JPH07121829B2 - High thermal conductivity aluminum nitride sintered body - Google Patents

High thermal conductivity aluminum nitride sintered body

Info

Publication number
JPH07121829B2
JPH07121829B2 JP62103059A JP10305987A JPH07121829B2 JP H07121829 B2 JPH07121829 B2 JP H07121829B2 JP 62103059 A JP62103059 A JP 62103059A JP 10305987 A JP10305987 A JP 10305987A JP H07121829 B2 JPH07121829 B2 JP H07121829B2
Authority
JP
Japan
Prior art keywords
sintered body
thermal conductivity
aln
rare earth
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62103059A
Other languages
Japanese (ja)
Other versions
JPS63270361A (en
Inventor
文雄 上野
光男 加曽利
昭宏 堀口
佳子 佐藤
章彦 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62103059A priority Critical patent/JPH07121829B2/en
Priority to US07/142,818 priority patent/US4847221A/en
Priority to DE3800749A priority patent/DE3800749A1/en
Publication of JPS63270361A publication Critical patent/JPS63270361A/en
Publication of JPH07121829B2 publication Critical patent/JPH07121829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は緻密で均一な高熱伝導性窒化アルミニウム焼結
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a dense and uniform high thermal conductivity aluminum nitride sintered body.

(従来技術) 窒化アルミニウム(AlN)は高温まで強度低下が少な
く、化学的耐性にも優れているため、耐熱材料として用
いられる一方、その高温伝導性、高電気絶縁性を利用し
て半導体装置の放熱板材料、回路基板用絶縁体材料とし
ても有望視されている。こうした窒化アルミニウムは常
圧下では融点を持たず、2500℃以上の高温で分解するた
め、薄膜などの用途を除いては焼結体として用いられ
る。
(Prior Art) Aluminum nitride (AlN) is used as a heat-resistant material because it has little strength deterioration even at high temperatures and is excellent in chemical resistance. It is also promising as a heat sink material and an insulating material for circuit boards. Such aluminum nitride does not have a melting point under normal pressure and decomposes at a high temperature of 2500 ° C. or higher, so it is used as a sintered body except for applications such as thin films.

かかる窒化アルミニウム焼結体は通常、窒化アルミニウ
ム粉末を成形、焼結して得られる。超微粉(0.3μm以
下程度)のAlN粉末を用いた場合には単独でも緻密な焼
結体が得られるが、原料粉末表面の酸化層中の酸素が焼
結時にAlN格子中に固溶したり、Al−O−N化合物を生
成し、その結果添加焼結体の熱伝導率はたかだか100w/m
K程度である。また粒径0.5μm以上のAlN粉末を用いた
場合は焼結性が良好でないために、ホットプレス法によ
る以外には無添加では緻密な焼結体を得ることは困難で
ある。そこで常圧で焼結体を得ようとする場合、焼結体
の高密度化およびAlN原料粉末の不純物酸素のAlN粒内へ
の固溶を防止するために、焼結助剤として希土類酸化
物、アルカリ土類金属酸化物等を添加することが一般に
行なわれている(特開昭60−127267号、特開昭61−1007
1号、特開昭60−71575号等)。これらの焼結助剤はAlN
原料粉末の不純物酸素と反応し液相を生成し焼結体の緻
密化を達成すると共に、この不純物酸素を粒界相として
固定(酸素トラップ)し、高熱伝導度化をも達成する。
Such an aluminum nitride sintered body is usually obtained by molding and sintering aluminum nitride powder. When using ultra-fine powder (about 0.3 μm or less) of AlN powder, a dense sintered body can be obtained by itself, but the oxygen in the oxide layer on the surface of the raw material powder becomes a solid solution in the AlN lattice during sintering. , Al-O-N compound is produced, and as a result, the thermal conductivity of the added sintered body is at most 100 w / m.
It is about K. Further, when AlN powder having a particle size of 0.5 μm or more is used, the sinterability is not good, so that it is difficult to obtain a dense sintered body without addition except by the hot pressing method. Therefore, when trying to obtain a sintered body at atmospheric pressure, rare earth oxides are used as sintering aids in order to increase the density of the sintered body and prevent solid solution of impurity oxygen in the AlN raw material powder into AlN grains. It is generally practiced to add an alkaline earth metal oxide or the like (JP-A-60-127267, JP-A-61-1007).
No. 1, JP-A-60-71575, etc.). These sintering aids are AlN
It reacts with the impurity oxygen of the raw material powder to generate a liquid phase and achieves the densification of the sintered body, and at the same time, the impurity oxygen is fixed as a grain boundary phase (oxygen trap) to achieve high thermal conductivity.

このように焼結助剤を添加することにより確かに焼結体
は緻密化、高熱伝導度化するが、他方で、結果的にかな
り多量の粒界相が残存するために、焼結体が不均一な微
細構造を持ち、結果的に機械的特性の不均一、色調の不
均一等の問題が有った。また、この粒界相(主相である
AlN相に対し副相)の存在、完全にトラップしきれなか
った酸素等の存在により窒化アルミニウム焼結体のそれ
はAlNの理論熱伝導率320w/mKに対し低いものであった。
By adding the sintering aid in this way, the sintered body surely becomes densified and has high thermal conductivity, but on the other hand, as a result, a considerably large amount of grain boundary phase remains, so that the sintered body is It has a non-uniform microstructure, resulting in problems such as non-uniform mechanical properties and non-uniform color tone. Also, this grain boundary phase (which is the main phase
Due to the existence of (sub-phase to AlN phase) and oxygen that could not be completely trapped, that of the aluminum nitride sintered body was lower than the theoretical thermal conductivity of AlN of 320 w / mK.

そのため、緻密かつ均一な高熱伝導性窒化アルミニウム
焼結体を得ることを目的として種々の試みがなされてい
るが、未だ十分満足すべきものは得られていない。
Therefore, various attempts have been made for the purpose of obtaining a dense and uniform high-thermal-conductivity aluminum nitride sintered body, but none of them has been sufficiently satisfied.

(発明が解決しようとする問題点) 現在半導体搭載用の回路基板、放熱基板等ではより高い
熱伝導率を有する材料が望まれている。しかしながな酸
素その他の不純物特に、助剤添加の結果として粒界に生
成する粒界相の存在により焼結体の不均一で、また得ら
れた窒化アルミニウム焼結体の高熱伝導度化には限界が
あった。
(Problems to be Solved by the Invention) At present, there is a demand for a material having a higher thermal conductivity for a circuit board for mounting a semiconductor, a heat dissipation board and the like. However, oxygen and other impurities, especially non-uniformity of the sintered body due to the existence of the grain boundary phase formed at the grain boundary as a result of the addition of the auxiliary agent, and the high thermal conductivity of the obtained aluminum nitride sintered body There was a limit.

本発明は、以上の点を考慮してなされたもので、熱伝導
性に優れた窒化アルミニウム焼結体を提供することを目
的とする。
The present invention has been made in consideration of the above points, and an object thereof is to provide an aluminum nitride sintered body having excellent thermal conductivity.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段及び作用) 本発明者等は上記目的を達成すべく窒化アルミニウム粉
末に添加する焼結助剤や焼結条件、焼結体組成、焼結体
微細構造等と熱伝導率の関係について実験・検討を進め
た結果、以下に示す新規事項を発明し、本発明を完成す
るに至った。
(Means and Actions for Solving Problems) The inventors of the present invention have determined the sintering aid, the sintering conditions, the composition of the sintered body, the microstructure of the sintered body, etc., to be added to the aluminum nitride powder in order to achieve the above object. As a result of conducting experiments and studies on the relationship of thermal conductivity, the inventors have invented the following new matters and completed the present invention.

すなわち、焼結助剤としてイットリウム化合物をAlN粉
末に添加し、カーボンに埋設して焼成したところ、従来
知られていたY−Al−O系化合物粒界相に代わってYC2
等の微量のY−C系化合物が生成し、(さらにY2O3が生
成する場合もある)その焼結体は均一で熱伝導率が向上
することがわかった。この効果は他の希土類元素でも同
様に認められた。
That is, when a yttrium compound was added to AlN powder as a sintering aid, embedded in carbon and fired, YC 2 was used in place of the conventionally known Y—Al—O-based compound grain boundary phase.
It was found that a small amount of Y-C-based compound such as, etc. was formed, and the sintered body (in some cases, Y 2 O 3 was formed) was uniform and had improved thermal conductivity. This effect was similarly observed with other rare earth elements.

この事実に基づいてAlN焼結体の均一性、高熱伝導度化
を達成する最適条件を種々検討した結果が本発明であ
り、AlN相を主相として、副相として(希土類元素)−
C系化合物相(またはこれに加える(希土類元素)−O
系化合物相)を含有し、希土類元素量が4000ppm以下で
あり、不純物酸素量が3000ppm以下であることを特徴と
する高熱伝導性窒化アルミニウム焼結体である。
Based on this fact, the present invention is the result of various examinations on the optimum conditions for achieving the uniformity of the AlN sintered body and achieving high thermal conductivity.
C-based compound phase (or added to this (rare earth element) -O
A high thermal conductivity aluminum nitride sintered body characterized by containing a system compound phase), a rare earth element content of 4000 ppm or less, and an impurity oxygen content of 3000 ppm or less.

この焼結体は以下のようにして製造できる。This sintered body can be manufactured as follows.

a)不純物酸素量が7重量%以下であり、平均粒径が0.
05〜5μmである窒化アルミニウム粉末と、希土類元素
の重量換算で0.01〜15重量%の希土類元素化合物とを混
合したのち成形した成形体、または、希土類元素含有量
が0.01〜15重量%で、酸素含有量が0.01〜20重量%であ
り、AlNを主相とし(希土類元素)−Al−O化合物相お
よび/または(希土類元素)−O化合物を含む焼結体
を、 b)カーボン中に埋設して、 c)非酸化性ガス雰囲気、1550〜2050℃で、4〜720時
間焼成する。
a) The amount of impurities oxygen is 7% by weight or less and the average particle size is 0.
A molded product obtained by mixing aluminum nitride powder having a particle size of 05 to 5 μm with 0.01 to 15% by weight of the rare earth element in terms of weight of rare earth element, or molding, or having a rare earth element content of 0.01 to 15% by weight and oxygen content. A sintered body having a content of 0.01 to 20% by weight and having AlN as a main phase and containing a (rare earth element) -Al-O compound phase and / or a (rare earth element) -O compound is embedded in b) carbon. C) Baking for 4 to 720 hours at 1550 to 2050 ° C. in a non-oxidizing gas atmosphere.

という方法で製造することができる。It can be manufactured by the method.

この様な方法で得られた窒化アルミニウム焼結体は緻密
で均一な多結晶体であり、従来に比べ高い180w/mK以上
の熱伝導率を有していた。この焼結体をX線回折及び電
子顕微鏡を用いて構成相を観察すると、清浄なAlN結晶
粒が互いに面接触しており、三粒子以上が接する様およ
び三重点に極くわずかの(希土類元素)−C化合物が非
常に均一に存在している。また成分分析を行なったとこ
ろ、Al,Nが主成分で、希土類元素4000ppm以下、不純物
酸素3000ppm以下を含有し、その他の不純物陽イオン元
素は1000ppm以下という新規な窒化アルミニウム焼結体
であった。熱伝導率向上の観点から希土類元素は150〜4
000ppm、不純物酸素は1500ppm以下が好ましい。なお本
発明焼結体においては不純物酸素量は極力少ないことが
望ましく、また原料粉に起因する不純物陽イオンも熱伝
導率低下の原因となるため極力少ないことが望まれる。
なお副相としては(希土類元素)−C化合物相を必須と
する場合良好な特性を得た。
The aluminum nitride sintered body obtained by such a method was a dense and uniform polycrystalline body and had a thermal conductivity of 180 w / mK or higher, which was higher than that of the conventional one. When observing the constituent phases of this sintered body using X-ray diffraction and an electron microscope, clean AlN crystal grains are in surface contact with each other, and three or more grains are in contact with each other and a very small number of rare earth elements (rare earth elements). ) -C compound is very uniformly present. In addition, when a component analysis was performed, it was a novel aluminum nitride sintered body containing Al and N as main components, containing a rare earth element of 4000 ppm or less, impurity oxygen of 3000 ppm or less, and other impurity cation elements of 1000 ppm or less. From the viewpoint of improving thermal conductivity, rare earth elements are 150 to 4
It is preferable that the concentration of 000 ppm and the oxygen content of impurities are 1500 ppm or less. In the sintered body of the present invention, it is desirable that the amount of impurity oxygen is as small as possible, and the impurity cations resulting from the raw material powder also cause a decrease in thermal conductivity, so it is desirable that the amount is as small as possible.
Good characteristics were obtained when the (rare earth element) -C compound phase was essential as the sub-phase.

ついで、本発明の高熱伝導性窒化アルミニウム焼結体の
製造方法について述べる。
Next, a method for producing the high thermal conductivity aluminum nitride sintered body of the present invention will be described.

本発明の製造方法は、窒化アルミニウム原料粉末の純度
および平均粒径、焼結助剤、焼結容器、焼結時間および
焼成雰囲気を骨子とするものである。
The production method of the present invention is based on the purity and average particle size of the aluminum nitride raw material powder, the sintering aid, the sintering container, the sintering time and the firing atmosphere.

主成分である窒化アルミニウム原料粉末としては、焼結
性、熱伝導性を考慮して酸素を7重量%以下、実用上は
0.01〜7重量%含有し、平均粒径が0.05〜5μmのもの
を使用する。
As the aluminum nitride raw material powder as the main component, oxygen is 7 wt% or less in consideration of sinterability and thermal conductivity, and practically
The content of 0.01 to 7% by weight and the average particle size of 0.05 to 5 μm are used.

添加物としては希土類元素化合物(特にイットリウム化
合物が好ましい)を用いる。希土類元素の化合物として
は、酸化物、窒化物、フッ化物、酸フッ化物、酸窒化
物、もしくは焼成によりこれらの化合物となる物質が最
適である。焼成によって例えば酸化物となる物質として
は、これら元素の炭酸塩、硝酸塩、シュウ酸塩、水酸化
物などをあげることができる。
A rare earth element compound (especially yttrium compound is preferable) is used as an additive. As the compound of the rare earth element, an oxide, a nitride, a fluoride, an oxyfluoride, an oxynitride, or a substance which becomes these compounds by firing is most suitable. Examples of the substance that becomes an oxide by firing include carbonates, nitrates, oxalates, and hydroxides of these elements.

希土類元素化合物の添加は、希土類元素の重量換算で0.
01〜15重量%の範囲で添加する。この添加量が、0.01重
量%未満であると、添加物の効果が十分に発揮されず、
焼結体が緻密化されなかったり、AlN結晶中に酸素が固
溶し高熱伝導焼結体が得られない。また、添加量が過度
に多いと、粒界相が焼結体中に残ったり、熱処理により
除去される粒界相の体積が大きいため、焼結体中に空孔
が残ったりして、収縮率が非常に大きくなり、形状がく
ずれる等の不利な点が生ずる。好ましくは、0.1〜15重
量%であり、より好ましくは0.5〜10重量%である。
Addition of rare earth element compound is 0 in terms of weight of rare earth element.
Add in the range of 01 to 15% by weight. If the added amount is less than 0.01% by weight, the effect of the additive is not sufficiently exerted,
The sintered body is not densified, or oxygen does not form a solid solution in the AlN crystal to obtain a high thermal conductive sintered body. Also, if the addition amount is too large, the grain boundary phase remains in the sintered body, or the volume of the grain boundary phase removed by the heat treatment is large, so pores remain in the sintered body and shrinkage occurs. The rate becomes very large, and there are disadvantages such as the shape being broken. It is preferably 0.1 to 15% by weight, more preferably 0.5 to 10% by weight.

本発明方法においてはこの様なAlN粉と希土類元素化合
物の混合された成形体を後述の条件で焼成しても良い
し、また、従来の方法(例えば特開昭61−117160号)で
希土類元素含有量が0.01〜15重量%で、酸素含有量が0.
01〜20重量%であり、AlNを主相とし(希土類元素)−A
l−O化合物相および/または(希土類元素)−O化合
物相から成る焼結体を製造し、上記成形体の代りに用い
てもよい。
In the method of the present invention, a molded body in which such an AlN powder and a rare earth element compound are mixed may be fired under the conditions described below, and a rare earth element may be prepared by a conventional method (for example, JP-A-61-117160). Content is 0.01-15% by weight, oxygen content is 0.
01 to 20% by weight, with AlN as the main phase (rare earth element) -A
A sintered body composed of the l-O compound phase and / or the (rare earth element) -O compound phase may be produced and used in place of the above-mentioned compact.

焼成容器に関しては、単に成形体を緻密化させるだけの
目的ならば、窒化アルミニウム、アルミナ、Mo製等でも
十分である(特開昭61−146769号等)。しかし、これら
の容器を用いたものでは、かなり多量の(希土類元素)
−Al−O化合物相などが不均一に焼結体に存在したまま
の状態となり、高熱伝導なAlN焼結体は得られない。本
発明では、カーボン中に埋設して焼成を行なう。この様
な方法としては容器全体がカーボン製の物の中、カーボ
ン粉末、カーボン繊維中に埋設するなどの方法が可能で
ある。このカーボンが焼成中の窒化アルミニウムを還元
するという作用が得られ、さらに具体的には(希土類元
素)−Al−O三元系化合物等の粒界相を焼結体中より除
去するとともに、残部を(希土類元素)−C系化合物の
形でAlN粒の稜または3重点に固定する作用が働き、窒
化アルミニウム焼結体は均一かつ高熱伝導性の焼結体に
変化していく。
Regarding the baking container, aluminum nitride, alumina, Mo, etc. are sufficient for the purpose of simply densifying the molded body (JP-A-61-146769, etc.). However, with these containers, a large amount of (rare earth elements)
The -Al-O compound phase and the like remain inhomogeneously present in the sintered body, and an AlN sintered body with high thermal conductivity cannot be obtained. In the present invention, it is embedded in carbon and fired. As such a method, it is possible to bury the entire container in carbon powder, carbon fiber, or carbon fiber. This carbon has an effect of reducing aluminum nitride during firing. More specifically, the grain boundary phase such as (rare earth element) -Al-O ternary compound is removed from the sintered body, and the balance Acts as a (rare earth element) -C compound at the ridges or triple points of the AlN grains, and the aluminum nitride sintered body changes to a uniform and highly heat-conductive sintered body.

焼結時間については、一般的に行われている4時間未満
の短時間では上記カーボン中で焼成したとしても多量の
(希土類元素)−Al−O系化合物相が存在し、均一で高
熱伝導のAlN焼結体は得られない。また前述の如くのカ
ーボン雰囲気が得られない焼成容器を用いた場合は、焼
成時間によらず本発明の効果は得られない。焼結温度お
よび助剤添加量にもよるが、本発明では4〜720時間の
焼成が必要である。
Regarding the sintering time, a large amount of (rare earth element) -Al-O-based compound phase is present even if fired in the above-mentioned carbon in a short time which is generally less than 4 hours, and a uniform and high thermal conductivity is obtained. AlN sintered body cannot be obtained. Further, when the firing container that does not provide the carbon atmosphere as described above is used, the effect of the present invention cannot be obtained regardless of the firing time. Although it depends on the sintering temperature and the amount of auxiliary agent added, the present invention requires firing for 4 to 720 hours.

焼成温度については、1550〜2050℃が好ましい。1550℃
より低温で焼成すると緻密な焼結体が得られない。また
2050℃より高温で焼成すると、AlN自体の蒸気圧が高く
なり、緻密化が困難になる。焼成温度はより好ましくは
1700〜2000℃である。さらには1750〜1950℃が好まし
い。
The firing temperature is preferably 1550 to 2050 ° C. 1550 ° C
If fired at a lower temperature, a dense sintered body cannot be obtained. Also
When fired at a temperature higher than 2050 ° C, the vapor pressure of AlN itself increases and it becomes difficult to densify it. More preferably the firing temperature
It is 1700-2000 ℃. Furthermore, 1750-1950 degreeC is preferable.

焼成雰囲気は、真空、水素ガス、一酸化炭素、アルゴン
等の群から選ばれる1種または2種以上の非酸化性雰囲
気が好ましい。酸化性雰囲気で焼成するとカーボンの粒
界純化効果が作用しないばかりでなく、酸素の固溶、異
相生成により高熱伝導性は得られない。なお焼成は真
空、減圧、加圧及び常圧を含む雰囲気圧下で行なう。
The firing atmosphere is preferably one or more non-oxidizing atmospheres selected from the group consisting of vacuum, hydrogen gas, carbon monoxide, argon and the like. When firing in an oxidizing atmosphere, not only the effect of purifying the grain boundaries of carbon does not work, but also high thermal conductivity cannot be obtained due to solid solution of oxygen and generation of different phases. The firing is performed under atmospheric pressure including vacuum, reduced pressure, increased pressure and normal pressure.

次いで本発明の窒化アルミニウム焼結体の製造方法の一
例を以下に述べる。
Next, an example of the method for producing the aluminum nitride sintered body of the present invention will be described below.

まず、AlN粉末に焼結添加物として希土類元素化合物を
所定量添加したのちボールミル等を用いて混合する。焼
結には常圧焼結法を使用する。この場合、混合粉末にバ
インダーを加え、混練、造粒、整粒を行なったのち成形
する。成形法としては、金型プレス、静水圧プレス或い
はシート成形などが適用できる。続いて、成形体を非酸
化性雰囲気中、例えば窒素ガス気流中で加熱してバイン
ダーを除去したのち常圧焼結する。この時カーボン中に
埋設して焼成を行なう。
First, a predetermined amount of a rare earth element compound as a sintering additive is added to AlN powder and then mixed using a ball mill or the like. An atmospheric pressure sintering method is used for sintering. In this case, a binder is added to the mixed powder, kneading, granulating and sizing are performed, and then molding is performed. As a forming method, a die press, a hydrostatic press, a sheet forming or the like can be applied. Subsequently, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas stream to remove the binder, and then sintered under normal pressure. At this time, it is embedded in carbon and fired.

焼結温度は1550〜2050℃に、焼結時間は4〜720時間に
設定する。この様な方法により本発明焼結体を得ること
ができる。
The sintering temperature is set to 1550 to 2050 ° C and the sintering time is set to 4 to 720 hours. The sintered body of the present invention can be obtained by such a method.

次に本発明の窒化アルミニウム焼結体の均一性あるいは
熱伝導性の向上効果および(希土類元素)−C系化合
物、(希土類元素)−O系化合物の生成について説明す
る。厳密なメカニズムは現在のところ完全に解明された
わけではないが、本発明者らの研究によれば均一化、高
熱伝導率化の要因として次のように推定される。
Next, the effect of improving the uniformity or thermal conductivity of the aluminum nitride sintered body of the present invention and the formation of the (rare earth element) -C compound and the (rare earth element) -O compound will be described. The exact mechanism has not been completely clarified at present, but according to the study by the present inventors, it is presumed as a factor of the homogenization and the high thermal conductivity as follows.

まず、希土類元素添加によるAlN原料粉末の不純物酸素
のトラップ効果である。すなわち、希土類元素化合物を
焼結助剤として添加することにより、不純物酸素を(希
土類元素)−Al−O化合物等の形でAlN粒界の稜および
三重点に固定するため、AlN格子中への酸素の固溶が防
止され、Alの酸窒化物(AlON)、そしてAlNのポリタイ
プ(27R型)の生成を防止する。発明者らの研究結果に
よれば、AlONそして27R型が生成した焼結体は、いずれ
も熱伝導率が低いことがわかっている。この様な低熱伝
導度化の原因を抑制することが高熱伝導度化の一因とし
て挙げられる。
First is the effect of trapping impurity oxygen in the AlN raw material powder by adding a rare earth element. That is, by adding a rare earth element compound as a sintering aid, the impurity oxygen is fixed to the edges and triple points of the AlN grain boundary in the form of (rare earth element) -Al-O compound, etc. The solid solution of oxygen is prevented, and the formation of Al oxynitride (AlON) and AlN polytype (27R type) is prevented. According to the results of research conducted by the inventors, it is known that the sintered bodies produced by AlON and 27R type have low thermal conductivity. Suppressing such a cause of the low thermal conductivity is one of the causes of the high thermal conductivity.

希土類元素としてYを選んだ場合は原料粉末の不純物酸
素が、3Y2O3・5Al2O3、Y2O3・Al2O3、2Y2O3・Al2O3、Y2
O3などの化合物としてトラップされる。この状態は、焼
結初期、すなわち通常焼結時間の0〜1時間以内に起こ
る。
If you choose Y as the rare earth element impurities oxygen raw material powders, 3Y 2 O 3 · 5Al 2 O 3, Y 2 O 3 · Al 2 O3,2Y 2 O 3 · Al 2 O 3, Y 2
It is trapped as a compound such as O 3 . This state occurs at the initial stage of sintering, that is, usually within 0 to 1 hour of the sintering time.

これ以降の焼結過程でカーボンが粒界相を還元し、さら
に粒界相を除去し始める。次第に粒界相は窒化アルミニ
ウム焼結体中には存在しなくなり、焼結体の系外へと移
動する。そして最終的に焼結体は微量の(希土類元素)
−C型化合物あるいは(希土類元素)−O系化合物相を
均一に含有するようになり、熱伝導率、均一性が向上す
る。これは熱伝導率が小さく熱抵抗として働いていた粒
界相が除去されるためである。
In the subsequent sintering process, carbon reduces the grain boundary phase and further begins to remove the grain boundary phase. Gradually, the grain boundary phase does not exist in the aluminum nitride sintered body and moves out of the system of the sintered body. And finally, the sintered body contains a trace amount (rare earth element)
The -C type compound or the (rare earth element) -O compound phase is uniformly contained, and the thermal conductivity and the uniformity are improved. This is because the grain boundary phase, which has small thermal conductivity and worked as thermal resistance, is removed.

以上のような理由により高熱伝導性窒化アルミニウム焼
結体を得ることができる。なお本発明において最も有効
である希土類元素はイットリウムであった。また本発明
における副相は微量であり、また多量の存在は熱伝導性
の低下を伴なうため、焼結体の密度は3.255〜3.285g/cm
3であることが好ましい。また焼結体粒子径は熱伝導率
を考慮して3μm以上であることが好ましい。
Due to the above reasons, a highly heat conductive aluminum nitride sintered body can be obtained. The most effective rare earth element in the present invention was yttrium. Further, the sub-phase in the present invention is a trace amount, and since the presence of a large amount is accompanied by a decrease in thermal conductivity, the density of the sintered body is 3.255 to 3.285 g / cm.
It is preferably 3 . The particle size of the sintered body is preferably 3 μm or more in consideration of thermal conductivity.

(実施例) 実施例1 不純物としての酸素を1.0重量%含有し、平均粒径が0.6
μmのAlN粉末に、添加物として平均粒径0.9μmのY2O3
をイットリウム元素の重量換算で4重量%添加し、ボー
ルミルを用いて混合を行ない原料を調整した。ついで、
この原料に有機系バインダーを4重量%添加して造粒し
たのち500Kg/cm2の圧力でプレス成形して38×38×10mm
の圧粉体とした。この圧粉体を窒素ガス雰囲気中で700
℃まで加熱してバインダーを除去した。更に、カーボン
フエルトに埋設してカーボン製容器内に収容した。この
ときの容器(A)の形状および大きさは、10cmφ×3.7c
mで内容積が290cm3程度でカーボンフエルトで満たされ
ている。この容器を用いアルゴンガス雰囲気中(1気
圧)で1950℃、24時間の条件で常圧焼結した。得られた
AlN焼結体の密度は3.269g/cm3であり、粒径は13μmで
あった。また焼結体から、直径10mm、厚さ3.3mmの円板
を研削し、これを試験片としてレーザーフラッシュ法に
より熱伝導率を測定した。(真空理工製TC−3000使
用)。焼結体の熱伝導率は225w/mK(25℃)であった。
(Example) Example 1 Oxygen as an impurity was contained by 1.0% by weight, and the average particle size was 0.6.
AlN powder of μm, Y 2 O 3 with an average particle size of 0.9 μm as an additive
4% by weight in terms of the weight of yttrium element was added, and the raw materials were adjusted by mixing using a ball mill. Then,
4% by weight of organic binder was added to this raw material and granulated, then press molded at a pressure of 500 Kg / cm 2 to produce 38 × 38 × 10 mm
Of green compact. This green compact is 700 times in a nitrogen gas atmosphere.
The binder was removed by heating to ° C. Further, it was embedded in a carbon felt and housed in a carbon container. The shape and size of the container (A) at this time is 10 cmφ x 3.7 c
It has a volume of about 290 cm 3 and is filled with carbon felt. Using this container, atmospheric pressure sintering was carried out in an argon gas atmosphere (1 atm) at 1950 ° C. for 24 hours. Got
The AlN sintered body had a density of 3.269 g / cm 3 and a particle size of 13 μm. A disk having a diameter of 10 mm and a thickness of 3.3 mm was ground from the sintered body, and the thermal conductivity was measured by a laser flash method using this as a test piece. (Use TC-3000 manufactured by Vacuum Riko). The thermal conductivity of the sintered body was 225 w / mK (25 ° C).

さらに、この焼結体の分析を行なった。イットリウム含
有量はICP発光分光法(セイコー電子工業製SPS−1200A
使用)により1000ppmであった。陽イオン不純物は化学
分析により200ppm以下(主にFe,Si)であった。酸素含
有量に関しては速中性子放射化分析により行なった。
(東芝製NAT−200−1C使用)結果、650ppmであった。こ
の焼結体のX線回析を行なった結果(理学電機製ロータ
フレックスRU−200、ゴニオメータCN2173D5、線源Cu50K
V,100mA使用)、AlN以外の副相としてYC2化合物相の存
在が確認された。
Further, this sintered body was analyzed. Yttrium content is determined by ICP emission spectroscopy (Seiko Denshi Kogyo SPS-1200A
It was 1000 ppm due to use). Cationic impurities were less than 200ppm (mainly Fe and Si) by chemical analysis. The oxygen content was measured by fast neutron activation analysis.
(Using Toshiba's NAT-200-1C) The result was 650 ppm. Results of X-ray diffraction of this sintered body (Rigaku Denki rotor flex RU-200, goniometer CN2173D5, radiation source Cu50K
The presence of a YC 2 compound phase as a sub-phase other than AlN was confirmed.

実施例2 焼結助剤の添加量を7Wt%に変えて実施例1と同様にし
てAlN焼結体を製造した。焼結体は、AlNを主相とし、副
相としてYC2が同定された。また焼結体中のY含有量は1
600ppm、酸素含有量は550ppm、密度は3.275g/cm3、平均
粒量は12μm、熱伝導率は212W/mKであった。
Example 2 An AlN sintered body was manufactured in the same manner as in Example 1 except that the addition amount of the sintering aid was changed to 7 Wt%. The sintered body was identified to have AlN as the main phase and YC 2 as the subphase. The Y content in the sintered body is 1
The content was 600 ppm, the oxygen content was 550 ppm, the density was 3.275 g / cm 3 , the average particle amount was 12 μm, and the thermal conductivity was 212 W / mK.

実施例3 焼結温度を1750℃に変えて実施例1と同様にしてAlN焼
結体を製造した。焼結体はAlNを主相とし、副相としてY
C2、Y2O3が同定された。また焼結体中のY含有量は2200
ppm、酸素含有量は1200ppm、密度は3.284g/cm3、平均粒
径は10μm、熱伝導率は195w/mKであった。
Example 3 An AlN sintered body was manufactured in the same manner as in Example 1 except that the sintering temperature was changed to 1750 ° C. The sintered body has AlN as the main phase and Y as the sub-phase.
C 2 , Y 2 O 3 were identified. The Y content in the sintered body is 2200
ppm, oxygen content was 1200 ppm, density was 3.284 g / cm 3 , average particle size was 10 μm, and thermal conductivity was 195 w / mK.

実施例4 焼結温度を2000℃に、焼結雰囲気をアルゴンガス10気圧
に変えて実施例1と同様にしてAlN焼結体を製造した。
焼結体はAlNを主相とし、副相としてYC2が同定され、ま
た焼結体中のY含有量は2400ppm、酸素含有量は1400pp
m、密度は3.274g/cm3、平均粒径は18μm、熱伝導率は1
98w/mKであった。
Example 4 An AlN sintered body was produced in the same manner as in Example 1 except that the sintering temperature was 2000 ° C. and the sintering atmosphere was changed to 10 atm of argon gas.
The sintered body has AlN as the main phase and YC 2 is identified as the secondary phase, and the Y content in the sintered body is 2400 ppm and the oxygen content is 1400 pp.
m, density 3.274 g / cm 3 , average particle size 18 μm, thermal conductivity 1
It was 98 w / mK.

実施例5 焼結時間を12時間に、焼結雰囲気を水素0.1気圧に変え
て実施例1と同様にしてAlN焼結体を製造した。焼結体
はAlNを主相とし、副相としてYC2が同定された。また焼
結体中のY含有量は2600ppm、酸素含有量は1200ppm、密
度は3.275g/cm3、平均粒径は11μm、熱伝導率は200w/m
Kであった。
Example 5 An AlN sintered body was manufactured in the same manner as in Example 1 except that the sintering time was 12 hours and the sintering atmosphere was changed to 0.1 atm of hydrogen. The main body of the sintered body was AlN, and YC 2 was identified as the subphase. The Y content in the sintered body is 2600 ppm, the oxygen content is 1200 ppm, the density is 3.275 g / cm 3 , the average particle size is 11 μm, and the thermal conductivity is 200 w / m.
It was K.

実施例6 カーボン粉末を満したカーボン製容器を用いたこと以外
は実施例1と同様にしてAlN焼結体を製造した。焼結体
はAlNを主相とし、副相としてYC2が同定された。また焼
結体中のY含有量は2100ppm、酸素含有量は900ppm、密
度は3271g/cm3、平均粒径は12μm、熱伝導率は205w/mK
であった。
Example 6 An AlN sintered body was manufactured in the same manner as in Example 1 except that a carbon container filled with carbon powder was used. The main body of the sintered body was AlN, and YC 2 was identified as the subphase. The Y content in the sintered body is 2100 ppm, the oxygen content is 900 ppm, the density is 3271 g / cm 3 , the average particle size is 12 μm, and the thermal conductivity is 205 w / mK.
Met.

実施例7 内側全体がカーボン製容器を用いたこと以外は実施例1
と同様にしてAlN焼結体を製造した。焼結体はAlNを主相
とし、副相としてYC2が同定された。また焼結体中のY
含有量は、1500ppm、酸素含有量は700ppm、密度は3.270
g/cm3、平均粒径は13μm、熱伝導率は199w/mKであっ
た。
Example 7 Example 1 except that a carbon container was used for the entire inside.
An AlN sintered body was manufactured in the same manner as in. The main body of the sintered body was AlN, and YC 2 was identified as the subphase. In addition, Y in the sintered body
Content is 1500ppm, oxygen content is 700ppm, density is 3.270
The particle size was g / cm 3 , the average particle size was 13 μm, and the thermal conductivity was 199 w / mK.

実施例8 Y2O3の代わりにCeO2を用いたこと以外は実施例1と同様
にしてAlN焼結体を製造した。焼結体はAlNを主相とし、
副相としてCeC2系化合物と推定される相が存在してい
た。また焼結体中のCe含有量は2300ppm、酸素含有量は6
50ppm、密度は3.280g/cm3、平均粒径は10μm、熱伝導
率は180w/mKであった。
Example 8 An AlN sintered body was produced in the same manner as in Example 1 except that CeO 2 was used instead of Y 2 O 3 . The sintered body has AlN as the main phase,
There was a phase presumed to be a CeC 2 compound as a subphase. Also, the Ce content in the sintered body is 2300 ppm, the oxygen content is 6
The density was 50 ppm, the density was 3.280 g / cm 3 , the average particle size was 10 μm, and the thermal conductivity was 180 w / mK.

実施例9 Y2O3の代わりにLa2O3を用いたこと以外は実施例1と同
様にしてAlN焼結体を製造した。焼結体はAlNを主相と
し、副相としてLaC2系化合物と推定される相が存在して
いた。また焼結体中のLa含有量は1600ppm、酸素含有量
は600ppm、密度は3.270g/cm3、平均粒径は12μm、熱伝
導率は188w/mKであった。
Example 9 An AlN sintered body was produced in the same manner as in Example 1 except that La 2 O 3 was used instead of Y 2 O 3 . The sintered body had AlN as a main phase and a phase presumed to be a LaC 2 compound as a subphase. The La content in the sintered body was 1600 ppm, the oxygen content was 600 ppm, the density was 3.270 g / cm 3 , the average particle size was 12 μm, and the thermal conductivity was 188 w / mK.

比較例1 実施例1と同様にして得たAlN脱脂体を内側全体がAlN製
の容器を用いて実施例1と同様にしてAlN焼結体を製造
した。焼結体はAlNを主相とし、副相としてY−Al−O
三元系化合物相が多量に存在していた。また焼結体中の
Y含有量は19000ppm、酸素含有量は14000ppm、密度は3.
352g/cm3、平均粒径は12μm、熱伝導率は160w/mKとい
う低い値であった。
Comparative Example 1 An AlN degreased body obtained in the same manner as in Example 1 was manufactured in the same manner as in Example 1 using a container whose entire inside was made of AlN. The sintered body has AlN as the main phase and Y-Al-O as the sub-phase.
There was a large amount of ternary compound phase. The Y content in the sintered body is 19000 ppm, the oxygen content is 14000 ppm, and the density is 3.
It had a low value of 352 g / cm 3 , an average particle size of 12 μm, and a thermal conductivity of 160 w / mK.

比較例2 実施例1と同様にして得たAlN脱脂体を内側全体がタン
グステン製の容器を用いて実施例1と同様にしてAlN焼
結体を製造した。焼結体はAlNを主相とし、副相として
Y−Al−O三元系化合物相が多量に存在していた。また
焼結体中のY含有量は20000ppm、酸素含有量15000ppm、
密度は3.360g/cm3、平均粒径は11μm、熱伝導率は152w
/mKという低い値であった。
Comparative Example 2 An AlN degreased body obtained in the same manner as in Example 1 was manufactured in the same manner as in Example 1 using a container whose entire inside was made of tungsten to manufacture an AlN sintered body. The sintered body had AlN as a main phase and a large amount of Y-Al-O ternary compound phase as a sub-phase. The Y content in the sintered body is 20000 ppm, the oxygen content is 15000 ppm,
Density is 3.360g / cm 3 , average particle size is 11μm, thermal conductivity is 152w
It was a low value of / mK.

この様な比較例からカーボン中焼成の重要性が分かる。The importance of firing in carbon can be seen from such a comparative example.

〔発明の効果〕〔The invention's effect〕

以上述べた如く本発明の窒化アルミニウム焼結体はAlN
相と主相とし、(希土類元素)−C系化合物相および/
または(希土類元素)−O系化合物相を微量に含有する
ものであり、高純度かつ均一で、高熱伝導率を示すなど
優れた性質を有するものであり、その工業的価値は極め
て大きいものである。
As described above, the aluminum nitride sintered body of the present invention is AlN
Phase and main phase, (rare earth element) -C based compound phase and /
Alternatively, it contains a trace amount of (rare earth element) -O-based compound phase and has excellent properties such as high purity and uniformity and high thermal conductivity, and its industrial value is extremely large. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 佳子 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (72)発明者 柘植 章彦 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (56)参考文献 特開 昭62−252374(JP,A) 特開 昭62−246867(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshiko Sato 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Within Toshiba Research Institute, Inc. (56) References JP 62-252374 (JP, A) JP 62-246867 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】AlN相を主相とし、副相として希土類元素
−C系化合物相を含有し、希土類元素量が4000ppm以
下、不純物酸素量が3000ppm以下であって、密度が3.255
g/cm3〜3.285g/cm3で、熱伝導率が180W/m・k以上であ
ることを特徴とする高熱伝導性窒化アルミニウム焼結
体。
1. An AlN phase as a main phase, containing a rare earth element-C-based compound phase as a subphase, the rare earth element content is 4000 ppm or less, the impurity oxygen content is 3000 ppm or less, and the density is 3.255.
g / cm 3 at ~3.285g / cm 3, the high thermal conductivity of aluminum nitride sintered body thermal conductivity, characterized in that it is 180 W / m · k or more.
【請求項2】焼結体のAlN結晶粒径が3μm以上である
ことを特徴とした特許請求の範囲第1項記載の高熱伝導
性窒化アルミニウム焼結体。
2. The high thermal conductivity aluminum nitride sintered body according to claim 1, wherein the AlN crystal grain size of the sintered body is 3 μm or more.
【請求項3】希土類元素を除く不純物陽イオン元素の総
量が1000ppm以下であることを特徴とした特許請求の範
囲第1項記載の高熱伝導性窒化アルミニウム焼結体。
3. The high thermal conductivity aluminum nitride sintered body according to claim 1, wherein the total amount of impurity cation elements excluding rare earth elements is 1000 ppm or less.
JP62103059A 1987-01-13 1987-04-28 High thermal conductivity aluminum nitride sintered body Expired - Lifetime JPH07121829B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62103059A JPH07121829B2 (en) 1987-04-28 1987-04-28 High thermal conductivity aluminum nitride sintered body
US07/142,818 US4847221A (en) 1987-01-13 1988-01-11 AlN sintered body having high thermal conductivity and a method of fabricating the same
DE3800749A DE3800749A1 (en) 1987-01-13 1988-01-13 ALUMINUM NITRIDE SINTER BODY HIGH HEAT CONDUCTIVITY AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62103059A JPH07121829B2 (en) 1987-04-28 1987-04-28 High thermal conductivity aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS63270361A JPS63270361A (en) 1988-11-08
JPH07121829B2 true JPH07121829B2 (en) 1995-12-25

Family

ID=14344104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62103059A Expired - Lifetime JPH07121829B2 (en) 1987-01-13 1987-04-28 High thermal conductivity aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPH07121829B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179765A (en) * 1988-01-08 1989-07-17 Sumitomo Electric Ind Ltd Aluminum nitride sintered body and production thereof
JP3461644B2 (en) * 1995-12-06 2003-10-27 電気化学工業株式会社 Aluminum nitride sintered body, its manufacturing method and circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246867A (en) * 1986-04-17 1987-10-28 日本電気株式会社 Manufacture of aluminum nitride sintered body
JPS62252374A (en) * 1986-04-24 1987-11-04 株式会社村田製作所 Manufacture of aluminum nitride sintered body

Also Published As

Publication number Publication date
JPS63270361A (en) 1988-11-08

Similar Documents

Publication Publication Date Title
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JP2547767B2 (en) High thermal conductivity aluminum nitride sintered body
JP2578113B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2856734B2 (en) High thermal conductive aluminum nitride sintered body
JP2511011B2 (en) High thermal conductivity aluminum nitride sintered body
JPH07121829B2 (en) High thermal conductivity aluminum nitride sintered body
JP2829247B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPH0825799B2 (en) Method for manufacturing high thermal conductivity aluminum nitride sintered body
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH09175867A (en) Aluminum nitride sintered product
JP2524185B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JPH0522670B2 (en)
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JPH06116039A (en) Aluminum nitride sintered compact
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPH0641390B2 (en) High thermal conductivity aluminum nitride sintered body and manufacturing method thereof
JPH02307871A (en) Production of ceramic sintered compact
JPH0465367A (en) Production of aluminum nitride sintered compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12