JPH01183469A - Sintered aluminum nitride - Google Patents

Sintered aluminum nitride

Info

Publication number
JPH01183469A
JPH01183469A JP63008908A JP890888A JPH01183469A JP H01183469 A JPH01183469 A JP H01183469A JP 63008908 A JP63008908 A JP 63008908A JP 890888 A JP890888 A JP 890888A JP H01183469 A JPH01183469 A JP H01183469A
Authority
JP
Japan
Prior art keywords
earth element
compound
sintering
powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63008908A
Other languages
Japanese (ja)
Other versions
JP2666942B2 (en
Inventor
Mitsuo Kasori
加曽利 光男
Fumio Ueno
文雄 上野
Akihiro Horiguchi
堀口 昭宏
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63008908A priority Critical patent/JP2666942B2/en
Publication of JPH01183469A publication Critical patent/JPH01183469A/en
Application granted granted Critical
Publication of JP2666942B2 publication Critical patent/JP2666942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To increase the denseness and thermal conductivity in addition to easy sintering properties, by adding alkaline earth element-rare earth element-Al compound as at least one of the subphases to AlN as the main component. CONSTITUTION:80-99.99wt.% of a powder of crystalline AlN particles of less than 4 micron average particle size and 0.01-7wt.% oxygen content are combined with totally 0.01-80wt.%, based on the oxides, of a mixture from a compound of alkaline earth metal (R) selected from Mg, Ca, Sr, Ba or the like, and another compound of rare earth metal (Ln) selected from Sc, Y, La, Ce, Sm, Eu, Tm, Tb, Dy, Nd, Gd, Pr, Ho, Er, Yb at 0.9-0.1 Ln/(Ln+R) weight ratio, crushed and mixed in a ball mill to prepare the starting formulation. The formulation is mixed with a binder, formed, defatted by heating in a N2 gas flow, sintered at 1,500-1,950 deg.C under normal pressure to give the title sintered product containing AlN as the main component and R-Ln-Al compound as at least one part of subphases.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、窒化アルミニウム焼結体に関し、特に新規な
組成を有する易焼結性の窒化アルミニウム焼結体に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an aluminum nitride sintered body, and particularly to an easily sinterable aluminum nitride sintered body having a novel composition.

(従来の技術) 窒化アルミニウム(Al!N)は常温から高温まで高強
度性を保持し、かつ溶融金属に濡れず、更に電気絶縁性
が高く、高熱伝導性である等、多くの優れた特性を有す
ることから新素材として注目されている。特に、近年、
A、11’N焼結体の放熱性基板への応用研究が盛んに
行われ、その結果素原料や焼結技術の改善等により数年
前までは熱伝導率が100W/m−kが限界であったが
、260W/m−kまで改良されるに到っている。
(Prior technology) Aluminum nitride (Al!N) has many excellent properties, such as maintaining high strength from room temperature to high temperature, not getting wet with molten metal, and having high electrical insulation and high thermal conductivity. It is attracting attention as a new material because of its properties. Especially in recent years,
A. Research on the application of 11'N sintered bodies to heat dissipating substrates has been actively conducted, and as a result, due to improvements in raw materials and sintering technology, the thermal conductivity was at its limit of 100 W/m-k until a few years ago. However, it has now been improved to 260 W/m-k.

ところで、AノN焼結体は通常1t’N粉末を所望の方
法により成形した後、焼結することにより製造されてい
る。焼結は、常圧焼結法やホットプレス法により行われ
るが、A、47Nは難焼結性物質であるため、常圧焼結
法では緻密な焼結体を得る目的で焼結助剤を添加するこ
とが必要である。
Incidentally, the A/N sintered body is usually manufactured by molding 1t'N powder by a desired method and then sintering it. Sintering is performed by the pressureless sintering method or the hot press method, but since A and 47N are difficult to sinter, sintering aids are used in the pressureless sintering method in order to obtain a dense sintered body. It is necessary to add

lt’Nの焼結助剤には、アルカリ土類元素の化合物や
希土類元素の化合物が知られている。これらの化合物は
、焼結時においてAノN粉末原料中に不可避的に混入さ
れている酸素と反応し、R−1J7−0糸孔合物(R:
アルカリ土類元素)やLn−Al−〇系化合物(Ln 
;希土類元素)を生成しつつ焼結体を緻密化させる。ま
た、A、i7N粉末原料中に含まれる酸素はAノーN−
0県北合物を生成したり、Al!N粒子内に固溶してA
ノN本来の高熱伝導性を低下させるが、上述した焼結助
剤としてのアルカリ土類元素の化合物や希土類元素の化
合物が酸素と反応し、この生成物を粒界相として固定す
るため、前記焼結助剤は高熱伝導率化にも寄与する。
Compounds of alkaline earth elements and compounds of rare earth elements are known as sintering aids for lt'N. These compounds react with oxygen that is unavoidably mixed into the A-N powder raw material during sintering, and form an R-1J7-0 yarn pore compound (R:
alkaline earth elements) and Ln-Al-〇-based compounds (Ln
; rare earth elements) and densifies the sintered body. In addition, the oxygen contained in the A, i7N powder raw material is
Generates 0 prefecture Hokuai products, Al! A solid solution in N particles
Although the inherent high thermal conductivity of N is reduced, the above-mentioned alkaline earth element compounds and rare earth element compounds as sintering aids react with oxygen and fix this product as a grain boundary phase. Sintering aids also contribute to high thermal conductivity.

このように焼結助剤をAノN粉末原料に添加することに
より確かにA、l’N焼結体の緻密化、高熱伝導率化を
達成することが可能となるが、上記焼結助剤ではいずれ
も1700〜1900℃の高温での焼結が必要である。
By adding a sintering aid to the A-N powder raw material in this way, it is certainly possible to achieve densification and high thermal conductivity of the A, l'N sintered body, but the above-mentioned sintering aid All of these materials require sintering at a high temperature of 1,700 to 1,900°C.

AノN焼結体が広く利用されるためには、いくつかの課
題が残されているが、その一つが焼結温度の低減化であ
る。焼結温度の低減化は、低コスト化の観点から極めて
重要である。
In order for A/N sintered bodies to be widely utilized, several issues remain, one of which is reducing the sintering temperature. Reducing the sintering temperature is extremely important from the viewpoint of cost reduction.

特に、A1N焼結体の半導体装基板への応用を考える時
、現在広く使用されているアルミナ基板との代替が考え
られ、かかる状況では徹底的な低コスト化が必要である
In particular, when considering the application of A1N sintered bodies to semiconductor substrates, it is possible to consider replacing them with alumina substrates, which are currently widely used, and in such a situation, thorough cost reduction is necessary.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、焼結性に優れ、従来に比べてより低い焼結温度で
充分な緻密化が可能な窒化アルミニウム焼結体を提供し
ようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and has excellent sinterability and can achieve sufficient densification at a lower sintering temperature than conventional The present invention aims to provide an aluminum nitride sintered body.

[発明の構成] (m題を解決するための手段) 本発明は、窒化アルミニウムを主成分とし、副相の少な
くとも一部としてアルカリ土類元素希土類元素アルミニ
ウム化合物を含むことを特徴とする窒化アルミニウム焼
結体である。
[Structure of the Invention] (Means for Solving Problem M) The present invention provides an aluminum nitride characterized by containing aluminum nitride as a main component and containing an alkaline earth element rare earth element aluminum compound as at least a part of the subphase. It is a sintered body.

上記アルカリ土類元素希土類元素アルミニウム化合物と
しては、例えばアルカリ土類元素をR1希土類元素をL
nとしたとき、R−Ln−Aノー〇系の酸化物を挙げる
ことができる。ここで、アルカリ土類元素としてはMg
5Ca、、5rSBaを挙げることかでき、特にCa 
SS r%Baが好ましい。希土類元素としてはS c
 SY 、L a sCe、Sm 、Eu、Tag、T
b S Dy、Nd。
As the alkaline earth element rare earth element aluminum compound, for example, an alkaline earth element is R1 a rare earth element is L
When n is an example, R-Ln-A No. 0 type oxides can be mentioned. Here, the alkaline earth element is Mg
5Ca, 5rSBa, especially Ca
SS r%Ba is preferred. As a rare earth element, S c
SY, LasCe, Sm, Eu, Tag, T
b S Dy, Nd.

Gd5Pr、Ho5Er、Yb等を挙げることができ、
特にY、La 、Ceが好ましい。
Examples include Gd5Pr, Ho5Er, Yb, etc.
Particularly preferred are Y, La, and Ce.

上記AノN焼結体におけるAノN結晶粒子の構成比は、
全体の80〜99.99重量%とすることが望ましい。
The composition ratio of A-N crystal particles in the above-mentioned A-N sintered body is:
It is desirable to set it as 80-99.99 weight% of the whole.

次に、本発明のlt’N焼結体を得るための製造方法を
説明する。
Next, a manufacturing method for obtaining the lt'N sintered body of the present invention will be explained.

まず、A、NN粉末に希土類元素化合物及びアルカリ土
類元素化合物を所定量添加した後、ボールミル等を用い
て粉砕、混合して原料を調製する。
First, a predetermined amount of a rare earth element compound and an alkaline earth element compound are added to A and NN powders, and then ground and mixed using a ball mill or the like to prepare a raw material.

但し、常圧焼結の場合は前記ボールミル等で粉砕、混合
したものに更にバインダを加え、混練、造粒、整粒を行
なって原料を調製する。前記AノN粉末としては、酸素
が0.01〜7重量%含むものを用いることが望ましい
。このA、17N粉末は、平均粒径で4μm以下、低温
焼結のためには2μm以下のものを用いることが望まし
い。前記希土類元素化合物としては、例えばSc、Y、
、Las Ce5SsSEuST1Tb%Dys Nd
s Gd5Pr、Hos Er、Ybの酸化物、フッ化
物、炭化物或いは焼結により酸化物、フッ化物、炭化物
となる化合物を用いることができ、これらは単独でも2
種以上の混合物で使用してもよい。前記アルカリ土類元
素化合物としては、例えばMg1Ca SSr 、Ba
の酸化物、フッ化物、炭化物或いは焼結により酸化物、
フッ化物、炭化物となる化合物を用いることができ、こ
れらは単独でも2種以上の混合物で使用してもよい。こ
れらの希土類元素化合物及びアルカリ土類元素化合物は
、A、ffN粉末と同様、平均粒径で4μm以下、より
好ましくは2μm以下の粉末を用いることが望ましい。
However, in the case of pressureless sintering, a binder is further added to the pulverized and mixed material using the ball mill, etc., and the raw material is prepared by kneading, granulating, and sizing. As the A-N powder, it is desirable to use one containing 0.01 to 7% by weight of oxygen. This A, 17N powder has an average particle size of 4 μm or less, and it is desirable to use 2 μm or less for low-temperature sintering. Examples of the rare earth element compound include Sc, Y,
, Las Ce5SsSEuST1Tb%Dys Nd
s Gd5Pr, Hos Er, Yb oxides, fluorides, carbides, or compounds that become oxides, fluorides, or carbides by sintering can be used;
A mixture of more than one species may be used. Examples of the alkaline earth element compounds include Mg1Ca SSr, Ba
oxides, fluorides, carbides or sintered oxides,
Compounds that form fluorides and carbides can be used, and these may be used alone or in a mixture of two or more. As with the A and ffN powders, it is desirable to use powders with an average particle size of 4 μm or less, more preferably 2 μm or less as these rare earth element compounds and alkaline earth element compounds.

また、前記希土類元素化合物及びアルカリ土類元素化合
物のAノN粉末に対する添加量は、夫々酸化物の状態に
換算して合計で0.01〜20重量%の範囲することが
望ましい。この理由は、それら化合物の添加量を0.0
1重量%未満にすると目的とする希土類元素アルカリ土
類元素アルミニウム化合物の副相の生成が困難となり、
一方それら化合物の添加量が20重量%を越えると耐熱
性、機械的強度及び熱伝導率の低下を招く恐れがあるか
らである。より好ましい希土類元素化合物及びアルカリ
土類元素化合物の添加量は、0.01−17重量%の範
囲である。
Further, it is desirable that the amount of the rare earth element compound and the alkaline earth element compound added to the A-N powder ranges from 0.01 to 20% by weight in total in terms of their respective oxide states. The reason for this is that the amount of these compounds added is 0.0
If it is less than 1% by weight, it will be difficult to generate the desired subphase of the rare earth element alkaline earth element aluminum compound.
On the other hand, if the amount of these compounds added exceeds 20% by weight, there is a risk that heat resistance, mechanical strength and thermal conductivity will decrease. A more preferable amount of the rare earth element compound and alkaline earth element compound is in the range of 0.01-17% by weight.

次いで、前記バインダを含む原料を金型、静水圧又はシ
ート成形等の手段により成形した後、成形体をN2ガス
気流中にて加熱してバインダを除去する。つづいて、成
形体を黒鉛又は窒化アルミニウムからなる容器にセット
し、N2ガス雰囲気中にて1550〜1950℃で常圧
焼結を行なう。一方、ホットプレス焼結の場合は前記ボ
ールミルで粉砕、混合して調製した原料を前記と同様な
温度でホットプレスを行なう。この際、高熱伝導性のA
、t’N焼結体を得る場合には1800〜1950℃で
、高熱伝導性よりも低温焼結性を優先する場合には15
50〜1700℃で夫々焼結を行なう。
Next, the raw material containing the binder is molded using a mold, hydrostatic pressure, sheet molding, or the like, and then the molded body is heated in a N2 gas stream to remove the binder. Subsequently, the molded body is placed in a container made of graphite or aluminum nitride, and pressureless sintering is performed at 1550 to 1950°C in an N2 gas atmosphere. On the other hand, in the case of hot press sintering, the raw materials prepared by pulverizing and mixing in the ball mill are hot pressed at the same temperature as above. At this time, A with high thermal conductivity
, 1800 to 1950°C when obtaining a t'N sintered body, and 15°C when giving priority to low temperature sinterability over high thermal conductivity.
Sintering is performed at 50 to 1700°C.

上述した焼結により製造されたAiN焼結体のA、t’
N以外の構成相を粉末X線回折により同定すると、Ln
/Hの添加比率により■Ln −Aノー〇系のみ存在、
■R−Ln−AノーO系とLn −Aj?−0系の共存
、■R−Ln−Aノー〇系のみ存在、■R−Ln−Aノ
ー〇系とR−Al!−0系の共存、■R−、Aノー〇系
のみ存在、と変化する。
A, t' of the AiN sintered body manufactured by the above-mentioned sintering
When the constituent phases other than N are identified by powder X-ray diffraction, Ln
Depending on the addition ratio of /H, only ■Ln-A No〇 system exists,
■R-Ln-A no O system and Ln-Aj? Coexistence of -0 system, ■Only R-Ln-A No〇 system exists, ■R-Ln-A No〇 system and R-Al! -0 system coexists, ■R-, A No ○ system only exists, and so on.

また、AノN粉末中の酸素量が多くかつ前記Ln化合物
及びR化合物の添加量が少ない原料組成では、上記構成
相の他にAノーN−0糸孔合物が生成する場合もある。
In addition, in a raw material composition in which the amount of oxygen in the A-N powder is large and the amounts of the Ln compound and R compound added are small, an A-N-0 yarn pore compound may be formed in addition to the above-mentioned constituent phases.

本発明では、適正なAJN粉末の使用や前記Ln/Hの
添加比率の最適化によって製造された前記■〜■のよう
にR−Ln−Aノー〇系を構成相(副相)として少なく
とも含むAiN焼結体が用いられる。
In the present invention, the R-Ln-A no. AiN sintered body is used.

また、前述した副相としてのR−Ln −A、ff−〇
系の酸化物を生成するには、AノN粉末の性状によるが
、希土類元素(Ln )とアルカリ土類元素(R)との
添加比率を、重量比にてLn/(Ln +R)が0.9
〜0.1の範囲にすることが望ましい。即ち、Ln化合
物としてY2O3を、R化合物としてCaOを夫々用い
てA、17N粉末に添加する際、重量比にてY203 
/ (Y203+Ca0)が0.9〜0.1の範囲とす
ることによってA、t’N以外の構成相として少なくと
もCaYAJ!04やCa YAlO系未知相(Ca 
YAJ!307と推定される)が生成する。
In addition, in order to generate the R-Ln-A, ff-〇-based oxide as the subphase mentioned above, it is necessary to combine rare earth elements (Ln) and alkaline earth elements (R), depending on the properties of the A-N powder. The addition ratio of Ln/(Ln +R) in weight ratio is 0.9
It is desirable to set it in the range of ~0.1. That is, when adding Y2O3 as a Ln compound and CaO as an R compound to A, 17N powder, Y203 in weight ratio
/ (Y203+Ca0) is in the range of 0.9 to 0.1, so that at least CaYAJ! as a constituent phase other than A and t'N! 04 and Ca YAlO-based unknown phase (Ca
YAJ! 307) is generated.

(作用) 本発明によれば、窒化アルミニウムを主成分とし、副相
の少なくとも一部としてアルカリ土類元素希土類元素ア
ルミニウム化合物を含む構成とすることによって、従来
に比べてより低い焼結温度で充分な緻密化が達成され、
かつ高熱伝導率の窒化アルミニウム焼結体を得ることが
できる。
(Function) According to the present invention, since the main component is aluminum nitride and contains an alkaline earth element rare earth element aluminum compound as at least a part of the subphase, a lower sintering temperature is required than in the past. densification has been achieved,
Moreover, an aluminum nitride sintered body with high thermal conductivity can be obtained.

(発明の実施例) 以下、本発明の実施例を詳細に説明する。(Example of the invention) Examples of the present invention will be described in detail below.

実施例1〜3 まず、不純物としての酸素を0.86重量%含有し、平
均粒径が1.8μmのAノN粉末に平均粒径0.8μm
のY2O3及びCa Co3の混合粉末(混合比率;Y
2O3/CaOの換算で3=1)を3重量%添加し、ボ
ールミルを用いて解砕、混合して原料を調製した。つづ
いて、この原料にアクリル系バインダを5重量%添加し
て造粒した後、500幻/iの圧力でプレス成形して約
30cMX 30n X 8αの寸法の圧粉体とした。
Examples 1 to 3 First, A-N powder containing 0.86% by weight of oxygen as an impurity and having an average particle size of 1.8 μm was added with an average particle size of 0.8 μm.
Mixed powder of Y2O3 and CaCo3 (mixing ratio; Y
A raw material was prepared by adding 3% by weight of 2O3/CaO (3=1) and crushing and mixing using a ball mill. Subsequently, 5% by weight of an acrylic binder was added to this raw material and granulated, followed by press molding at a pressure of 500 psi/i to obtain a green compact with dimensions of approximately 30 cMX 30 n x 8 α.

ひきつづき、この圧粉体を窒素ガス雰囲気で700℃ま
で加熱してバインダを除去した。次いで、AJ!N焼結
体からなる容器中にセットし、窒素ガス雰囲気下にて1
600℃、1700℃、1800℃の各温度で2時間常
圧焼結して3種のAノN焼結体を製造した。
Subsequently, this green compact was heated to 700° C. in a nitrogen gas atmosphere to remove the binder. Next, AJ! Set in a container made of N sintered body and heated under nitrogen gas atmosphere.
Three types of A/N sintered bodies were produced by pressureless sintering at temperatures of 600°C, 1700°C, and 1800°C for 2 hours.

実施例4〜21 原料として下記第1表に示すAノN粉末、添加物である
混合粉末(但し、CaOはCa CO3の形で添加)か
らなるものを用い、同第1表に示す条件で焼結した以外
、実施例1と同様な方法により18種のAiN焼結体を
製造した。
Examples 4 to 21 Using A-N powder shown in Table 1 below as raw materials and a mixed powder as an additive (however, CaO is added in the form of CaCO3), under the conditions shown in Table 1. Eighteen types of AiN sintered bodies were manufactured in the same manner as in Example 1 except for sintering.

比較例1〜6 原料として下記第1表に示すAノN粉末、添加物からな
るものを用い、同第1表に示す条件で焼結した以外、実
施例1と同様な方法により6種のAノN焼結体を製造し
た。
Comparative Examples 1 to 6 Six types were prepared in the same manner as in Example 1, except that A-N powder and additives shown in Table 1 below were used as raw materials, and sintered under the conditions shown in Table 1. An A/N sintered body was manufactured.

しかして、本実施例1〜21及び比較例1〜6で得られ
た各AノN焼結体の密度を測定した。また、各14’N
焼結体を研削して直径101111、厚さ3.5 xm
の円板を作製し、これらを試験片としてし−ザララッシ
ュ法によって室温での熱伝導率を測定した。更に、粉末
X線回折により各人ノN焼結体のA、ffN以外の構成
相を同定した。その結果を同第1表に併記した。なお、
第1表中の未知相とはCa−Y−AノーO系複合酸化物
であり、その組成は現時点ではCa YAノ307と推
定される。
Thus, the density of each A/N sintered body obtained in Examples 1 to 21 and Comparative Examples 1 to 6 was measured. Also, each 14'N
The sintered body was ground to a diameter of 101111 mm and a thickness of 3.5 x m.
Thermal conductivity at room temperature was measured using the disks as test pieces by the Zaralash method. Furthermore, the constituent phases other than A and ffN of the N sintered body were identified by powder X-ray diffraction. The results are also listed in Table 1. In addition,
The unknown phase in Table 1 is a Ca-YA-no-O complex oxide, and its composition is currently estimated to be Ca-YA-307.

また、本実施例1〜21及び比較例1〜6で得られた各
A、17N焼結体におけるCa O/(Y203 +C
a O)の重量比と密度、熱伝導率との関係を第1図に
示した。なお、第1図中にプロットされた口は焼結条件
を1600℃に設定したAノN焼結体を、同・は焼結条
件を1700 ”Cに設定したAノN焼結体を、同Oは
焼結条件を1800℃に設定したAノN焼結体を夫々示
す。実施例及び比較例の中で焼結条件を1600℃、1
800℃に設定したA、ffN焼結体のAノN以外の構
成相を第2図及び第3図に示した。更に、第4図に実施
例15のA、ffN焼結体の粉末X線回折スペクトルを
示した。
In addition, Ca O/(Y203 +C
The relationship between the weight ratio of a O), density, and thermal conductivity is shown in FIG. In addition, the opening plotted in Fig. 1 indicates the A/N sintered body with the sintering condition set at 1600°C, and the opening plotted in Figure 1 indicates the A/N sintered body with the sintering condition set at 1700°C. O indicates the A/N sintered bodies in which the sintering conditions were set at 1800°C.In the examples and comparative examples, the sintering conditions were set at 1600°C and 1.
The constituent phases other than A/N of the A, ffN sintered body set at 800°C are shown in Figs. 2 and 3. Further, FIG. 4 shows the powder X-ray diffraction spectrum of the A, ffN sintered body of Example 15.

なお、第4図中のOはA7Nの回折ピークを示す。Note that O in FIG. 4 indicates the diffraction peak of A7N.

上記第1表及び第1図〜第4図から明らかなようにCa
−Y−Aノー〇系複合酸化物を副相として含む本実施例
のA、i’N焼結体はCa −Aノー〇系酸化物を副相
として含む比較例1〜3のAノN焼結体やY−Aノー〇
系酸化物を副相として含む比較例4〜6のjl’N焼結
体に比べて低い焼結温度で熱伝導性の向上、緻密化を達
成できることがわかる。
As is clear from Table 1 and Figures 1 to 4 above, Ca
The A, i'N sintered bodies of this example containing a -YA No ○ type composite oxide as a subphase are the A and i'N sintered bodies of Comparative Examples 1 to 3 containing a Ca -A No ○ type oxide as a subphase. It can be seen that improved thermal conductivity and densification can be achieved at a lower sintering temperature compared to the sintered bodies and the jl'N sintered bodies of Comparative Examples 4 to 6, which contain Y-A No ○ type oxide as a subphase. .

実施例22〜40 原料として下記第2表に示すAノN粉末及び該AノN粉
末に対する添加量を1〜7重量%とした添加物である混
合粉末(但し、CaOはCa 003の形で添加)から
なるものを用い、同第2表に示す条件で焼結した以外、
実施例1と同様な方法により19種のA、i’N焼結体
を製造した。
Examples 22 to 40 A-N powder shown in Table 2 below as a raw material and a mixed powder that is an additive in an amount of 1 to 7% by weight relative to the A-N powder (however, CaO is in the form of Ca003) Except for sintering under the conditions shown in Table 2,
Nineteen types of A, i'N sintered bodies were manufactured by the same method as in Example 1.

しかして、本実施例22〜40のAiN焼結体について
実施例1と同様、密度、レーザフラッシュ法による室温
での熱伝導率熱伝導性及び粉末X線回折によるAノN以
外の構成相の同定を行なった。その結果を同、第2表に
併記した。
As in Example 1, the AiN sintered bodies of Examples 22 to 40 were found to have density, thermal conductivity at room temperature determined by laser flash method, thermal conductivity determined by powder X-ray diffraction, and constituent phases other than A-N determined by powder X-ray diffraction. Identification was carried out. The results are also listed in Table 2.

実施例41〜60 原料として下記第3表に示すA、NN粉末及び添加物で
ある混合粉末(但し、CaOはCa CO3の形で、S
rOはSr CO3の形で添加)からなるものを用い、
同第3表に示す種々の条件で焼結した以外、実施例1と
同様な方法により20種のAノN焼結体を製造した。
Examples 41 to 60 Mixed powder of A and NN powders shown in Table 3 below as raw materials and additives (however, CaO is in the form of CaCO3, S
rO is added in the form of SrCO3),
Twenty types of A/N sintered bodies were manufactured in the same manner as in Example 1, except that the sintered bodies were sintered under various conditions shown in Table 3.

しかして、本実施例41〜60のlJ?N焼結体につい
て実施例1と同様、密度、レーザフラッシュ法による室
温での熱伝導率熱伝導性及び粉末X線回折によるlt’
N以外の構成相の同定を行なった。その結果を同第3表
に併記した。
However, the lJ of Examples 41 to 60? Regarding the N sintered body, as in Example 1, density, thermal conductivity at room temperature by laser flash method, thermal conductivity, and lt' by powder X-ray diffraction
Constituent phases other than N were identified. The results are also listed in Table 3.

[発明の効果] 以上詳述した如く、本発明によれば窒化アルミニウムを
主成分とし、副相の少なくとも一部としてアルカリ土類
元素希土類元素アルミニウム化合物を含む構成とするこ
とによって、従来に比べてより低い焼結温度で充分な緻
密化が達成され、かつ高熱伝導率の窒化アルミニウム焼
結体を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, by having a structure in which aluminum nitride is the main component and at least a part of the subphase contains an alkaline earth element rare earth element aluminum compound, Sufficient densification can be achieved at a lower sintering temperature, and an aluminum nitride sintered body with high thermal conductivity can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結温度を1600℃、1700℃、1800
℃に設定して得られたAiN焼結体におけるCaO/ 
(Y203 +Ca O) (7)重量比と密度、熱伝
導率との関係を示す特性図、第2図及び第3図は夫々焼
結条件を1600℃、1800℃に設定したAノN焼結
体におけるCa O/ (Y203 +Ca O)の重
量比とll?N以外の構成相との関係を示す特性図、第
4図は実施例15のAノN焼結体の粉末X線回折スペク
トルを示する特性図である。 出願人代理人 弁理士  鈴江武彦 CaO/(Y203+CaO)11am100151図
Figure 1 shows the sintering temperatures of 1600°C, 1700°C, and 1800°C.
CaO/ in the AiN sintered body obtained by setting
(Y203 +Ca O) (7) Characteristic diagram showing the relationship between weight ratio, density, and thermal conductivity. Figures 2 and 3 show A/N sintering with sintering conditions set at 1600°C and 1800°C, respectively. Weight ratio of Ca O/(Y203 +Ca O) in the body and ll? A characteristic diagram showing the relationship with constituent phases other than N, and FIG. 4 is a characteristic diagram showing the powder X-ray diffraction spectrum of the A-N sintered body of Example 15. Applicant's representative Patent attorney Takehiko Suzue CaO/(Y203+CaO) 11am100151 diagram

Claims (2)

【特許請求の範囲】[Claims] (1).窒化アルミニウムを主成分とし、副相の少なく
とも一部としてアルカリ土類元素希土類元素アルミニウ
ム化合物を含むことを特徴とする窒化アルミニウム焼結
体。
(1). An aluminum nitride sintered body comprising aluminum nitride as a main component and containing an alkaline earth element rare earth element aluminum compound as at least a part of a subphase.
(2).アルカリ土類元素希土類元素アルミニウム化合
物は、アルカリ土類元素を,R、希土類元素をLnとし
たとき、R−Ln−Al−O系の酸化物である請求項1
記載の窒化アルミニウム焼結体。
(2). Claim 1: The alkaline earth element rare earth element aluminum compound is an oxide of the R-Ln-Al-O system, where R is the alkaline earth element and Ln is the rare earth element.
The described aluminum nitride sintered body.
JP63008908A 1988-01-19 1988-01-19 Aluminum nitride sintered body Expired - Lifetime JP2666942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008908A JP2666942B2 (en) 1988-01-19 1988-01-19 Aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008908A JP2666942B2 (en) 1988-01-19 1988-01-19 Aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01183469A true JPH01183469A (en) 1989-07-21
JP2666942B2 JP2666942B2 (en) 1997-10-22

Family

ID=11705772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008908A Expired - Lifetime JP2666942B2 (en) 1988-01-19 1988-01-19 Aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2666942B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656533A (en) * 1992-08-12 1994-03-01 Sumitomo Metal Ind Ltd Aluminum nitride sintered compact
EP0913371A2 (en) * 1997-10-30 1999-05-06 Sumitomo Electric Industries, Ltd. Sintered aluminum nitride body and metallized substrate prepared therefrom
JP2001122666A (en) * 1999-10-26 2001-05-08 Toshiba Corp Aluminum nitride sintered compact, and semiconductor device and heating device using the same
JP2002173373A (en) * 2000-12-07 2002-06-21 Toshiba Corp Aluminum nitride sintered compact, method of producing the same and electronic component using the same
US7122490B2 (en) * 2003-02-28 2006-10-17 Ngk Insulators, Ltd. Aluminum nitride materials and members for use in the production of semiconductors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201671A (en) * 1985-03-01 1986-09-06 電気化学工業株式会社 High heat conductor and manufacture
JPS6325278A (en) * 1986-07-18 1988-02-02 株式会社トクヤマ Manufacture of aluminum nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201671A (en) * 1985-03-01 1986-09-06 電気化学工業株式会社 High heat conductor and manufacture
JPS6325278A (en) * 1986-07-18 1988-02-02 株式会社トクヤマ Manufacture of aluminum nitride sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656533A (en) * 1992-08-12 1994-03-01 Sumitomo Metal Ind Ltd Aluminum nitride sintered compact
EP0913371A2 (en) * 1997-10-30 1999-05-06 Sumitomo Electric Industries, Ltd. Sintered aluminum nitride body and metallized substrate prepared therefrom
EP0913371A3 (en) * 1997-10-30 1999-09-15 Sumitomo Electric Industries, Ltd. Sintered aluminum nitride body and metallized substrate prepared therefrom
US6174614B1 (en) 1997-10-30 2001-01-16 Sumitomo Electric Industries, Ltd. Sintered aluminum nitride body and metallized substrate prepared therefrom
JP2001122666A (en) * 1999-10-26 2001-05-08 Toshiba Corp Aluminum nitride sintered compact, and semiconductor device and heating device using the same
JP2002173373A (en) * 2000-12-07 2002-06-21 Toshiba Corp Aluminum nitride sintered compact, method of producing the same and electronic component using the same
US7122490B2 (en) * 2003-02-28 2006-10-17 Ngk Insulators, Ltd. Aluminum nitride materials and members for use in the production of semiconductors

Also Published As

Publication number Publication date
JP2666942B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
EP0180724B1 (en) Aluminum nitride sintered body and process for producing the same
EP0075857B1 (en) Sintered bodies of aluminum nitride
JPS6346032B2 (en)
JPH0717454B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JPH01183469A (en) Sintered aluminum nitride
JP2001002464A (en) High-voltage-withstanding aluminous sintered compact and its production
KR100404815B1 (en) Ceramic material substrate
JPH0524931A (en) Aluminum nitride sintered compact
JP3145519B2 (en) Aluminum nitride sintered body
EP0941976B1 (en) Highly heat-conductive silicon nitride-base sintered-body and method for fabricating the same
JPS6217076A (en) Aluminum nitride powder composition
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JPH09175867A (en) Aluminum nitride sintered product
JPH0977559A (en) Aluminum nitride sintered compact and its production
JP2778732B2 (en) Boron nitride-aluminum nitride based composite sintered body and method for producing the same
US5061664A (en) Preparation of sintered aluminum nitride
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JPH03257071A (en) Light shielding aluminum nitride sintered body and its production
JP2901135B2 (en) Semiconductor device
JPH0566339B2 (en)
JP2828998B2 (en) Manufacturing method of aluminum nitride sintered body
JPH07165472A (en) Radiating base
JPS6110071A (en) High heat conductivity aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11