JPS6110071A - High heat conductivity aluminum nitride sintered body - Google Patents

High heat conductivity aluminum nitride sintered body

Info

Publication number
JPS6110071A
JPS6110071A JP59128756A JP12875684A JPS6110071A JP S6110071 A JPS6110071 A JP S6110071A JP 59128756 A JP59128756 A JP 59128756A JP 12875684 A JP12875684 A JP 12875684A JP S6110071 A JPS6110071 A JP S6110071A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
weight
alkaline earth
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59128756A
Other languages
Japanese (ja)
Inventor
和夫 篠崎
加曽利 光男
高野 武士
今川 宏
安斎 和雄
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59128756A priority Critical patent/JPS6110071A/en
Publication of JPS6110071A publication Critical patent/JPS6110071A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高熱伝導性窒化アルミニウム焼結体に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a highly thermally conductive aluminum nitride sintered body.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化アルミニウム(AJQJ)は常温から高温までの強
度が高く(焼結体の曲げ強さは通常50に2/1112
以上)、化学的耐性にも優れているため、耐熱材料とし
て用いられる一方、その高熱伝導性、高電気絶縁性を利
用して半導体装置の放熱板材料としても有望視されてい
る。こうしたAINは通常、融点を持たず、2200℃
以上の高温で分解するため、薄膜などの用途を除いては
焼結体として用いられる。
Aluminum nitride (AJQJ) has high strength from room temperature to high temperature (the bending strength of the sintered body is usually 50 to 2/1112
Since it has excellent chemical resistance, it is used as a heat-resistant material, and its high thermal conductivity and high electrical insulation properties make it a promising material for heat sinks in semiconductor devices. Such AIN usually has no melting point, 2200℃
Because it decomposes at higher temperatures, it is used as a sintered body except for applications such as thin films.

ところで、AIN焼結体は従来より常圧焼結法、ホット
プレス法によシ製造されている。ホットプレス法では、
AIN単独又は助剤が添加されたAA’Nを用い、高温
高圧下にて焼結する。しかしながら、ホットプレス法で
は複雑な形状の焼結体の製造が難しく、しかも生産性が
低く、コスト高となる。
Incidentally, AIN sintered bodies have conventionally been manufactured by the pressureless sintering method and the hot pressing method. In the hot press method,
Sintering is carried out under high temperature and high pressure using AIN alone or AA'N to which an auxiliary agent has been added. However, with the hot press method, it is difficult to manufacture a sintered body with a complicated shape, and furthermore, the productivity is low and the cost is high.

これに対し、常圧焼結法では高密度化の目的で、酸化ケ
イ素などを焼結助剤として添加する。
On the other hand, in the pressureless sintering method, silicon oxide or the like is added as a sintering aid for the purpose of increasing density.

かかる常圧焼結法ではホットプレス法のような問題を解
消できるものの、得られたAIN焼結体の熱伝導率はA
INの理論熱伝導率が320 W/m−にであるのに対
し、高々40 W/m・Kと低い。なお、ホットプレス
法で造られたA/N焼結体のうち助剤が添加されたAJ
Nを原料とするものも、熱伝導率が40 W/rn・K
程度と低い。
Although this pressureless sintering method can solve the problems of the hot press method, the thermal conductivity of the obtained AIN sintered body is A
While the theoretical thermal conductivity of IN is 320 W/m-, it is as low as 40 W/m·K. In addition, among the A/N sintered bodies made by the hot press method, AJ to which an auxiliary agent was added
Those made from N also have a thermal conductivity of 40 W/rn・K
The degree is low.

〔発明の目的〕[Purpose of the invention]

本発明は従来のもの比べて熱伝導率を向上した高熱伝導
性窒化アルミニウム焼結体を提供しようとするものであ
る。
The present invention aims to provide a highly thermally conductive aluminum nitride sintered body with improved thermal conductivity compared to conventional ones.

〔発明の概要〕[Summary of the invention]

本発明者らは、従来法で製造された助剤が添加されたA
lN焼結体の低熱伝導性について種々検討した結果、こ
の低熱伝導性はAlN焼結体中の助剤量と共に焼結性に
関与する酸素含有量に起因することを究明した。AIN
の原料中には焼結性を高めて緻密なAA’N焼結体を得
るために、酸素が含まれていることが必要であるが、酸
素量が多くなると、高熱伝導性の阻害要因となることが
わかった。
The present inventors have discovered that A
As a result of various studies regarding the low thermal conductivity of the AIN sintered body, it was determined that this low thermal conductivity is due to the amount of auxiliary agent in the AIN sintered body as well as the oxygen content, which is involved in sinterability. A.I.N.
It is necessary for the raw material to contain oxygen in order to improve sinterability and obtain a dense AA'N sintered body, but when the amount of oxygen increases, it becomes a factor that inhibits high thermal conductivity. I found out that it will happen.

そこで、本発明者らは上記究明結果を踏えて更に鋭意研
究したところ、酸素を0.001〜7重量%含む窒化ア
ルミニウムに最終的に酸化物となるアルカリ土類金属及
びその化合物から選ばれる1種以上をアルカリ土類金属
換算で0.002〜15重量%混合し、焼結することに
よって、従来の窒化アルミニウム焼結体に比べて熱伝導
率の極めて高い高熱伝導性窒化アルミニウム焼結体を見
い出した。このように本発明の窒化アルミニウム焼結体
が高熱伝導性を示すのは以下に説明する組織となること
によるものと推定される。
Therefore, the present inventors conducted further intensive research based on the above investigation results, and found that aluminum nitride containing 0.001 to 7% by weight of oxygen contains 1 selected from alkaline earth metals and their compounds that will eventually become oxides. By mixing 0.002 to 15% by weight of alkaline earth metals and sintering, a highly thermally conductive aluminum nitride sintered body with extremely high thermal conductivity compared to conventional aluminum nitride sintered bodies can be produced. I found it. It is presumed that the reason why the aluminum nitride sintered body of the present invention exhibits high thermal conductivity is due to the structure described below.

アルカリ土類金属またはそれを含む化合物を添加した、
酸素を含むAJN原料を成形して焼結すると、アルカリ
土類金属がAIN中の酸素(通常、酸化アルミニウムと
して存在)と反応して、組成式6 Al2O,−MeO
,2Al2O3−Meo 、 3 Al2O,−5Me
OXAA!205 ・MeO(但し、Meはアルカリ土
類金属〕の形で表わされるアルカリ土類金属・アルミニ
ウム複合酸化物のうちのいくつかを生成し、この化合物
が焼結を促進すると共に、最終的にAINの粒界に集ま
シ、AlN中の酸素を固定化する。アルカリ土類金属・
アルミニウム複合酸化物のうち、どれが生成するかは窒
化アルミニウム中の酸素量、アルカリ土類金属の添加量
および焼成条件との兼ね合いで決まる。
Added alkaline earth metals or compounds containing them,
When the oxygen-containing AJN raw material is shaped and sintered, the alkaline earth metal reacts with the oxygen in the AIN (usually present as aluminum oxide) to form the composition formula 6 Al2O,-MeO
,2Al2O3-Meo, 3Al2O,-5Me
OXAA! 205 ・Some of the alkaline earth metal/aluminum composite oxides expressed in the form of MeO (where Me is an alkaline earth metal) are produced, and this compound promotes sintering and ultimately forms AIN. The alkaline earth metals gather at the grain boundaries and fix the oxygen in AlN.
Which aluminum composite oxide is produced depends on the amount of oxygen in aluminum nitride, the amount of alkaline earth metal added, and the firing conditions.

しかしながら、AJN原料原料酸素量が多くなると、ア
ルカリ土類金属・アルミニウム複合酸化物として取り込
みきれない酸素が存在することになり、その酸素がAI
N粒子に固溶拡散する。
However, when the amount of oxygen in the AJN raw material increases, there will be oxygen that cannot be incorporated into the alkaline earth metal/aluminum composite oxide, and that oxygen
Solid solution diffusion into N particles.

絶縁体の熱伝導率は弾性波(フォノン)の拡散によって
支配されるが、酸素が固溶拡散したAIN粒子を含むA
lN焼結体ではフォノンが該固溶拡散された領域で散乱
し、結果として熱伝導性の低下を招く。しかるに、AI
N原料原料酸素をアルカリ土類金属の添加量との兼ね合
いで、アルカリ土類金属・アルミニウム複合酸化物を構
成する量に抑えて固定化し、AINへの固溶拡散を阻止
することによって、フォノンの散乱が少なくなシ、結果
的には熱伝導性が向上する。
The thermal conductivity of an insulator is controlled by the diffusion of elastic waves (phonons), but A
In the IN sintered body, phonons are scattered in the solid solution diffused region, resulting in a decrease in thermal conductivity. However, AI
In consideration of the amount of alkaline earth metal added, the amount of nitrogen raw material oxygen is suppressed and fixed to the amount that constitutes the alkaline earth metal/aluminum composite oxide, and by preventing solid solution diffusion into AIN, phonon Less scattering results in improved thermal conductivity.

即ち、本発明は酸素を0.001〜7重量%含む窒化ア
ルミニウムと、最終的に酸化物となるアルカリ土類金属
及びその化合物から選ばれる1種以上をアルカリ土類金
属換算で0.002〜15重量%とを混合し、焼結して
なるものである。
That is, the present invention uses aluminum nitride containing 0.001 to 7% by weight of oxygen, and one or more selected from alkaline earth metals and their compounds, which will eventually become oxides, in an amount of 0.002 to 7% by weight in terms of alkaline earth metals. 15% by weight and sintered.

上記AIN中の酸素量を限定した理由は、その量をo、
o o i重量%未満にすると、焼結性の高い靭密なA
lN焼結体が得に<<、かといってその量が7重量%を
越えると、生成した化合物が粒を包みこむ傾向が強くな
り熱伝導性の低下を招く。また焼結方法として常圧焼結
法を用いる際は前述の酸素含有量を0.05〜5重量%
、さらには0.05〜1重量%とする事が望ましく、ホ
ットプレス法を用いる際には0.001〜3重量%、さ
らには0.001〜1重量%とする事が望ましい。
The reason for limiting the amount of oxygen in the AIN is that the amount is o,
If it is less than o o i weight%, a tough A with high sinterability can be obtained.
However, if the amount of the lN sintered body exceeds 7% by weight, the generated compound tends to wrap around the grains, resulting in a decrease in thermal conductivity. In addition, when using the pressureless sintering method as the sintering method, the above-mentioned oxygen content is 0.05 to 5% by weight.
, more preferably 0.05 to 1% by weight, and when using the hot press method, 0.001 to 3% by weight, and even more preferably 0.001 to 1% by weight.

上記アルカリ土類金属としては、Mg、、Ca1Sr、
 Baを挙げることができ、アルカリ土類金属化合物と
しては酸化物、炭酸塩、シュウ酸塩、硫酸塩、硝酸塩等
を挙げることができる。こうしたアルカリ土類金属等は
1種でもよいし 2種以上の混合物でもよい。かかるア
ルカリ土類金属等の含有割合を上記範囲に限定した理由
は、その量を0.002重量−未満にすると、焼結性の
高い緻密なAJN焼結体が得られなくなり、かといって
その量が15重量−を越えると、AlNの絶対量が少な
くなり、AlN焼結体本来の特性である耐熱性、高強度
性が損なわれるはがシが、熱伝導性も低下する。なお、
これらアルカリ土類金属及びその化合物等の含有にあた
っては、AIN原料中の酸素含有量が多いい場合には上
記範囲(0,002〜15重量%)内において、多くす
ることが望ましい。また、常圧焼結を採用する場合には
、アルカリ土類金属等の割合を0.1〜15重量%にす
ることが望ましい。
The alkaline earth metals include Mg, Ca1Sr,
Examples of the alkaline earth metal compounds include oxides, carbonates, oxalates, sulfates, and nitrates. These alkaline earth metals may be used alone or in a mixture of two or more. The reason for limiting the content ratio of alkaline earth metals, etc. to the above range is that if the amount is less than 0.002% by weight, a dense AJN sintered body with high sinterability cannot be obtained; When the amount exceeds 15% by weight, the absolute amount of AlN decreases, and the heat resistance and high strength, which are the inherent characteristics of the AlN sintered body, are impaired, and the thermal conductivity also decreases. In addition,
When containing these alkaline earth metals and their compounds, etc., it is desirable to increase the content within the above range (0,002 to 15% by weight) when the oxygen content in the AIN raw material is high. Further, when pressureless sintering is employed, it is desirable that the proportion of alkaline earth metals etc. be 0.1 to 15% by weight.

次に、本発明のAIIN焼結体を得るための一製造方法
を説明する。
Next, one manufacturing method for obtaining the AIIN sintered body of the present invention will be explained.

まず、所定量の酸素を含有するAIN粉末にアルカリ土
類金属及びその化合物を添加し、ボールミル等を用いて
混合した後、常圧焼結の場合はバインダーを加え、混線
、造粒、整粒を行ない、金型、静水圧プレス或いはシー
ト成形にょシ成形を行なう。つづいて、成形体をN2ガ
ス気流中で700℃前後で加熱してバインダーを除去す
る。次いで、成形体を黒鉛又は窒化アルミニウムの容器
にセットし、N2ガス雰囲気中にて1600〜1900
℃で常圧焼結を行なう。この際、比較的低温(1000
〜1300℃)で前述したアルカリ土類金属・アルミニ
ウム複合酸化物が生成され、更に高温で融解し、その液
相焼結機構によって常圧焼結がなされる。
First, alkaline earth metals and their compounds are added to AIN powder containing a predetermined amount of oxygen, and after mixing using a ball mill etc., in the case of pressureless sintering, a binder is added, cross-wiring, granulation, and sizing are performed. Then, molding is performed using a mold, isostatic press, or sheet molding. Subsequently, the molded body is heated at around 700° C. in a N2 gas stream to remove the binder. Next, the molded body was set in a graphite or aluminum nitride container, and heated at 1600 to 1900 in a N2 gas atmosphere.
Pressureless sintering is performed at ℃. At this time, relatively low temperature (1000
The above-mentioned alkaline earth metal/aluminum composite oxide is produced at a temperature of 1,300° C. to 1,300° C., melts at an even higher temperature, and undergoes pressureless sintering by its liquid phase sintering mechanism.

一方、ホットプレス焼結の場合は前記ボールミル等で混
合した原料を1600〜1900℃でボットゲレスする
On the other hand, in the case of hot press sintering, the raw materials mixed in the ball mill or the like are boiled at 1600 to 1900°C.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の詳細な説明する。 Next, the present invention will be explained in detail.

実施例1 まず、酸素を3重量%含有する窒化アルミニウム粉末(
平均粒径1μm)にシュウ散ストロンチウム粉末(平均
粒径1μm)を3重量%添加し、ボールミルを用いて粉
砕、混合を行なって原料を調製した。つづいて、この原
料を直径10mのカーボン型に充填し、圧カ300ψ−
1温度1800℃の条件で1時間ホットプレスを行なっ
てMN焼結体を製造した。
Example 1 First, aluminum nitride powder containing 3% by weight of oxygen (
A raw material was prepared by adding 3% by weight of strontium powder powder (average particle size: 1 μm) to the powder (average particle size: 1 μm), and grinding and mixing using a ball mill. Next, this raw material was filled into a carbon mold with a diameter of 10 m, and a pressure of 300ψ-
A MN sintered body was produced by hot pressing at a temperature of 1800° C. for 1 hour.

比較例1 酸素を3重量%含有する窒化アルミニウム粉末(平均粒
径1μm)そのものを原料として用いた以外、実施例1
と同様な方法によfi AIN焼結体を製造した。
Comparative Example 1 Example 1 except that aluminum nitride powder (average particle size 1 μm) itself containing 3% by weight of oxygen was used as the raw material.
A fi AIN sintered body was manufactured in the same manner as above.

比較例2 酸素を10重量%含有する窒化アルミニウム粉末(平均
粒径0.9μm)にシュウ醗ストロンチウム粉末(平均
粒径1μm)を3重量%添加し、ボールミルを用いて粉
砕、混合して原料を調製した。次いで、この原料を用い
て実施例1と同様にホットプレスを行なってAI!N焼
結体を製造した。
Comparative Example 2 3% by weight of strontium powder (average particle size: 1 μm) was added to aluminum nitride powder (average particle size: 0.9 μm) containing 10% by weight of oxygen, and the raw materials were ground and mixed using a ball mill. Prepared. Next, using this raw material, hot pressing was performed in the same manner as in Example 1 to obtain AI! A N sintered body was manufactured.

しかして、上記実施例1及び比較例1.2によシ得たA
JN焼結体を夫々的3.5關の厚さに研摩した後、レー
ザフラッシュ法によって室温での熱伝導率を測定した。
Therefore, the A obtained by the above Example 1 and Comparative Example 1.2
After polishing each JN sintered body to a thickness of 3.5 mm, the thermal conductivity at room temperature was measured by a laser flash method.

その結果、本実施例1のAJN焼結体では58 W/i
n−にであったのに対し、比較例1のAJIN焼結体で
は36 W/im・K、比較例2のAIN焼結体では3
2 W/rn・Kであった。
As a result, in the AJN sintered body of Example 1, 58 W/i
n-, whereas the AJIN sintered body of Comparative Example 1 had a power of 36 W/im・K, and the AIN sintered body of Comparative Example 2 had a power of 36 W/im・K.
It was 2 W/rn・K.

また、X線回析で各AA’N焼結体の構成相を調べたと
ころ、実施例1のAIN焼結体ではA/N相及ヒk12
03−8rO% 2k120.−8rO相が、比較例1
ではAJi’N相以外にかなシの量の酸窒化物相が、比
較例2ではAlN相及びAl2O5・Sr0 、2A1
20.−8rO相以外にかな9の量の酸窒化物相が、夫
々検出された。
In addition, when the constituent phases of each AA'N sintered body were investigated by X-ray diffraction, it was found that the A/N phase and the
03-8rO% 2k120. -8rO phase is Comparative Example 1
In addition to the AJi'N phase, there was a large amount of oxynitride phase, and in Comparative Example 2, there was an AlN phase and Al2O5.Sr0, 2A1
20. In addition to the -8rO phase, an amount of oxynitride phase of Kana 9 was detected.

実施例2 シュウ醗ストロンチウム粉末の代9に、炭酸カルシウム
粉末を用いた以外、実施例1と同様に原料を調製し、こ
れをホットプレスしてAIN焼結体を製造した。
Example 2 Raw materials were prepared in the same manner as in Example 1, except that calcium carbonate powder was used in place of the strontium powder, and the raw materials were hot pressed to produce an AIN sintered body.

得られたAIN焼結体を約3.5mの厚さに研摩した後
、レーザフラッシュ法によって室温での熱伝導率を測定
したところ、75 W/in・Kと極めて高い熱伝導性
を示した。また、X線回析でA/N焼結体の組織を調べ
たところ、A7N相、Az2o、・cao 、 2AJ
zOs・CaO相が検出された。
After polishing the obtained AIN sintered body to a thickness of approximately 3.5 m, the thermal conductivity at room temperature was measured using the laser flash method, and it showed an extremely high thermal conductivity of 75 W/in・K. . In addition, when the structure of the A/N sintered body was examined by X-ray diffraction, it was found that the structure was A7N phase, Az2o, ・cao, 2AJ
A zOs·CaO phase was detected.

実施例3〜8 酸素を3重量%含有する窒化アルミニウム粉末(平均粒
径09μm)に炭酸カルシウム粉末(平均粒径1μm)
を0.1重量%、0.5重量%、1重量%、2重量%、
3重量%及び5重量%添加した後、メールミルを用いて
10時時間式粉砕、混合して重量が2009の5種の原
料を調製した。つづいて、これら原料に夫々ノやラフイ
ンを7重量%添加し、造粒した後300 kg7cm2
の圧力で冷間成形して37mX37mX6crnの寸法
の板状体とした。次いで、これら板状体を窒素ガス雰囲
気で200℃まで加熱し、10時間保持して脱脂した後
、窒化アルミニウム容器中にセットシ、窒素ガス雰囲気
下にて1800℃、2時間常圧焼結して6種のAlN焼
結体を製造した。
Examples 3 to 8 Calcium carbonate powder (average particle size 1 μm) was added to aluminum nitride powder (average particle size 09 μm) containing 3% by weight of oxygen.
0.1% by weight, 0.5% by weight, 1% by weight, 2% by weight,
After adding 3% by weight and 5% by weight, they were milled using a mail mill for 10 hours and mixed to prepare 5 types of raw materials each weighing 2,009 yen. Next, 7% by weight of Noya rough-in was added to each of these raw materials, and after granulation, 300 kg 7 cm2
It was cold-formed at a pressure of 37 m x 37 m x 6 crn to form a plate-shaped body. Next, these plate-shaped bodies were heated to 200°C in a nitrogen gas atmosphere, held for 10 hours to degrease them, and then placed in an aluminum nitride container and sintered at 1800°C under nitrogen gas atmosphere for 2 hours under normal pressure. Six types of AlN sintered bodies were manufactured.

得られた各AI!N焼結体の密度、並びに熱伝導率を調
べた。その結果を下記第1表に示した。
Each AI obtained! The density and thermal conductivity of the N sintered body were investigated. The results are shown in Table 1 below.

なお、第1表中には炭酸カルシウムを添加しない窒化ア
ルミニウム粉末そのものを原料とした以外、実施例3と
同様な方法によシ製造したAlN焼結体について比較例
3として併記した。
In Table 1, an AlN sintered body produced in the same manner as in Example 3 is also listed as Comparative Example 3, except that aluminum nitride powder without calcium carbonate was used as the raw material.

第1表 また、本実施例3〜7のAlN焼結体について、X線回
析によシ組織を調べた。その結果、いずし4 A#J相
、6k1203−CaO% 2AA!20.−ChO%
 3A1203 ’5CaO1A120.・CaO相及
び僅かな酸窒化物相が検出されたが、CaCO3の添加
量が増すに従って、酸窒化物相が減少し、アルカリ土類
金属・アルミニウム複合酸化物相が増大した。しかも、
同複合酸化物相の中でもCa C03の添加量が増すに
従ってCaO/All 205比が大きい酸化物相の割
合が増大する。
Table 1 Also, the structures of the AlN sintered bodies of Examples 3 to 7 were examined by X-ray diffraction. As a result, Izushi 4 A#J phase, 6k1203-CaO% 2AA! 20. -ChO%
3A1203 '5CaO1A120. - A CaO phase and a slight oxynitride phase were detected, but as the amount of CaCO3 added increased, the oxynitride phase decreased and the alkaline earth metal/aluminum composite oxide phase increased. Moreover,
Among the composite oxide phases, as the amount of Ca C03 added increases, the proportion of the oxide phase with a high CaO/All 205 ratio increases.

実施例9〜12 酸素を1重量%含有する窒化アルミニウム粉末(平均粒
径1μm)に平均粒径が1μmのMgCO3、CaCO
5,5rCO5、BaCO5を夫々3重量%添加し、メ
ールミルを用いて湿式粉砕、混合して4種の原料を調製
した。つづいて、これら原料を用いて実施例3と同様な
方法により常圧焼結した。
Examples 9 to 12 MgCO3 and CaCO with an average particle size of 1 μm were added to aluminum nitride powder (average particle size 1 μm) containing 1% by weight of oxygen.
5,5rCO5 and BaCO5 were added in an amount of 3% by weight, wet-pulverized using a mail mill, and mixed to prepare four types of raw materials. Subsequently, pressureless sintering was performed in the same manner as in Example 3 using these raw materials.

得られた本実施例9〜12の各AA’N焼結体の熱伝導
率を調べた。その結果を下記第2表に示した。なお、第
2表中には助剤を加えない窒化アルミニウム粉末そのも
のを原料として同一温度でホットプレスしたAA’N焼
結体について参照例として併記した。
The thermal conductivity of each of the obtained AA'N sintered bodies of Examples 9 to 12 was examined. The results are shown in Table 2 below. In addition, Table 2 also shows as a reference example an AA'N sintered body hot-pressed at the same temperature using aluminum nitride powder as a raw material with no additives added.

第2表 また、本実施例9〜12の各A7N焼結体は3.211
7cm3以上の密度を有していた。
Table 2 Also, each of the A7N sintered bodies of Examples 9 to 12 was 3.211
It had a density of 7 cm3 or more.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば従来のものに比して
熱伝導率が極めて高く、半導体装置の放熱板等に有効な
高熱伝導性窒化アルミニウム焼結体を提供できる。
As described in detail above, according to the present invention, it is possible to provide a highly thermally conductive aluminum nitride sintered body which has extremely high thermal conductivity compared to conventional ones and is effective for heat sinks of semiconductor devices and the like.

Claims (1)

【特許請求の範囲】[Claims] 酸素を0.001〜7重量%含む窒化アルミニウムと、
最終的に酸化物となるアルカリ土類金属及びその化合物
から選ばれる1種以上をアルカリ土類金属換算で0.0
02〜15重量%とを混合し焼結してなる高熱伝導性窒
化アルミニウム焼結体。
aluminum nitride containing 0.001 to 7% by weight of oxygen;
One or more selected from alkaline earth metals and their compounds that will eventually become oxides with an alkaline earth metal equivalent of 0.0
A highly thermally conductive aluminum nitride sintered body obtained by mixing and sintering 02 to 15% by weight of aluminum nitride.
JP59128756A 1984-06-22 1984-06-22 High heat conductivity aluminum nitride sintered body Pending JPS6110071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59128756A JPS6110071A (en) 1984-06-22 1984-06-22 High heat conductivity aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59128756A JPS6110071A (en) 1984-06-22 1984-06-22 High heat conductivity aluminum nitride sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3147736A Division JPH04254475A (en) 1991-06-20 1991-06-20 Heat radiating plate

Publications (1)

Publication Number Publication Date
JPS6110071A true JPS6110071A (en) 1986-01-17

Family

ID=14992685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59128756A Pending JPS6110071A (en) 1984-06-22 1984-06-22 High heat conductivity aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS6110071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146764A (en) * 1984-12-17 1986-07-04 ティーディーケイ株式会社 Aluminum nitride sintered body and manufacture
JPS63140085A (en) * 1986-11-29 1988-06-11 Kyocera Corp Film forming device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849510A (en) * 1981-09-18 1983-03-23 Nissan Motor Co Ltd Intake unit of air conditioning equipment
JPS5950077A (en) * 1982-09-14 1984-03-22 株式会社東芝 High heat conductivity aluminum nitride sintered body
JPS6071575A (en) * 1983-09-26 1985-04-23 株式会社トクヤマ Aluminum nitride sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849510A (en) * 1981-09-18 1983-03-23 Nissan Motor Co Ltd Intake unit of air conditioning equipment
JPS5950077A (en) * 1982-09-14 1984-03-22 株式会社東芝 High heat conductivity aluminum nitride sintered body
JPS6071575A (en) * 1983-09-26 1985-04-23 株式会社トクヤマ Aluminum nitride sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146764A (en) * 1984-12-17 1986-07-04 ティーディーケイ株式会社 Aluminum nitride sintered body and manufacture
JPS63140085A (en) * 1986-11-29 1988-06-11 Kyocera Corp Film forming device

Similar Documents

Publication Publication Date Title
JPS6346032B2 (en)
EP0180724B1 (en) Aluminum nitride sintered body and process for producing the same
EP0166073A2 (en) Aluminum nitride sintered body
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPS6110071A (en) High heat conductivity aluminum nitride sintered body
JP2666942B2 (en) Aluminum nitride sintered body
JP2962466B2 (en) Aluminum nitride sintered body
JPS6217076A (en) Aluminum nitride powder composition
JP2535139B2 (en) Heat dissipation board
JP2901135B2 (en) Semiconductor device
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPH04254475A (en) Heat radiating plate
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPS63215569A (en) Manufacture of high heat-conductive aluminum nitride sintered body
JPH0522670B2 (en)
JPS61183173A (en) High heat transmission aluminum nitride sintered body
JP2698014B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0453831B2 (en)
JPH0660059B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPS6110072A (en) Aluminum nitride sintered body
JPH0566339B2 (en)
JP2778732B2 (en) Boron nitride-aluminum nitride based composite sintered body and method for producing the same
KR960006249B1 (en) Process for producing an aluminium sintered product
JP3049941B2 (en) Manufacturing method of aluminum nitride sintered body
JPH068220B2 (en) Aluminum nitride sintered body and manufacturing method thereof