JP2791407B2 - Method for producing target material for forming oxide superconducting thin film - Google Patents

Method for producing target material for forming oxide superconducting thin film

Info

Publication number
JP2791407B2
JP2791407B2 JP33076989A JP33076989A JP2791407B2 JP 2791407 B2 JP2791407 B2 JP 2791407B2 JP 33076989 A JP33076989 A JP 33076989A JP 33076989 A JP33076989 A JP 33076989A JP 2791407 B2 JP2791407 B2 JP 2791407B2
Authority
JP
Japan
Prior art keywords
thin film
oxide
target material
superconducting thin
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33076989A
Other languages
Japanese (ja)
Other versions
JPH03193605A (en
Inventor
聡香 谷本
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33076989A priority Critical patent/JP2791407B2/en
Publication of JPH03193605A publication Critical patent/JPH03193605A/en
Application granted granted Critical
Publication of JP2791407B2 publication Critical patent/JP2791407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Y−Ba−Cu−O系等の酸化物超電導薄膜を
スパッタリング法により形成する場合に用いられるター
ゲット材の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a target material used for forming a Y-Ba-Cu-O-based oxide superconducting thin film by a sputtering method.

(従来の技術) 酸化物超電導薄膜の形成には、CVD法、レーザービー
ム蒸着法、反応性蒸着法、スパッタリング法等が採用さ
れる。これらのうちスパッタリング法は、ターゲット材
に対しイオン等を照射し、ターゲットを構成する原子又
は分子をたたき出し所定の基板上に薄膜を形成させんと
するものである。上記超電導体のように複合酸化物から
成る薄膜を得る場合、例えば、得ようとする薄膜組成と
同一組成から成るバルク体(焼結体)をターゲット材と
して用いるか、或いは上記ターゲットの他に補正用ター
ゲットを設置し、これらのターゲットから発生する原子
又は分子量を調整しながら形成させる方法が一般に用い
られている。
(Prior Art) For forming an oxide superconducting thin film, a CVD method, a laser beam evaporation method, a reactive evaporation method, a sputtering method or the like is employed. Of these, the sputtering method irradiates a target material with ions or the like to strike out atoms or molecules constituting the target and form a thin film on a predetermined substrate. When obtaining a thin film made of a composite oxide like the above-mentioned superconductor, for example, a bulk body (sintered body) having the same composition as the thin film to be obtained is used as a target material, or correction is performed in addition to the above-mentioned target. In general, a method is used in which a target is provided, and the target is formed while adjusting the atomic or molecular weight generated from the target.

従来、この種のターゲット材の製造方法としては、酸
化物超電導体構成元素の酸化物若しくは酸化物形成化合
物(炭酸塩若しくは硝酸塩等)の粉末を仮焼した後、ホ
ットプレス焼成若しくは普通焼成(成形用バインダーを
添加混合して焼成)する方法が一般に採用されている。
Conventionally, this type of target material is manufactured by calcining a powder of an oxide or an oxide-forming compound (such as a carbonate or a nitrate) of an oxide superconductor constituent element, followed by hot press firing or normal firing (forming). A method of adding and mixing a binder for use and baking) is generally employed.

(発明が解決しようとする課題) ところで、上記ターゲット材に要求される特性として
は、成膜速度を高めることができるようそれ自体が高密
度(理論密度に対する相対密度が約60%以上)であるこ
とが望ましく、また寸法的にも同一形状のものが生産で
きることが要求される。然し乍ら、上記製造法は以下の
ような問題点を内包していた。即ち、ホットプレス焼成
法の場合、カーボン型を用いたホットプレスに於いて
は、緻密体を得る為に高温でホットプレスすると、試料
とカーボン型との接触面で酸化物が還元され、カーボン
型と固着することがある。この固着を避ける為に焼成温
度を下げると密度が低下し、ターゲット支持体とのボン
ディングの際の強度が不足する。また、カーボン以外の
アルミナや炭化珪素セラミックの型を用いた場合、焼結
体の中に型から異元素が拡散し、これをターゲットとし
て用いた場合、得られ薄膜に悪影響を及ぼす。
(Problems to be Solved by the Invention) By the way, as a characteristic required for the above-mentioned target material, the target material itself has a high density (a relative density with respect to a theoretical density is about 60% or more) so as to increase a film forming rate. It is desirable that the same shape can be produced in dimension. However, the above manufacturing method has the following problems. That is, in the case of the hot press firing method, in a hot press using a carbon mold, when hot pressing is performed at a high temperature to obtain a dense body, the oxide is reduced at the contact surface between the sample and the carbon mold, and the carbon mold is heated. May stick. If the firing temperature is lowered in order to avoid this sticking, the density decreases, and the strength at the time of bonding with the target support becomes insufficient. Further, when a mold of alumina or silicon carbide ceramic other than carbon is used, a foreign element diffuses from the mold into the sintered body, and when this is used as a target, the resulting thin film is adversely affected.

一方、普通焼成法の場合、成形時に添加するバインダ
ーが焼成中分解するが、その分解ガスの発生により割れ
や反り等が生じ、目的の形状を得ることが難しい。ま
た、焼成時の寸法収縮が大きく、しかも収縮度は組成及
び成形体の密度により変化する為、焼成後の形状物を機
械加工して目的寸法に調製する必要がある。この時、機
械加工によるクラック破損の問題が新たに発生する。
On the other hand, in the case of the ordinary firing method, the binder added at the time of molding is decomposed during firing, but cracks, warpage, and the like occur due to generation of the decomposition gas, and it is difficult to obtain a desired shape. In addition, since the dimensional shrinkage during firing is large and the degree of shrinkage varies depending on the composition and the density of the molded body, it is necessary to machine the shape after firing to the desired size. At this time, a problem of crack breakage due to machining is newly generated.

(発明の目的) 本発明は、上記に鑑みなされたものであり、製造時に
カーボン型により酸化物が還元されることなく、ターゲ
ット支持体とのボンディング際に割れや反りを生じるこ
とのない高密度且つ寸法安定性に優れた酸化物超電導薄
膜形成用ターゲット材の製造方法を提供せんとするもの
である。
(Objects of the Invention) The present invention has been made in view of the above, and has been described in view of the fact that an oxide is not reduced by a carbon mold at the time of production, and a high density which does not cause cracking or warpage at the time of bonding to a target support. Another object of the present invention is to provide a method for producing a target material for forming an oxide superconducting thin film having excellent dimensional stability.

(課題を解決する為の手段) 上記目的を達成する本発明は、酸化物超電導体を構成
する元素(酸素を除く)の酸化物粉末若しくは酸化物形
成化合物(炭酸塩、硝酸塩等)粉末の1種若しくは複数
種から成る混合粉末を仮焼した後、焼成温度が段階的に
高くなるよう設定されたカーボン型による数回のホット
プレス焼成を行なうことを特徴とする酸化物超電導薄膜
形成用ターゲット材の製造方法にある。
(Means for Solving the Problems) To achieve the above object, the present invention provides an oxide superconductor comprising an oxide powder or an oxide-forming compound (carbonate, nitrate, etc.) powder of an element (excluding oxygen). A target material for forming an oxide superconducting thin film, wherein after calcination of one or more kinds of mixed powders, several times of hot press sintering with a carbon mold set so that the sintering temperature is gradually increased. Manufacturing method.

本発明方法によって得たターゲット材は、主にRE−Ba
−Cu−O系(RE;Y及び希土類元素)酸化物超電導薄膜を
スパッタリング法により形成する場合に用いられるもの
を対象とし、従って、この場合は、上記酸化物超電導体
を構成する元素とは、希土類元素(イットリウムを含
む)、アルカリ土類元素(バリウム)及び銅元素を指称
する。
The target material obtained by the method of the present invention is mainly RE-Ba
—Cu—O-based (RE; Y and rare earth element) oxide superconducting thin film is intended to be used when formed by a sputtering method. Therefore, in this case, the elements constituting the oxide superconductor are: Rare earth elements (including yttrium), alkaline earth elements (barium) and copper elements are referred to.

ホットプレスによる焼成は、上記の如く数段階に分け
実施されるが、その焼成温度は低温度から出発し、段階
を経る毎に高く設定され、最終段階では目的焼結体の正
規の焼成温度とされる。ここでの正規の焼成温度は作成
するターゲット組成により変るが、例えばYBa2Cu3O7- δ
ターゲットを作成する場合は750〜850℃が望ましく、ま
た初期段階の温度は450℃以下が望ましい。また、各焼
成段階の終了後は一旦室温まで冷却して大気中で保持
し、その後次の焼成段階に移行する。
The sintering by hot pressing is performed in several stages as described above, and the sintering temperature starts from a low temperature, and is set to a high value after each stage. Is done. The normal firing temperature here varies depending on the target composition to be prepared. For example, YBa 2 Cu 3 O 7- δ
When forming a target, the temperature is preferably 750 to 850 ° C., and the temperature in the initial stage is preferably 450 ° C. or less. After completion of each firing step, the temperature is once cooled to room temperature and kept in the atmosphere, and then the process proceeds to the next firing step.

(作用) 上記製造方法に於いて、焼成の初期の段階では温度が
低い為に、還元雰囲気下にあっても原料酸化物がカーボ
ン型の炭素により還元されることがない。また、この段
階である程度緻密化されるから、その後の焼成段階で温
度を段階的に高くしても高温での保持時間を短縮できる
ことから上記炭素による還元作用を受けにくく、最終焼
成段階を経た後はカーボン型との固着もなく極めて緻密
な焼結体が得られる。しかも、型内で焼成されるから、
型の寸法を所定のターゲット寸法に合致させておけば、
焼結後の機械加工が不要であり、またバインダーを使用
しないから割れや反り等が発生することもない。更に、
カーボン型を使用しているから、焼結体中への異元素の
拡散も生じない。
(Operation) In the above-mentioned production method, the raw material oxide is not reduced by carbon-type carbon even in a reducing atmosphere because the temperature is low in the initial stage of firing. In addition, since it is densified to some extent at this stage, even if the temperature is increased stepwise in the subsequent sintering step, the holding time at a high temperature can be shortened, so that it is less susceptible to the reducing action by the carbon, and after the final sintering step Can obtain a very dense sintered body without sticking to the carbon mold. Moreover, since it is fired in the mold,
If the dimensions of the mold match the specified target dimensions,
There is no need for machining after sintering, and since no binder is used, there is no occurrence of cracks or warpage. Furthermore,
Since the carbon mold is used, diffusion of foreign elements into the sintered body does not occur.

(実施例) 次に実施例により本発明を更に詳述する。(Examples) Next, the present invention will be described in more detail with reference to Examples.

(実施例−1) (i)Y2O3:BaCO3:CuO=0.5:2:3(モル比)の混合粉末
を大気中900℃で5時間仮焼し粉砕した後、再度同条件
で仮焼し、ジェトミル粉砕して平均粒径3μmの仮焼粉
末を得た。
Example 1 (i) A mixed powder of Y 2 O 3 : BaCO 3 : CuO = 0.5: 2: 3 (molar ratio) was calcined in the air at 900 ° C. for 5 hours and pulverized, and then again under the same conditions. It was calcined and jet milled to obtain a calcined powder having an average particle size of 3 μm.

(ii)上記仮焼粉末約240gをカーボン型(直径101mm)
に充填し、圧力50kg/cm2をかけ、誘導加熱により昇温速
度20℃/minで昇温し、400℃で15分間保持した。その後
室温にまで冷却した。上記と同圧力及び同昇温速度で再
度ホットプレスし600℃に15分間保持した。これを室温
にまで冷却し、更に同圧力及び同昇温速度でホットプレ
スし800℃で15分間保持した。斯かる3段階のホットプ
レス焼成の後室温にまで冷却し、焼結体を取り出した。
(Ii) About 240 g of the above calcined powder is carbon type (101 mm in diameter)
, A pressure of 50 kg / cm 2 was applied, the temperature was increased at a rate of 20 ° C./min by induction heating, and the temperature was maintained at 400 ° C. for 15 minutes. Then, it cooled to room temperature. It was hot-pressed again at the same pressure and at the same heating rate as above, and kept at 600 ° C. for 15 minutes. This was cooled to room temperature, and further hot-pressed at the same pressure and at the same temperature raising rate, and kept at 800 ° C. for 15 minutes. After the three-stage hot press firing, the temperature was cooled to room temperature, and the sintered body was taken out.

(iii)得られた焼結体の直径は101mm、厚さ6.5mmであ
り、理論密度に対する相対密度は73%であった。また、
カーボン型との固着やクラックは見られなかった。X線
回折によれば、表面に若干のBaCO3の生成を示すピーク
が観測されたが、焼結体試料の表面を0.2mm削った内部
層では、YBa2Cu3Oyの明確なピークのみが観測された。
(Iii) The diameter of the obtained sintered body was 101 mm, the thickness was 6.5 mm, and the relative density to the theoretical density was 73%. Also,
No sticking or cracking with the carbon mold was observed. According to the X-ray diffraction, a peak indicating slight generation of BaCO 3 was observed on the surface, but in the inner layer obtained by cutting the surface of the sintered body sample by 0.2 mm, only a clear peak of YBa 2 Cu 3 Oy was observed. Observed.

〈比較例1−1〉 (i)実施例−1(i)の仮焼粉末を上記と同じカーボ
ン型に充填し、実施例1と同圧力及び同昇温速度でホッ
トプレスし、800℃で15分間保持した。
<Comparative Example 1-1> (i) The calcined powder of Example-1 (i) was filled in the same carbon mold as described above, and hot-pressed at the same pressure and at the same temperature raising rate as in Example 1; Hold for 15 minutes.

(ii)得られた焼結体には、カーボン型との部分的な固
着があり、理論密度に対する相対密度は52%であった。
(Ii) The obtained sintered body had a partial fixation to the carbon mold, and the relative density to the theoretical density was 52%.

〈比較例1−2〉 (i)比較例1−1に於けるホットプレス条件を900℃
で15分間保持に変えてホップレス焼成した。
<Comparative Example 1-2> (i) The hot pressing condition in Comparative Example 1-1 was 900 ° C.
And hopless baking for 15 minutes.

(ii)得られた焼結体は、カーボン型との固着が激し
く、その界面は赤銅色を呈していた。表面を削り内部を
X線回折により解析したところ、BaCO3、Cu2O、Y2BaCuO
5、YBa2Cu3Oy等が検出され、これにより還元分解反応が
あったことが推察された。
(Ii) The obtained sintered body was strongly adhered to the carbon mold, and the interface thereof was colored red copper. When the surface was shaved and the inside was analyzed by X-ray diffraction, BaCO 3 , Cu 2 O, Y 2 BaCuO
5 , YBa 2 Cu 3 Oy and the like were detected, which suggested that there was a reductive decomposition reaction.

〈比較例1−3〉 (i)比較例1−1に於けるホットプレス条件を800℃
で30分間保持に変えてホップレス焼成した。
<Comparative Example 1-3> (i) The hot pressing condition in Comparative Example 1-1 was 800 ° C.
And hopless baking.

(ii)得られた焼結体は、カーボン型との固着が激し
く、また内部の相対密度は65%であった。
(Ii) The obtained sintered body was strongly adhered to the carbon mold, and the internal relative density was 65%.

(実施例−2) (i)BaCO3:CuO=1:1(モル比)の混合粉末を大気中90
0℃で5時間仮焼して粉砕し、この仮焼粉砕を3回繰り
返しBaCuO2の合成粉末を得た。
(Example 2) (i) A mixed powder of BaCO 3 : CuO = 1: 1 (molar ratio) was mixed with 90
The mixture was calcined and pulverized at 0 ° C. for 5 hours, and this calcining and pulverization was repeated three times to obtain a synthetic powder of BaCuO 2 .

(ii)この合成粉末約230gを上記と同様のカーボン型に
充填し、400℃・15分間保持及び660℃・15分間保持の2
段階のホットプレス焼成を行ない、直径101mm、厚さ6.5
mmの焼結体を得た。この場合いずれも圧力50kg/cm2、昇
温速度20℃/minとした。
(Ii) Filling about 230 g of this synthetic powder into the same carbon mold as above, and holding at 400 ° C. for 15 minutes and holding at 660 ° C. for 15 minutes
Stage hot press firing, diameter 101mm, thickness 6.5
mm was obtained. In each case, the pressure was 50 kg / cm 2 , and the heating rate was 20 ° C./min.

(iii)得られた焼結体の理論密度に対する相対密度は7
0%であった。また、X線回折によれば、表面に若干のB
aCO3の生成が見られたが、内部は全てBaCuO2であった。
(Iii) The relative density of the obtained sintered body to the theoretical density is 7
It was 0%. According to X-ray diffraction, some B
Although aCO 3 was produced, the inside was all BaCuO 2 .

〈比較例2−1〉 (i)実施例2(i)の合成粉末をカーボン型に充填
し、660℃・15分間のホットプレス焼成を行なった。
<Comparative Example 2-1> (i) The synthetic powder of Example 2 (i) was filled in a carbon mold and baked at 660 ° C. for 15 minutes.

(ii)得られた焼結体の理論密度に対する相対密度は49
%であり、極めて脆く、ボンディング時に割れが発生し
た。また、X線回折によると、内部にもBaCO3が生成し
ていることが観測された。
(Ii) The relative density of the obtained sintered body to the theoretical density is 49
%, Which was extremely brittle and cracked during bonding. According to X-ray diffraction, it was observed that BaCO 3 was also generated inside.

(実施例−3) (i)実施例−2(i)における原料混合粉末を、BaCO
3:CuO=2:3(モル比)とし、実施例−2と同条件で仮焼
し、結晶相がBaCuO2とCuOとの混合相から成る合成粉末
を得た。
(Example-3) (i) The raw material mixed powder in Example-2 (i) was
3 : CuO = 2: 3 (molar ratio), and calcined under the same conditions as in Example 2 to obtain a synthetic powder having a crystal phase composed of a mixed phase of BaCuO 2 and CuO.

(ii)この合成粉末を実施例−2(ii)と同様にホット
プレス焼成して焼結体を得た。
(Ii) The synthetic powder was fired by hot pressing in the same manner as in Example-2 (ii) to obtain a sintered body.

(iii)得られた焼結体は、カーボン型との固着もな
く、理論密度に対する相対密度は75%で極めて緻密であ
った。
(Iii) The obtained sintered body did not adhere to the carbon mold and had a relative density of 75% with respect to the theoretical density, which was extremely dense.

(実施例−4) (i)実施例−2(i)における原料混合粉末を、CaCO
3:CuO=2:1(モル比)とし、実施例−2と同条件で仮焼
し、結晶相がCa2CuO3単相の仮焼粉末を得た。
(Example-4) (i) The raw material mixed powder in Example-2 (i) was
3 : CuO = 2: 1 (molar ratio), and calcined under the same conditions as in Example 2 to obtain a calcined powder having a single phase of Ca 2 CuO 3 .

(ii)この仮焼粉末を400℃、600℃及び700℃(保持時
間はいずれも15分)の3段階ホットプレス焼成して焼結
体を得た。
(Ii) The calcined powder was subjected to three-stage hot press firing at 400 ° C., 600 ° C., and 700 ° C. (the holding time was 15 minutes each) to obtain a sintered body.

(iii)得られた焼結体は、カーボン型との固着もな
く、また理論密度に対する相対密度は63%であった。
(Iii) The obtained sintered body did not adhere to the carbon mold, and had a relative density of 63% with respect to the theoretical density.

上記実施例1乃至4、比較例1−1〜3及び比較例2
−1の結果を纏めて第1表に示す。
Examples 1 to 4, Comparative Examples 1-1 to 3 and Comparative Example 2
Table 1 summarizes the results of -1.

尚、実施例−1によって得たターゲット材は、Y−Ba
−Cu−O系超電導薄膜をスパッタリング法によって作成
する場合の主たるターゲットとして用いられる。また、
実施例−2〜4によるターゲットは、例えばY−Ba−Cu
−O系ターゲット共に配置され、生成される薄膜が所定
の組成となるように制御するための補正用ターゲットと
して用いられる。
The target material obtained in Example-1 was Y-Ba
-Cu-O based superconducting thin film is used as a main target when it is formed by a sputtering method. Also,
The targets according to Examples-2 to 4 are, for example, Y-Ba-Cu
The -O-based target is arranged and used as a correction target for controlling the generated thin film to have a predetermined composition.

(発明の効果) 叙上の如く、本発明のターゲット材の製造方法に於い
ては、カーボン型によるホットプレス焼成工程が数段階
に別れ、しかも焼成温度が段階毎に高くなるよう設定さ
れているから、焼成の初期段階で被処理品がある程度緻
密化され、その後の昇温によってもカーボン型の炭素の
還元作用を受けず、カーボン型との固着のない極めて緻
密な焼結ターゲット材が得られる。しかも、型内で焼結
されるから、焼結体をそのまま所定の形状とすることが
出来、機械的な加工を不要とする。また、バインダーを
使用していないから、割れや反りなどを生じず、更にカ
ーボン型を使用しているから、焼結体中へ異元素が拡散
する懸念もない。
(Effects of the Invention) As described above, in the method for manufacturing a target material of the present invention, the hot press firing step using a carbon mold is divided into several steps, and the firing temperature is set to be higher for each step. Thus, the object to be processed is densified to some extent in the initial stage of firing, and a very dense sintered target material which is not subjected to the reducing action of the carbon of the carbon even by the subsequent temperature increase and has no sticking to the carbon is obtained. . In addition, since the sintered body is sintered in the mold, the sintered body can be formed into a predetermined shape as it is, and no mechanical processing is required. Further, since no binder is used, there is no occurrence of cracks or warpage, and since the carbon type is used, there is no concern that foreign elements diffuse into the sintered body.

このように本発明によって得たターゲット材は、酸化
物超電導薄膜をスパッタリングにより形成する場合に極
めて優れた適正を発揮するものであり、その有用価値は
頗る大である。
As described above, the target material obtained by the present invention exerts extremely excellent suitability when forming an oxide superconducting thin film by sputtering, and its useful value is extremely large.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C04B 35/00 - 35/22 C04B 35/447 - 35/457 C04B 35/622 - 35/65 C01G 1/00 - 57/00Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) C04B 35/00-35/22 C04B 35/447-35/457 C04B 35/622-35/65 C01G 1/00-57 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体を構成する元素の酸化物粉
末若しくは酸化物形成化合物粉末の1種若しくは複数種
から成る混合粉末を仮焼した後、焼成温度が段階的に高
くなるよう設定されたカーボン型による数回のホットプ
レス焼成を行なうことを特徴とする酸化物超電導薄膜形
成用ターゲット材の製造方法。
After calcination of a powder mixture of one or more oxide powders or oxide-forming compound powders of the elements constituting the oxide superconductor, the calcination temperature is set so as to increase stepwise. A method for producing a target material for forming an oxide superconducting thin film, comprising performing hot press firing several times with a carbon mold.
【請求項2】上記酸化物超電導体を構成する元素が、希
土類元素、アルカリ土類元素及び銅元素である請求項1
記載の製造方法。
2. An element constituting the oxide superconductor is a rare earth element, an alkaline earth element, and a copper element.
The manufacturing method as described.
【請求項3】上記希土類元素がイットリウムである請求
項2記載の製造方法。
3. The method according to claim 2, wherein said rare earth element is yttrium.
JP33076989A 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film Expired - Lifetime JP2791407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33076989A JP2791407B2 (en) 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33076989A JP2791407B2 (en) 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH03193605A JPH03193605A (en) 1991-08-23
JP2791407B2 true JP2791407B2 (en) 1998-08-27

Family

ID=18236336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33076989A Expired - Lifetime JP2791407B2 (en) 1989-12-19 1989-12-19 Method for producing target material for forming oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2791407B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004449A1 (en) * 1993-08-03 1995-02-09 Midwest Superconductivity, Inc. HIGH Tc SUPERCONDUCTOR MAGNETIC SHIELDS AND METHOD OF MAKING SAME
JP5743877B2 (en) * 2011-12-27 2015-07-01 株式会社フジクラ Target manufacturing method
JP2013136816A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Method for producing target for superconductive film formation, target for superconductive film formation, and method for producing oxide superconductive conductor

Also Published As

Publication number Publication date
JPH03193605A (en) 1991-08-23

Similar Documents

Publication Publication Date Title
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JP2791407B2 (en) Method for producing target material for forming oxide superconducting thin film
JP3214927B2 (en) Translucent yttrium-aluminum-garnet sintered body, method for producing the same, and window material for watch
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
JPH08268751A (en) Yttrium-aluminum-garnet calcined powder and production of yttrium-aluminum-garnet sintered compact using the same
JP4017220B2 (en) BaxSr1-xTiO3-y target material for sputtering
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JP2948943B2 (en) Mold for oxide superconductor target
JP2791409B2 (en) Method for producing target material for forming oxide superconducting thin film
JP2595584B2 (en) Manufacturing method of target material for forming superconducting film without residual strain
JP2724764B2 (en) Method for producing silicon nitride based sintered body
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JP3127820B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JPH0825799B2 (en) Method for manufacturing high thermal conductivity aluminum nitride sintered body
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPS59156961A (en) Manufacture of alumina sintered substrate
JP2001003164A (en) Sputtering target for forming high dielectric film free from generation of cracking even in the case of high speed film formation
JP2791408B2 (en) Method for manufacturing high-density and highly-oriented oxide superconductor
JP2000169245A (en) Production of oxide-based ceramic sintered compact
JP3232134B2 (en) Lithium zirconate sintered body and method for producing the same
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP3164640B2 (en) Manufacturing method of oxide superconductor
JP2866484B2 (en) Manufacturing method of oxide superconductor
JP2866503B2 (en) Manufacturing method of oxide superconducting structure