sintered body to be obtained.

【0011】次に、本発明におけるホットプレス焼成に
ついて図1を参照して説明する。図中、1はダイ、2は
プレスパンチ、3は試料であり、ダイ1およびプレスパ
ンチ2がいわゆる型となる。本発明によれば、ダイ1お
よびプレスパンチ2を炭化珪素あるいは窒化珪素を主成
分とする周知の焼結体より構成することが重要である。
Next, the hot press firing in the present invention will be described with reference to FIG. In the figure, 1 is a die, 2 is a press punch, 3 is a sample, and the die 1 and the press punch 2 are so-called molds. According to the present invention, it is important that the die 1 and the press punch 2 are made of a known sintered body containing silicon carbide or silicon nitride as a main component.

【0012】例えば、炭化珪素に対して木節粘土等を3
〜8重量%の割合で添加し、成形したものを1300〜
1500℃の非酸化性雰囲気中で焼成した炭化珪素質焼
結体や、炭化珪素にC,B,Al2 3 等を添加して成
形したものを1300〜1500℃の不活性雰囲気中で
焼成した炭化珪素質焼結体や、炭化珪素に対して窒化珪
素を22〜25重量%の割合で添加して成形したものを
1900〜2100℃の窒素雰囲気中で焼成した窒化珪
素−炭化珪素質複合焼結体が使用される。
[0012] For example, Kibushi clay or the like
~ 8% by weight and molded to 1300-
A silicon carbide sintered body fired in a non-oxidizing atmosphere at 1500 ° C., or a product obtained by adding C, B, Al 2 O 3, etc. to silicon carbide, is fired in an inert atmosphere at 1300 to 1500 ° C. Silicon carbide-based sintered body or a silicon nitride-silicon carbide-based composite obtained by adding silicon nitride to silicon carbide at a ratio of 22 to 25% by weight and firing in a nitrogen atmosphere at 1900 to 2100 ° C A sintered body is used.

【0013】また、窒化珪素に対してY2 3 等の周期
律表第3a族酸化物等を1〜10重量%の割合で添加
し、成形したものを1600〜2000℃の窒素雰囲気
中で焼成した窒化珪素質焼結体が使用される。
An oxide of Group 3a of the periodic table, such as Y 2 O 3 , is added to silicon nitride at a ratio of 1 to 10% by weight, and the molded product is placed in a nitrogen atmosphere at 1600 to 2000 ° C. A fired silicon nitride sintered body is used.

【0014】[0014]

【0015】また、本発明においては、焼成に際しダイ
1と試料3間ならびにパンチ2と試料3との間に、窒化
ボロン等の公知の粉末からなる離型材4を介在させて焼
成することが望ましい。具体的には、焼成に先立ち各型
の表面に、上記の粉末をスラリー状にしてハケやローラ
ー等で0.1〜1mm程度塗布すればよい。
Further, in the present invention, it is preferable to perform firing by interposing a release material 4 made of a known powder such as boron nitride between the die 1 and the sample 3 and between the punch 2 and the sample 3 during firing. . Specifically, prior to firing, the above powder may be formed into a slurry and applied to the surface of each mold with a brush, a roller, or the like to a thickness of about 0.1 to 1 mm.

【0016】ターゲットとして例えばY−Ba−Cu−
O組成や、Ba−Cu−O組成からなるものを作成する
場合は、前記離型材粉末を使用し、300〜1000℃
の温度で空気中でホットプレス焼成すればよい。
As a target, for example, Y-Ba-Cu-
When preparing an O composition or a Ba-Cu-O composition, the mold release material powder is used at 300 to 1000 ° C.
Hot press firing in the air at the temperature described above.

【0017】[0017]

【作用】上記の方法によれば、カーボンの存在による酸
化銅の還元が生じることがなく試料と型材との反応がほ
とんどなく、しかも大気中で焼成することができるため
に、二酸化炭素の作用による炭酸バリウムの生成が殆ど
見られず、密度の高いタ−ゲットを作製することができ
る。また一部焼結体の表面に離型材が付着する場合であ
っても軽く研磨することにより簡単に除去することが可
能である。
According to the above method, the reduction of copper oxide due to the presence of carbon does not occur, there is almost no reaction between the sample and the mold material, and it can be fired in the air. Almost no production of barium carbonate is observed, and a high-density target can be produced. Even when the release material adheres to the surface of a part of the sintered body, it can be easily removed by light polishing.

【0018】[0018]

【実施例】【Example】

実施例1 CuO粉末とBaCO3 粉末をモル比で1:1になるよ
うに秤量混合した後、大気中、900℃で5時間仮焼し
粉砕した後、再度同条件で仮焼し、BaCuO2 粉末を
得た。
Example 1 A CuO powder and a BaCO 3 powder were weighed and mixed at a molar ratio of 1: 1 and then calcined in the air at 900 ° C. for 5 hours, pulverized, calcined again under the same conditions, and then BaCuO 2. A powder was obtained.

【0019】一方、BNのスラリーを直径105mmの
SiC型の試料接触面に厚み0.2mmでうすく塗布し
乾燥させた。なお、SiC型材は、SiCを78重量
%、Si3 4 を22重量%の割合で原料配合し、19
00℃で窒素雰囲気中焼成することにより得られた焼結
体からなるものである。
On the other hand, a BN slurry was slightly applied to a sample contact surface of a SiC type sample having a diameter of 105 mm with a thickness of 0.2 mm and dried. The SiC type material was prepared by mixing raw materials of 78% by weight of SiC and 22% by weight of Si 3 N 4 ,
It consists of a sintered body obtained by firing at 00 ° C. in a nitrogen atmosphere.

【0020】次に前記の方法により作成したBaCuO
2 の仮焼粉末を前述のSiC型に充填し、圧力110k
g/cm2 をかけ、昇温速度5℃/minで昇温し、6
50℃で20分間空気中でホットプレス焼成した後、室
温まで冷却しSiC型より焼結体を取り出した。その結
果、SiC型と焼結体の固着や焼結体のクラックはな
く、対理論密度比67%のBaCuO2焼結体が得られ
た。また、焼結体の表面には離型材のBNが付着してい
たが、表面を軽く研磨することにより簡単に除去でき
た。作製した焼結体の結晶構造を調べるために研磨粉の
X線回折を行ったところ他の物質のピ−クは見られなか
った。
Next, the BaCuO prepared by the above method is used.
2 of the calcined powder was filled in a SiC type described above, the pressure 110k
g / cm 2 and the temperature was increased at a rate of 5 ° C./min.
After hot press calcination in air at 50 ° C. for 20 minutes, it was cooled to room temperature and a sintered body was taken out from the SiC mold. As a result, there was no adhesion between the SiC type and the sintered body and no cracks in the sintered body, and a BaCuO 2 sintered body having a theoretical density ratio of 67% was obtained. In addition, BN as a release material adhered to the surface of the sintered body, but could be easily removed by lightly polishing the surface. When X-ray diffraction of the polishing powder was performed to examine the crystal structure of the produced sintered body, no peaks of other substances were observed.

【0021】比較例1 実施例1において、SiC型の代わりにカ−ボン型を用
い、圧力50kg/cm2 をかけて加圧昇温し、二酸化
炭素の雰囲気中で同様の条件で焼成を行った。
Comparative Example 1 In Example 1, a carbon mold was used in place of the SiC mold, the pressure was raised while applying a pressure of 50 kg / cm 2 , and firing was performed under the same conditions in an atmosphere of carbon dioxide. Was.

【0022】その結果、対理論密度比50%と密度の低
いBaCuO2 焼結体しか得られず、試料と型の固着が
認められた。この焼結体のX線回折を行ったところ、分
解生成物の炭酸バリウムのピ−クが見られた。
As a result, only a BaCuO 2 sintered body having a density as low as 50% of the theoretical density was obtained, and sticking between the sample and the mold was recognized. X-ray diffraction of this sintered body showed peaks of barium carbonate as a decomposition product.

【0023】実施例2 Y2 3 粉末、BaCO3 粉末、CuO粉末が0.5:
2:3のモル比になるように秤量混合し大気中900℃
で10時間仮焼後粉砕し、これを3回繰り返しYBa2
Cu3 7-δ粉末を得た。
Example 2 Y 2 O 3 powder, BaCO 3 powder and CuO powder were 0.5:
Weigh and mix so as to have a molar ratio of 2: 3.
In crushed after 10 hours calcined, repeated three times this YBa 2
A Cu 3 O 7- δ powder was obtained.

【0024】一方、実施例1と同様にして作成された直
径105mmのSiC型を準備し、BNのスラリーをそ
の試料接触面に厚み0.2mmでうすく塗布し乾燥し
た。先に作成したYBa2 Cu3 7-δ粉末を前記のS
iC型に充填し、昇温速度5℃/minで昇温した後圧
力110kg/cm2 をかけ、900℃で1時間空気中
でホットプレス焼成し、この後室温まで冷却しSiC型
より焼結体を取り出した。その結果、SiC型と焼結体
の固着や焼結体のクラックはなく、対理論密度比80%
のYBa2 Cu3 7-δ焼結体が得られた。
On the other hand, a SiC mold having a diameter of 105 mm prepared in the same manner as in Example 1 was prepared, and a BN slurry was slightly applied to the sample contact surface with a thickness of 0.2 mm and dried. The YBa 2 Cu 3 O 7- δ powder prepared above was mixed with the above S
After filling into an iC mold, the temperature was raised at a rate of 5 ° C./min, a pressure of 110 kg / cm 2 was applied, and hot press firing was performed at 900 ° C. for 1 hour in air, then cooled to room temperature and sintered from a SiC mold. I took my body out. As a result, there was no adhesion between the SiC type and the sintered body and no cracks in the sintered body, and the theoretical density ratio was 80%.
YBa 2 Cu 3 O 7- δ sintered body was obtained.

【0025】焼結体表面には離型材のBN粉末が付着し
ていたが、表面を軽く研磨することにより簡単に除去で
きた。
Although BN powder as a release material adhered to the surface of the sintered body, it could be easily removed by lightly polishing the surface.

【0026】比較例2 実施例2において、カ−ボン型を用い、圧力50kg/
cm2 をかけて昇温加圧し、後は全く同様にして焼成を
行った。その結果、対理論密度70%の焼結体が得られ
た。しかし、空気中に放置するとクラックが発生した。
Comparative Example 2 In Example 2, a carbon mold was used and the pressure was 50 kg /
The temperature was raised and pressurized over cm 2 , and the firing was performed in exactly the same manner thereafter. As a result, a sintered body having a theoretical density of 70% was obtained. However, when left in the air, cracks occurred.

【0027】実施例3 Y2 3 粉末、BaCO3 粉末、CuO粉末が0.5:
2.5:6のモル比になるように秤量混合し大気中で9
00℃で10時間仮焼後粉砕し、これを3回繰り返しY
Ba2 Cu3 7-δ1mol+BaCuO2 0.5mo
l+CuO2.5molの仮焼粉末を得た。
Example 3 Y 2 O 3 powder, BaCO 3 powder and CuO powder were 0.5:
Weigh and mix so as to have a molar ratio of 2.5: 6.
After calcination at 00 ° C. for 10 hours, pulverization is performed, and this is repeated three times.
Ba 2 Cu 3 O 7- δ1mol + BaCuO 2 0.5mo
A calcined powder of l + CuO 2.5 mol was obtained.

【0028】一方、BNのスラリーを実施例1と同様な
方法により作成した直径105mmのSiC型の試料接
触面に厚み0.2mmでうすく塗布し乾燥した。先に作
成したY:Ba:Cu=1:2.5:6の仮焼粉末を前
記のSiC型に充填し、昇温速度5℃/minで昇温し
た後圧力40kg/cm2 をかけ、900℃で10時間
ホットプレス焼成し、この後室温まで冷却しSiC型よ
り焼結体を取り出した。その結果、SiC型と焼結体の
固着や焼結体のクラックはなく、対理論密度比83%の
焼結体が得られた。焼結体表面には離型材のBN粉末が
付着していたが、表面を軽く研磨することにより簡単に
除去できた。
On the other hand, a BN slurry was slightly applied to a sample contact surface of a SiC type sample having a diameter of 105 mm and having a thickness of 0.2 mm and dried by a method similar to that of Example 1 and dried. The calcined powder of Y: Ba: Cu = 1: 2.5: 6 prepared above was filled in the SiC mold, heated at a rate of 5 ° C./min, and then subjected to a pressure of 40 kg / cm 2 . It was baked by hot press at 900 ° C. for 10 hours, then cooled to room temperature, and a sintered body was taken out from the SiC mold. As a result, there was no adhesion between the SiC type and the sintered body and no cracks in the sintered body, and a sintered body having a theoretical density ratio of 83% was obtained. The BN powder of the release material adhered to the surface of the sintered body, but could be easily removed by lightly polishing the surface.

【0029】比較例3 実施例3において、カーボン型を用い、圧力50kg/
cm2 をかけて昇温加圧し、後は全くの同様にして焼成
を行った。その結果、焼結体はカーボン型と固着した。
Comparative Example 3 In Example 3, a carbon mold was used and the pressure was 50 kg /
cm 2 , and the temperature was increased and the pressure was increased. As a result, the sintered body was fixed to the carbon mold.

【0030】[0030]

【0031】[0031]

【0032】[0032]

【0033】実施例4 CuO粉末とBaCO3 粉末をモル比で1:1になるよ
うに秤量混合した後、大気中、900℃で5時間仮焼し
粉砕し、この後、再度同条件で仮焼し、BaCuO2
末を得た。
Example 4 CuO powder and BaCO 3 powder were weighed and mixed at a molar ratio of 1: 1 and then calcined at 900 ° C. for 5 hours in the air and pulverized. It was baked to obtain BaCuO 2 powder.

【0034】一方、BNのスラリーを直径105mmの
Si3 4 型の試料接触面に厚み0.2mmでうすく塗
布し乾燥した。なお、Si3 4 型材は、窒化珪素に対
してY2 3 粉末を5重量%添加して成形し、窒素雰囲
気中1700℃で焼成することにより得られたものであ
る。
On the other hand, a BN slurry was lightly applied to a sample contact surface of a Si 3 N 4 type having a diameter of 105 mm with a thickness of 0.2 mm and dried. The Si 3 N 4 type material was obtained by adding 5% by weight of Y 2 O 3 powder to silicon nitride, molding and firing at 1700 ° C. in a nitrogen atmosphere.

【0035】次に前記の方法により作成したBaCuO
2 の仮焼粉末を前述のSi3 4 型に充填し、圧力11
0kg/cm2 をかけ、昇温速度5℃/minで昇温
し、650℃で20分間空気中でホットプレス焼成した
後、室温まで冷却しSi3 4 型より焼結体を取り出し
た。その結果、Si3 4 型と焼結体の固着や焼結体の
クラックはなく、対理論密度比65%のBaCuO2
結体が得られた。また、焼結体の表面には離型材のBN
が付着していたが、表面を軽く研磨することにより簡単
に除去できた。作製した焼結体の結晶構造を調べるため
に研磨粉のX線回折を行ったところ他の物質のピ−クは
見られなかった。
Next, the BaCuO prepared by the above method is used.
The calcined powder of No. 2 was filled in the above-mentioned Si 3 N 4 type, and a pressure of 11
After applying 0 kg / cm 2 , the temperature was raised at a rate of 5 ° C./min, baked in air at 650 ° C. for 20 minutes, cooled to room temperature, and a sintered body was taken out from the Si 3 N 4 type. As a result, there was no adhesion between the Si 3 N 4 type and the sintered body and no cracks in the sintered body, and a BaCuO 2 sintered body having a theoretical density ratio of 65% was obtained. The surface of the sintered body has a release material BN
Was adhered, but could be easily removed by slightly polishing the surface. When X-ray diffraction of the polishing powder was performed to examine the crystal structure of the produced sintered body, no peaks of other substances were observed.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明によれば、酸
化物超電導の薄膜形成用に用いられるターゲットとし
て、特に銅を含有するターゲットをホットプレス法によ
って作製するに際して、ホットプレスの型を炭化珪素質
焼結体または窒化珪素質焼結体により構成することによ
り、試料中にクラックが生じたり、試料と型との反応が
防止され、試料と型とが固着することがない。また、試
料中にバリウムが含まれる場合において、炭酸バリウム
の生成も抑制され、しかも空気中での高温焼成が可能と
なることにより高密度なターゲットを作製することがで
きる。これにより、酸化物超電導薄膜をスパッタリング
法により形成する場合、成膜速度を向上するとともに高
純度な膜を形成することができる。
As described in detail above, according to the present invention, when a target containing copper is produced by a hot press method as a target used for forming an oxide superconducting thin film, a hot press mold is used. By using a silicon carbide-based sintered body or a silicon nitride-based sintered body, cracks are not generated in the sample, the reaction between the sample and the mold is prevented, and the sample and the mold are not fixed. Further, when barium is contained in the sample, the production of barium carbonate is suppressed, and high-temperature sintering in air is possible, so that a high-density target can be manufactured. Accordingly, when the oxide superconducting thin film is formed by a sputtering method, a high-purity film can be formed while improving the film formation rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法におけるホットプレス焼成を
説明するための概略配置図である。
FIG. 1 is a schematic layout diagram for explaining hot press firing in a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 ダイ 2 プレスパンチ 3 試料 4 離型材 DESCRIPTION OF SYMBOLS 1 Die 2 Press punch 3 Sample 4 Release material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58 C01G 1/00 C01G 3/00 ZAA ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C23C 14/00-14/58 C01G 1/00 C01G 3/00 ZAA

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体を構成する金属元素のうち
少なくとも銅元素を含有する酸化物粉末あるいは酸化物
形成化合物粉末からなる試料をホットプレス焼成するた
めの型において、該型が、炭化珪素あるいは窒化珪素を
主成分とする焼結体からなることを特徴とする酸化物超
電導体ターゲット用型。
1. A mold for hot-press firing a sample comprising an oxide powder or an oxide-forming compound powder containing at least a copper element among metal elements constituting an oxide superconductor, the mold comprising silicon carbide Alternatively, a mold for an oxide superconductor target, comprising a sintered body containing silicon nitride as a main component.
JP3127743A 1991-05-30 1991-05-30 Mold for oxide superconductor target Expired - Lifetime JP2948943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3127743A JP2948943B2 (en) 1991-05-30 1991-05-30 Mold for oxide superconductor target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3127743A JP2948943B2 (en) 1991-05-30 1991-05-30 Mold for oxide superconductor target

Publications (2)

Publication Number Publication Date
JPH04357160A JPH04357160A (en) 1992-12-10
JP2948943B2 true JP2948943B2 (en) 1999-09-13

Family

ID=14967591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3127743A Expired - Lifetime JP2948943B2 (en) 1991-05-30 1991-05-30 Mold for oxide superconductor target

Country Status (1)

Country Link
JP (1) JP2948943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136816A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Method for producing target for superconductive film formation, target for superconductive film formation, and method for producing oxide superconductive conductor

Also Published As

Publication number Publication date
JPH04357160A (en) 1992-12-10

Similar Documents

Publication Publication Date Title
KR100341696B1 (en) High thermal conductivity silicon nitride sintered body and method for manufacturing the same
EP0626359B1 (en) Aluminum nitride sintered body and method for manufacturing the same
JP2007063631A (en) Target for laser abrasion and manufacturing method therefor
EP0390499A2 (en) Process for producing bismuth-based superconducting material
JP2948943B2 (en) Mold for oxide superconductor target
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
EP0301802B1 (en) Sic complex sintered bodies and production thereof
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JP2791407B2 (en) Method for producing target material for forming oxide superconducting thin film
JP2791409B2 (en) Method for producing target material for forming oxide superconducting thin film
JPH09175867A (en) Aluminum nitride sintered product
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JP2595584B2 (en) Manufacturing method of target material for forming superconducting film without residual strain
JPS63277572A (en) Production of sintered aluminum nitride
JP3272791B2 (en) Manufacturing method of aluminum nitride sintered body
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP3232134B2 (en) Lithium zirconate sintered body and method for producing the same
JP2791408B2 (en) Method for manufacturing high-density and highly-oriented oxide superconductor
JP2647346B2 (en) Manufacturing method of aluminum nitride sintered body heat sink
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP3164640B2 (en) Manufacturing method of oxide superconductor
JPH07121829B2 (en) High thermal conductivity aluminum nitride sintered body
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2985350B2 (en) Method for producing lead-based composite oxide using phase transition method