JPH0465367A - Production of aluminum nitride sintered compact - Google Patents

Production of aluminum nitride sintered compact

Info

Publication number
JPH0465367A
JPH0465367A JP2177322A JP17732290A JPH0465367A JP H0465367 A JPH0465367 A JP H0465367A JP 2177322 A JP2177322 A JP 2177322A JP 17732290 A JP17732290 A JP 17732290A JP H0465367 A JPH0465367 A JP H0465367A
Authority
JP
Japan
Prior art keywords
sintered compact
sintered body
aln
thermal conductivity
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2177322A
Other languages
Japanese (ja)
Other versions
JP2938153B2 (en
Inventor
Mitsuo Kasori
加曽利 光男
Yoshiko Itsudo
五戸 佳子
Fumio Ueno
文雄 上野
Akihiro Horiguchi
堀口 昭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2177322A priority Critical patent/JP2938153B2/en
Publication of JPH0465367A publication Critical patent/JPH0465367A/en
Application granted granted Critical
Publication of JP2938153B2 publication Critical patent/JP2938153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily and stably obtain a sintered compact having high thermal conductivity by sintering a green compact prepared by adding alkaline earth compound and rare earth compound to AlN powder under an inert atmosphere in which an AlN sintered compact where the content of oxygen as impurity is regulated to a value below a specific value and graphite as allowed to coexist. CONSTITUTION:A green compact prepared by adding alkaline earth compound and/or rate earth compound to an AlN powder is sintered under an inert atmosphere where an AlN sintered compact containing <0.5 wt.% oxygen as impurity and graphite are allowed to coexist. By this method,the above additives are changed into multiple oxides, such as alkaline earth aluminate and rare earth aluminate, and removed, at the time of the completion of sintering, from the system of a sintered compact by the action of trace amounts of carbon gas generated from the graphite. Further, the reduction in the weight of the AlN sintered compact to be obtained can be prevented owing to the coexisting AlN sintered compact, and also the reduction in thermal conductivity as well as the occurrence of irregular color in the AlN sintered compact to be obtained can be prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、窒化アルミニウム焼結体(l N焼結体)の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing an aluminum nitride sintered body (lN sintered body).

(従来の技術) Af1N焼結体は、熱伝導率がアルミナなどより高く、
かつ熱膨張率がシリコン(St)と近似しているため、
半導体装置の実装用基板として用いられている。また、
AgN焼結体は高温下での高強度性、溶融金属との反応
性か乏しいなどの特性を合せ持っているため、他の分野
への応用が広がりつつある。近年、AIJN焼結体を高
純度化すことなどで〜270W/m−にの高熱伝導率化
が可能なった。270W/m−にのA、9N焼結体には
、不純物酸素量、そして陽イオン不純物がそれぞれ数百
ppm程度しか含まれていないことがよく知られている
(Prior art) Af1N sintered body has higher thermal conductivity than alumina etc.
And since the coefficient of thermal expansion is similar to that of silicon (St),
It is used as a mounting board for semiconductor devices. Also,
AgN sintered bodies have characteristics such as high strength at high temperatures and poor reactivity with molten metal, so their applications in other fields are expanding. In recent years, by increasing the purity of AIJN sintered bodies, it has become possible to increase the thermal conductivity to ~270 W/m. It is well known that an A, 9N sintered body at 270 W/m- contains only several hundred ppm of impurity oxygen and cation impurities, respectively.

周知のようにAIJN粉末に不可避的に含まれる酸化ア
ルミニウム不純物は、焼成時に添加物と反応してアルミ
ン酸塩を生成し、これらアルミン酸塩は焼成時に液相を
生成しA、QN焼結体の緻密化を促進する。通常、前記
アルミン酸塩は粒界三重点に粒界相として残留する。換
言すれば、酸化アルミニウムム不純物は粒界相にトラッ
プされ、AgN結晶自体を高純度化される。例えば、添
加物としてY2O,を用いると、3Y2035AiJ2
03   Y2O3AN2032 Y 203 ・Al
120<等のY−Ag−0系複合酸化物を生成し、添加
物としてCaOを用いるとCa0−A1203.2Ca
o e AJ7203等のCa−Aj7−0系板合酸化
物を生成し、焼結体内に残存する。このようなアルミン
酸塩は、粒界三重点に粒界相として残留する。
As is well known, aluminum oxide impurities that are inevitably included in AIJN powder react with additives during sintering to produce aluminates, and these aluminates form a liquid phase during sintering to form A, QN sintered bodies. Promote densification. Usually, the aluminate remains as a grain boundary phase at grain boundary triple points. In other words, aluminum oxide impurities are trapped in the grain boundary phase, and the AgN crystal itself is highly purified. For example, if Y2O is used as an additive, 3Y2035AiJ2
03 Y2O3AN2032 Y 203 ・Al
When a Y-Ag-0 complex oxide such as 120< is produced and CaO is used as an additive, Ca0-A1203.2Ca
o e A Ca-Aj7-0 based plate composite oxide such as AJ7203 is produced and remains in the sintered body. Such aluminate remains as a grain boundary phase at grain boundary triple points.

上述した複合酸化物が粒界相に混在すると、その分焼結
体の熱伝導率が低下する。このため、還元性雰囲気下で
長時間の焼成を行って前記複合酸化物を系外に除去する
ことによって、−層の高純度化、つまり高熱伝導率化が
図られている。前記複合酸化物を含まないAIN焼結体
は、X線回折やSEMで評価した範囲内ではAIJN単
相からなることが知られている。複合酸化物が除去され
るメカニズムについては、いくつかの説が報告されてい
るが、定説には至っておらず、複合酸化物の還元窒化反
応及び蒸発が関係していると考えられている。前記複合
酸化物がA1!N焼結体の系外に移行する速度は、焼成
雰囲気に依存し、ヒータ又は焼成容器などから微量のカ
ーボンガスが発生する雰囲気では速いことが知られてい
る。
When the above-mentioned composite oxide is present in the grain boundary phase, the thermal conductivity of the sintered body decreases accordingly. For this reason, high purity of the negative layer, that is, high thermal conductivity, is achieved by performing long-time firing in a reducing atmosphere to remove the composite oxide from the system. It is known that the AIN sintered body that does not contain the composite oxide consists of a single phase of AIJN within the range evaluated by X-ray diffraction or SEM. Several theories have been reported regarding the mechanism by which the composite oxide is removed, but no established theory has been reached, and it is believed that the reduction-nitridation reaction and evaporation of the composite oxide are involved. The composite oxide is A1! The speed at which the N sintered body migrates out of the system depends on the firing atmosphere, and is known to be faster in an atmosphere where a small amount of carbon gas is generated from a heater or a firing container.

高熱伝導性AIIN単一相焼結体の製造において、焼成
雰囲気の影響は極めて多大である。焼成雰囲気により、
粒界相の除去される速度、焼結体内に残存する不純物量
が異なる。その結果、焼結体の特性は大きく変化する。
In the production of high thermal conductive AIIN single phase sintered bodies, the influence of the firing atmosphere is extremely large. Depending on the firing atmosphere,
The speed at which the grain boundary phase is removed and the amount of impurities remaining in the sintered body differ. As a result, the properties of the sintered body change significantly.

従来より、A、QN単一相焼結体を製造する場合、焼成
容器を変えることによって焼成雰囲気を制御することが
行われていた。
Conventionally, when manufacturing A, QN single phase sintered bodies, the firing atmosphere has been controlled by changing the firing container.

前記焼成容器には、カーボンガスの供給源のグラファイ
トの他、AIN焼結体、BN(窒化硼素)、タングステ
ン等が用いられていた。しかしなから、かかる方法でも
高熱伝導性ApN焼結体を必すしも安定的に製造するこ
とか難しく、特に焼結体寸法が大形化した場合には、よ
り顕著となるという問題があった。
In addition to graphite as a carbon gas supply source, AIN sintered body, BN (boron nitride), tungsten, and the like have been used in the firing container. However, even with this method, it is difficult to consistently produce a highly thermally conductive ApN sintered body, and this problem becomes more pronounced especially when the size of the sintered body increases. .

(発明か解決しようとする課題) 本発明は、上記従来の問題点を解決するためになされた
もので、高熱伝導性の優れたA、ON焼結体を簡単かつ
安定的に製造し得る方法を提供しようとするものである
(Problems to be Solved by the Invention) The present invention was made to solve the above conventional problems, and is a method for easily and stably manufacturing an A,ON sintered body having excellent high thermal conductivity. This is what we are trying to provide.

[発明の構成コ (課題を解決するための手段) 本発明は、窒化アルミニウム粉末にアルカリ土類化合物
及び/又は希土類化合物を添加した成形体を、不純物酸
素量が0.5重量%未満の窒化アルミニウム焼結体とグ
ラファイトとを共存させた不活性雰囲気にて焼成するこ
とを特徴とする窒化アルミニウム焼結体の製造方法であ
る。
[Structure of the Invention (Means for Solving the Problems)] The present invention provides a method of nitriding a molded product obtained by adding an alkaline earth compound and/or a rare earth compound to aluminum nitride powder with an impurity oxygen content of less than 0.5% by weight. This is a method for producing an aluminum nitride sintered body, which is characterized by firing in an inert atmosphere in which an aluminum sintered body and graphite coexist.

上記Al)N粉末としては、不純物酸素量が0.1〜2
.5重量%、より好ましくは0.3〜2.0重量%で、
かつ平均−時粒子径が1.5μm以下、より好ましくは
0.1〜1.2μmのものを用いることが望ましい。
The above Al)N powder has an impurity oxygen content of 0.1 to 2.
.. 5% by weight, more preferably 0.3-2.0% by weight,
Moreover, it is desirable to use particles having an average hourly particle size of 1.5 μm or less, more preferably 0.1 to 1.2 μm.

上記アルカリ土類化合物及び/又は希土類化合物は、焼
成に際してアルカリ土類アルミン酸塩、希土類アルミン
酸塩、アルカリ土類希土類アルミン酸塩等の複合酸化物
に変化し、焼成終了時には焼結体の系外に除去される。
The above alkaline earth compounds and/or rare earth compounds change into composite oxides such as alkaline earth aluminates, rare earth aluminates, alkaline earth rare earth aluminates, etc. during firing, and at the end of firing, the sintered body is removed outside.

かかるアルカリ土類化合物としては、例えばCa、Ba
%Srの酸化物、炭化物、フッ化物、炭酸塩、シュウ酸
塩、硝酸塩、又はアルコキシド等を挙げることができる
Such alkaline earth compounds include, for example, Ca, Ba
%Sr oxide, carbide, fluoride, carbonate, oxalate, nitrate, or alkoxide.

また、希土類化合物としては、例えばY、La。Examples of rare earth compounds include Y and La.

Ce、Nd、Dy5Prの酸化物、炭化物、フッ化物、
炭酸塩、シュウ酸塩、硝酸塩、又はアルコキシド等を挙
げることができ、特にY、La。
Ce, Nd, Dy5Pr oxides, carbides, fluorides,
Carbonates, oxalates, nitrates, alkoxides, etc. can be mentioned, especially Y and La.

Ceの化合物が好適である。Compounds of Ce are preferred.

上記アルカリ土類化合物及び/又は希土類化合物の添加
量は、これら化合物の元素換算をA、AgN粉末の量を
Bとした時、A/ (A+B)を30重量%以下、より
好ましくは0,1〜20重量%の範囲にすることが望ま
しい。この理由は、前記化合物の量が30重量%を越え
ると、それら化合物の元素がION粒界に残留してAΩ
N焼結体の高熱伝性を阻害する恐れがある。
The amount of the alkaline earth compound and/or rare earth compound added is 30% by weight or less, more preferably 0.1% or less, A/(A+B), where A is the elemental equivalent of these compounds and B is the amount of AgN powder. It is desirable that the content be in the range of ~20% by weight. The reason for this is that when the amount of the compounds exceeds 30% by weight, the elements of those compounds remain at the ION grain boundaries, resulting in AΩ
There is a possibility that the high thermal conductivity of the N sintered body will be inhibited.

上記不純物酸素を含むA、QN焼結体は、例えば前記成
形体の敷板や成形体に隣接して配置するブロックの形態
で還元性雰囲気中に共存させることができる。かかるA
ρN焼結体中の不純物酸素量を限定した理由は、その量
を0.5重量%以上にするとA11N焼結体の熱伝導率
の低下、焼結体中の色ムラ発生が起こる。より好ましい
不純物酸素量は、0.4重量%以下である。
The A, QN sintered body containing impurity oxygen can be made to coexist in a reducing atmosphere, for example, in the form of a bottom plate of the molded body or a block placed adjacent to the molded body. Such A
The reason why the amount of impurity oxygen in the ρN sintered body is limited is that if the amount is 0.5% by weight or more, the thermal conductivity of the A11N sintered body decreases and color unevenness occurs in the sintered body. A more preferable amount of impurity oxygen is 0.4% by weight or less.

上記グラファイトは、微量のカーボンガスの発生源とし
て作用し、例えば焼成炉のグラファイトヒータやグラフ
ァイト容器の形態で雰囲気中に共存される。不活性ガス
としては、例えばN2、Ar5He等を用いることがで
きる。
The graphite acts as a source of a trace amount of carbon gas, and is coexisting in the atmosphere in the form of, for example, a graphite heater of a firing furnace or a graphite container. As the inert gas, for example, N2, Ar5He, etc. can be used.

上記焼成は、1800〜2000℃の温度範囲で行うこ
とが望ましい。この理由は、その温度を1800℃未満
にすると焼結性か低下するばかりが、焼結助剤としての
アルカリ土類化合物及び/又は希土類化合物の元素がA
、9N粒界から抜けず、残留し、方2000℃を越える
とA、QNが昇華するばかりか雰囲気中のカーボンガス
と反、応してカーバイドが生成される恐れかある。また
、ががる焼成は前記焼成温度範囲で低温側(1800’
C)では6時間以上、高温側(2000℃)では4時間
以上行うことが望ましい。
It is desirable that the above-mentioned firing be performed at a temperature range of 1800 to 2000°C. The reason for this is that if the temperature is lower than 1800°C, the sinterability will deteriorate, but the elements of the alkaline earth compound and/or rare earth compound as a sintering aid will
, 9N does not escape from the grain boundaries and remains, and if the temperature exceeds 2000° C., there is a risk that not only will A and QN sublimate, but also react with carbon gas in the atmosphere to form carbide. In addition, Gagaru firing is performed on the low temperature side (1800'
In C), it is desirable to carry out the heating for 6 hours or more, and on the high temperature side (2000°C), it is desirable to carry out the heating for 4 hours or more.

本発明方法における焼成対象物は、上述した成形体の他
に、AIHを主成分とし、粒界相としてアルカリ土類元
素アルミニウム酸化物、希土類元素アルミニウム酸化物
、アルカリ土類元素希土類元素アルミニウム酸化物から
選ばれる少なくとも1種を含む焼結体を用いてもよい。
In addition to the above-mentioned compact, the object to be fired in the method of the present invention contains AIH as a main component, and the grain boundary phase is an alkaline earth element aluminum oxide, a rare earth element aluminum oxide, and an alkaline earth element rare earth element aluminum oxide. A sintered body containing at least one selected from the following may be used.

(作 用) 本発明方法は、A47N粉末にアルカリ土類化合物及び
/又は希土類化合物を添加した成形体を、不純物酸素量
が0,5重量%未満のA、QN焼結体とグラファイトと
を共存させた不活性雰囲気下にて焼成する。かかる焼成
工程において、前記添加物はアルカリ土類アルミン酸塩
、希土類アルミン酸塩、アルカリ土類希土類アルミン酸
塩等の複合酸化物に変化し、前記グラファイトから発生
する微量のカーボンガスの作用により焼成終了時には焼
結体の系外に除去される。つまり、前記添加物はAIH
の緻密化及び不純物酸化アルミニウムのトラップに寄与
した後、系外に除去される。また、雰囲気中に共存され
るA、9N焼結体によって、得ようとするA、QN焼結
体の重量減少を防止できる。
(Function) The method of the present invention produces a molded body obtained by adding an alkaline earth compound and/or rare earth compound to A47N powder, in which an A, QN sintered body with an impurity oxygen content of less than 0.5% by weight and graphite coexist. Calcinate in an inert atmosphere. In this firing process, the additives are changed into composite oxides such as alkaline earth aluminates, rare earth aluminates, alkaline earth rare earth aluminates, etc., and are fired by the action of a trace amount of carbon gas generated from the graphite. At the end of the process, it is removed from the sintered body. In other words, the additive is AIH
After contributing to the densification of aluminum oxide and the trapping of impurity aluminum oxide, it is removed from the system. Moreover, the A, 9N sintered body coexisting in the atmosphere can prevent weight loss of the A, QN sintered body to be obtained.

しかも、雰囲気中に共存させるAgN焼結体の不純物酸
素を0.5重量%未満に特定化することによって、得よ
うとするAgN焼結体の色ムラの発生、熱伝導率の低下
を防止できる。その結果、AIHの高純度化による高熱
伝導性(熱伝導率が240W/ m * K以上)を有
するA、QN単一相焼結体を簡単かつ安定的に製造でき
る。
Moreover, by specifying the impurity oxygen in the AgN sintered body coexisting in the atmosphere to less than 0.5% by weight, it is possible to prevent color unevenness and decrease in thermal conductivity of the AgN sintered body to be obtained. . As a result, it is possible to easily and stably produce an A, QN single-phase sintered body having high thermal conductivity (thermal conductivity of 240 W/m*K or more) due to highly purified AIH.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 まず、不純物酸素量が1.0重量%、平均−次粒子径0
.6μmのAIN粉末に添加物として平均粒径0.1.
czm、純度99.9%のY2O,粉末3重量部、(Y
換算、 2.38重量%)を加え、ボールミルで混合し
て原料粉末を調製した。つづいて、この原料粉末にアク
リル系バインダ5重量%を添加した造粒した後、この造
粒粉末12gを500kg/ cm2の一軸加圧下て成
形して約30X 30X 7mmの圧粉体とした。ひき
つづき、この圧粉体を窒素ガス雰囲気中で700℃まで
加熱してアクリル系バインダを除去した。次いで、前記
圧粉体を不純物酸素ff10.21重量%のA、QN焼
結体からなる直径901111%厚さ 11mの敷板上
に載せ、これを内寸法で直径1001110%高さ 1
00IIIIIのグラフアイ製容器内にセットし、グラ
ファイト製ヒータ炉内にて1気圧の窒素ガス雰囲気、1
900℃で24時間焼成してAfiN焼結体を製造した
Example 1 First, the amount of impurity oxygen was 1.0% by weight, and the average particle size was 0.
.. As an additive to 6 μm AIN powder, an average particle size of 0.1.
czm, 99.9% pure Y2O, 3 parts by weight powder, (Y
2.38% by weight) was added and mixed in a ball mill to prepare a raw material powder. Subsequently, 5% by weight of an acrylic binder was added to this raw material powder and granulated, and then 12 g of this granulated powder was molded under uniaxial pressure of 500 kg/cm2 to form a compact of about 30 x 30 x 7 mm. Subsequently, this green compact was heated to 700° C. in a nitrogen gas atmosphere to remove the acrylic binder. Next, the green compact was placed on a base plate with a diameter of 901111% and a thickness of 11 m, which was made of an A, QN sintered body containing impurity oxygen ff10.21% by weight, and the inner dimensions of this were 10011110% in diameter and 11 m in height.
00III in a graphite container, and heated in a graphite heater furnace in a nitrogen gas atmosphere of 1 atm.
An AfiN sintered body was manufactured by firing at 900° C. for 24 hours.

比較例1 圧粉体を載せる敷板として、不純物酸素量]、5重量%
のAgN焼結体からなるものを用いた以外、実施例1と
同様な方法によりA、QN焼結体を製造した。
Comparative Example 1 As a base plate on which the green compact is placed, impurity oxygen amount], 5% by weight
A and QN sintered bodies were manufactured in the same manner as in Example 1 except that AgN sintered bodies were used.

比較例2 圧粉体を載せる敷板として、75mn角、厚さ0.05
manのタングステンシートからなるものを用いた以外
、実施例1と同様な方法によりAgN焼結体を製造した
Comparative Example 2 A bed plate on which the compact is placed is 75 mm square and 0.05 mm thick.
An AgN sintered body was manufactured in the same manner as in Example 1, except that a tungsten sheet made of a man-made tungsten sheet was used.

比較例3 圧粉体をタングステンシートを用いずにクラフィト製容
器にそのままセットした以外、実施例1と同様な方法に
よりA、9N焼結体を製造した。
Comparative Example 3 A 9N sintered body was produced in the same manner as in Example 1, except that the green compact was directly set in a Craphite container without using a tungsten sheet.

得られた本実施例1及び比較例1〜3のA、17N焼結
体について、それらの粉砕物をX線回折により構成相を
調べたところ、単一のIcIN相からなるものであった
。但し、比較例3の焼結体では粉砕時に異臭を発つし、
なんらかの微量不純物が混入されていることが推定され
る。また、これらAJN焼結体について、密度、熱伝導
率及び外観を調べた。これらの結果を下記第1表に示し
た。
When the constituent phases of the obtained A, 17N sintered bodies of Example 1 and Comparative Examples 1 to 3 were examined by X-ray diffraction, they were found to consist of a single IcIN phase. However, the sintered body of Comparative Example 3 emits a strange odor when crushed,
It is presumed that some kind of trace impurity is mixed in. Furthermore, the density, thermal conductivity, and appearance of these AJN sintered bodies were investigated. These results are shown in Table 1 below.

なお、■密度、■熱伝導率は以下に示す方法により測定
した。
Note that (1) density and (2) thermal conductivity were measured by the methods shown below.

■密度 アルキメデス法によりApN焼結体の密度を測定した。■Density The density of the ApN sintered body was measured by the Archimedes method.

■熱伝導率 各A111N焼結体から直径IDllID1%厚さ 3
■の円板を切り出し、21.’C±2℃の室温下、レー
ザフラッシュ法により熱伝導率を測定した。
■Thermal conductivity from each A111N sintered body Diameter IDll ID1% Thickness 3
Cut out the disk of ■, 21. Thermal conductivity was measured by the laser flash method at room temperature of 'C±2°C.

実施例2〜6 圧粉体を載せる敷板として、下記第2表に示す不純物酸
素量を有するAρN焼結体からなるものを用いた以外、
実施例1と同様な方法により 5種のA47N焼結体を
製造した。
Examples 2 to 6 As the bottom plate on which the powder compact is placed, a plate made of AρN sintered body having an amount of impurity oxygen shown in Table 2 below was used.
Five types of A47N sintered bodies were manufactured by the same method as in Example 1.

得られた本実施例2〜6のAl)N焼結体について、前
述した実施例1と同様な方法により密度、熱伝導率を調
べた。その結果を同第2表に併記した。
The density and thermal conductivity of the obtained Al)N sintered bodies of Examples 2 to 6 were examined in the same manner as in Example 1 described above. The results are also listed in Table 2.

実施例7〜13 下記第3表に示すAIN粉末及び添加物からなる原料粉
末を用いた以外、実施例1と同様な方法により 7種の
Afi N焼結体を製造した。
Examples 7 to 13 Seven types of Afi N sintered bodies were manufactured in the same manner as in Example 1, except that raw material powders consisting of AIN powder and additives shown in Table 3 below were used.

得られた本実施例7〜13のA、QN焼結体について、
前述した実施例1と同様な方法により密度、熱伝導率の
評価すると共に、電気抵抗、絶縁破壊電圧、誘電率を調
べた。その結果を同第3表に併記した。なお、電気抵抗
、絶縁破壊電圧、誘電率の測定法はいずれもJISにの
っとり、室温下で行った。
Regarding the obtained A, QN sintered bodies of Examples 7 to 13,
Density and thermal conductivity were evaluated by the same method as in Example 1 described above, and electrical resistance, dielectric breakdown voltage, and dielectric constant were also examined. The results are also listed in Table 3. The electrical resistance, dielectric breakdown voltage, and dielectric constant were all measured at room temperature in accordance with JIS.

実施例14〜18 IN粉末として下記第4表に示す組成のものを用い、か
つ焼成を同第4表に示す条件で行った以外、実施例1と
同様な方法により 5種のA、QN焼結体を製造した。
Examples 14 to 18 Five types of A and QN sintering were performed in the same manner as in Example 1, except that the IN powder had the composition shown in Table 4 below, and the sintering was performed under the conditions shown in Table 4. A body was produced.

但し、実施例1Bでは造粒粉6gを加圧成形して製造に
供した。
However, in Example 1B, 6 g of granulated powder was press-molded and used for production.

得られた本実施例14〜18のAIN焼結体について、
前述したのと同様な方法により密度、熱伝導率、電気抵
抗、絶縁破壊電圧、誘電率を調べた。
Regarding the obtained AIN sintered bodies of Examples 14 to 18,
Density, thermal conductivity, electrical resistance, dielectric breakdown voltage, and dielectric constant were investigated using the same methods as described above.

その結果を同第4表に併記した。The results are also listed in Table 4.

[発明の効果] 以上詳述した如く、本発明によれば色ムラがなく、24
0W / m K以上の高熱伝導性を有するAgN焼結
体を簡単かつ安定的に製造でき、ひいては歩留まりの向
上、低コスト化を図ることができる等顕著な効果を奏す
る。
[Effects of the Invention] As detailed above, according to the present invention, there is no color unevenness and
AgN sintered bodies having a high thermal conductivity of 0 W/mK or more can be easily and stably produced, which has remarkable effects such as improving yield and reducing costs.

Claims (1)

【特許請求の範囲】[Claims] 窒化アルミニウム粉末にアルカリ土類化合物及び/又は
希土類化合物を添加した成形体を、不純物酸素量が0.
5重量%未満の窒化アルミニウム焼結体とグラファイト
とを共存させた不活性雰囲気にて焼成することを特徴と
する窒化アルミニウム焼結体の製造方法。
A molded body made by adding an alkaline earth compound and/or a rare earth compound to aluminum nitride powder has an impurity oxygen content of 0.
A method for producing an aluminum nitride sintered body, which comprises firing in an inert atmosphere in which less than 5% by weight of an aluminum nitride sintered body and graphite coexist.
JP2177322A 1990-07-06 1990-07-06 Manufacturing method of aluminum nitride sintered body Expired - Lifetime JP2938153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177322A JP2938153B2 (en) 1990-07-06 1990-07-06 Manufacturing method of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177322A JP2938153B2 (en) 1990-07-06 1990-07-06 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH0465367A true JPH0465367A (en) 1992-03-02
JP2938153B2 JP2938153B2 (en) 1999-08-23

Family

ID=16028956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177322A Expired - Lifetime JP2938153B2 (en) 1990-07-06 1990-07-06 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2938153B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049525A1 (en) 2003-11-21 2005-06-02 Kabushiki Kaisha Toshiba High thermally conductive aluminum nitride sintered product
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
US7553788B2 (en) 2006-09-26 2009-06-30 Tokuyama Corporation Process for producing an aluminum nitride sintered body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049525A1 (en) 2003-11-21 2005-06-02 Kabushiki Kaisha Toshiba High thermally conductive aluminum nitride sintered product
EP1695948A1 (en) * 2003-11-21 2006-08-30 Kabushiki Kaisha Toshiba High thermally conductive aluminum nitride sintered product
EP1695948A4 (en) * 2003-11-21 2009-04-29 Toshiba Kk High thermally conductive aluminum nitride sintered product
EP2189432A3 (en) * 2003-11-21 2012-05-30 Kabushiki Kaisha Toshiba High thermal conductive aluminum nitride sintered body
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
US7876053B2 (en) 2004-06-21 2011-01-25 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
US7973481B2 (en) 2004-06-21 2011-07-05 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
JP4937738B2 (en) * 2004-06-21 2012-05-23 株式会社トクヤマ Nitride sintered body and manufacturing method thereof
US7553788B2 (en) 2006-09-26 2009-06-30 Tokuyama Corporation Process for producing an aluminum nitride sintered body

Also Published As

Publication number Publication date
JP2938153B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US4746637A (en) Aluminum nitride sintered body and process for producing the same
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
US5424261A (en) Low temperature sintering route for aluminum nitride ceramics
JPH0244787B2 (en)
KR101412404B1 (en) Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
JPH0717454B2 (en) Aluminum nitride sintered body and manufacturing method thereof
US4539298A (en) Highly heat-conductive ceramic material
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0465367A (en) Production of aluminum nitride sintered compact
KR970009989B1 (en) Aluminum nitrid body and method for forming said body utilizing a vitreous sintering additive
JP2962466B2 (en) Aluminum nitride sintered body
JPH01183469A (en) Sintered aluminum nitride
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2535139B2 (en) Heat dissipation board
JPS63277569A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS6317210A (en) Production of aluminum nitride powder
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0515668B2 (en)
JPS63277570A (en) Production of sintered aluminum nitride having high thermal conductivity
JPH0446060A (en) Colored aluminum nitride sintered body and production thereof
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JPH01298071A (en) Aluminum nitride sintered body
KR100310549B1 (en) Ceramic bodies, methods for manufacturing the same, and electrical members comprising the same
JP2704194B2 (en) Black aluminum nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12