JPH04254475A - Heat radiating plate - Google Patents

Heat radiating plate

Info

Publication number
JPH04254475A
JPH04254475A JP3147736A JP14773691A JPH04254475A JP H04254475 A JPH04254475 A JP H04254475A JP 3147736 A JP3147736 A JP 3147736A JP 14773691 A JP14773691 A JP 14773691A JP H04254475 A JPH04254475 A JP H04254475A
Authority
JP
Japan
Prior art keywords
aln
sintered body
weight
alkaline earth
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3147736A
Other languages
Japanese (ja)
Inventor
Kazuo Shinozaki
篠▲崎▼ 和夫
Mitsuo Kasori
加曽利 光男
Takeshi Takano
高野 武士
Hiroshi Imagawa
今川 宏
Kazuo Anzai
安斎 和雄
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3147736A priority Critical patent/JPH04254475A/en
Publication of JPH04254475A publication Critical patent/JPH04254475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a heat radiating plate having superior heat radiating property and made of an AlN sintered body having high heat conductivity. CONSTITUTION:Aluminum nitride contg. 0.001-7wt.% oxygen is mixed with 0.002-15wt.% (expressed in terms of alkaline earth metals) one or more kinds of alkaline earth metals or alkaline earth metal compds. converted finally into oxides, the resulting mixture is sintered to obtain an aluminum nitride sintered body and a heat radiating plate is made of this sintered body.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高熱伝導性窒化アルミ
ニウム焼結体からなる放熱板にに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink made of a highly thermally conductive aluminum nitride sintered body.

【0002】0002

【従来の技術】窒化アルミニウム(AlN)は、常温か
ら高温までの強度が高く(焼結体の曲げ強さは通常50
kg/mm2 以上)、化学的耐性にも優れているため
、耐熱材料として用いられる一方、その高熱伝導性、高
電気絶縁性を利用して半導体装置の放熱板材料としても
有望視されている。かかるAlNは、通常、融点を持た
ず、2200℃以上の高温で分解するため、薄膜などの
用途を除いては焼結体として用いられている。
[Prior Art] Aluminum nitride (AlN) has high strength from room temperature to high temperature (the bending strength of a sintered body is usually 50
kg/mm2 or more), and has excellent chemical resistance, so it is used as a heat-resistant material, and its high thermal conductivity and high electrical insulation properties make it a promising material for heat sinks in semiconductor devices. Such AlN usually does not have a melting point and decomposes at high temperatures of 2200° C. or higher, so it is used as a sintered body except for applications such as thin films.

【0003】ところで、AlN焼結体は従来より常温焼
結法、ホットプレス法により製造されている。ホットプ
レス法では、AlN粉末単独または助剤が添加されたA
lN粉末を用い、高温高圧下にて焼結を行うものである
。しかしながら、ホットプレス法では複雑な形状の焼結
体の製造が難しく、しかも生産性が低いためにコスト高
となる。
Incidentally, AlN sintered bodies have conventionally been manufactured by a cold sintering method or a hot pressing method. In the hot press method, AlN powder alone or A with an auxiliary agent added is used.
Sintering is performed under high temperature and high pressure using IN powder. However, with the hot press method, it is difficult to produce a sintered body with a complicated shape, and the productivity is low, resulting in high costs.

【0004】これに対し、常圧焼結法では高密度化の目
的で、AlN粉末に酸化ケイ素などを焼結助剤として添
加した原料が用いられる。かかる常圧焼結法では、前述
したホットプレス法のような問題を解消できるものの、
得られたAlN焼結体の熱伝導率はAlNの理論熱伝導
率が320W/m・Kであるのに対し、高々40W/m
・Kと低い。このため、前記AlN焼結体を前記半導体
装置の放熱板材料として用いた場合には必ずしも良好な
放熱性を発揮できないという問題があった。なお、前記
ホットプレス法により製造されたAlN焼結体(助剤が
添加されたAlN粉末を原料として使用)においても熱
伝導率が40W/m・K程度と低いものである。
On the other hand, in the pressureless sintering method, a raw material in which silicon oxide or the like is added as a sintering aid to AlN powder is used for the purpose of increasing the density. Although this pressureless sintering method can solve the problems of the hot press method mentioned above,
The thermal conductivity of the obtained AlN sintered body is at most 40 W/m, whereas the theoretical thermal conductivity of AlN is 320 W/m・K.
・As low as K. For this reason, when the AlN sintered body is used as a heat sink material of the semiconductor device, there is a problem that good heat dissipation cannot necessarily be exhibited. Note that even the AlN sintered body manufactured by the hot pressing method (using AlN powder to which an auxiliary agent is added as a raw material) has a low thermal conductivity of about 40 W/m·K.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、高熱伝導性のAl
N焼結体からなり、優れた放熱特性を有する放熱板を提
供しようとするものである。
Problem to be Solved by the Invention The present invention was made to solve the problems of the prior art, and it is an object of the present invention to solve the problems of the conventional method.
The present invention aims to provide a heat dissipation plate made of N sintered body and having excellent heat dissipation properties.

【0006】[0006]

【課題を解決するための手段】本発明に係わる放熱板は
、酸素を0.001〜7重量%含む窒化アルミニウムと
、最終的に酸化物となるアルカリ土類金属及びその化合
物から選ばれる1種以上をアルカリ土類金属換算で0.
002〜15重量%とを混合し、焼結してなる窒化アル
ミニウム焼結体からなることを特徴とするものである。
[Means for Solving the Problems] The heat sink according to the present invention is made of aluminum nitride containing 0.001 to 7% by weight of oxygen, and one kind selected from alkaline earth metals and their compounds that ultimately become oxides. The above is 0.0 in terms of alkaline earth metals.
It is characterized by being made of an aluminum nitride sintered body formed by mixing and sintering aluminum nitride in an amount of 0.02 to 15% by weight.

【0007】前記AlN中の酸素量を限定したのは、次
のような理由によるものである。前記酸素量を0.00
1重量%未満にすると、焼結性を高められず、緻密なA
lN焼結体を得ることが困難となる。一方、前記酸素量
が7重量%を越えるとAlNの酸素が粒界に移行されず
に残留するために熱伝導性の低下を招く。ただし、焼結
法として常圧焼結法を採用する場合には前記AlN中の
酸素量を0.05〜5重量%、より好ましくは0.05
〜1重量%の範囲にすることが望ましい。ホットプレス
法を採用する場合には、前記AlN中の酸素量を0.0
1〜3重量%、より好ましくは0.001〜1重量%の
範囲にすることが望ましい。
The reason why the amount of oxygen in the AlN is limited is as follows. The amount of oxygen is 0.00
If it is less than 1% by weight, the sinterability cannot be improved and dense A
It becomes difficult to obtain an IN sintered body. On the other hand, if the amount of oxygen exceeds 7% by weight, the oxygen in AlN is not transferred to the grain boundaries and remains, resulting in a decrease in thermal conductivity. However, when adopting the pressureless sintering method as the sintering method, the amount of oxygen in the AlN is 0.05 to 5% by weight, more preferably 0.05% by weight.
It is desirable that the content be in the range of ~1% by weight. When using the hot press method, the amount of oxygen in the AlN is set to 0.0.
It is desirable that the content be in the range of 1 to 3% by weight, more preferably 0.001 to 1% by weight.

【0008】前記アルカリ土類金属としては、Ca、S
r、Ba、Mgを挙げることができ、前記アルカリ土類
金属化合物としては酸化物、炭酸塩、シュウ酸塩、硫酸
塩、硝酸塩等を挙げることができる。かかるアルカリ土
類金属またはその化合物は、1種でもよいし、2種以上
の混合物でもよい。
[0008] The alkaline earth metals include Ca, S
Examples of the alkaline earth metal compounds include oxides, carbonates, oxalates, sulfates, and nitrates. Such alkaline earth metals or compounds thereof may be used alone or in a mixture of two or more.

【0009】前記アルカリ土類金属及びその化合物の混
合量(アルカリ土類金属換算)を限定したのは、次のよ
うな理由によるものである。前記混合量を0.002重
量%未満にすると、焼結性を高められず、緻密なAlN
焼結体を得ることが困難となる。一方、前記混合量が1
5重量%を越えるとAlNの絶対量が少なくなり、Al
N焼結体本来の特性である耐熱性、高強度性が損なわれ
るばかりか、高熱伝導性も低下する。なお、これらアル
カリ土類金属およびその化合物の混合にあたってはAl
N原料中の含有酸素量が多い場合には前記範囲(0.0
02〜15重量%)内において、多くすることが望まし
い。また、焼結法として常圧焼結法を採用する場合には
、前記アルカリ土類金属等の混合量を0.1〜15重量
%とすることが望ましい。本発明に係わる放熱板は、そ
の表面に銅などからなる回路パターンを形成することを
許容する。さらに、前記放熱板にヒートシンクを接続さ
せてもよい。次に、本発明の放熱板を構成するAlN焼
結体を(1)常圧焼結法および(2)ホットプレス法に
より製造する方法を説明する。
The reason why the mixing amount (in terms of alkaline earth metal) of the alkaline earth metal and its compound is limited is as follows. If the mixing amount is less than 0.002% by weight, sinterability cannot be improved and dense AlN
It becomes difficult to obtain a sintered body. On the other hand, the mixing amount is 1
When it exceeds 5% by weight, the absolute amount of AlN decreases, and Al
Not only the heat resistance and high strength, which are the inherent properties of the N sintered body, are impaired, but also the high thermal conductivity is reduced. In addition, when mixing these alkaline earth metals and their compounds, Al
When the amount of oxygen contained in the N raw material is large, the above range (0.0
It is desirable to increase the content within the range of 0.02 to 15% by weight. Further, when a pressureless sintering method is employed as the sintering method, it is desirable that the amount of the alkaline earth metal etc. mixed is 0.1 to 15% by weight. The heat sink according to the present invention allows a circuit pattern made of copper or the like to be formed on its surface. Furthermore, a heat sink may be connected to the heat sink. Next, a method for manufacturing an AlN sintered body constituting the heat sink of the present invention using (1) an atmospheric pressure sintering method and (2) a hot pressing method will be described.

【0010】(1)まず、所定量の酸素を含有するAl
N粉末にアルカリ土類金属およびその化合物を添加し、
ボールミル等を用いて混合した後、バインダを加え、混
練、造粒、整粒を行ない、金型、静水圧プレス或いはシ
ート成形により成形体を作製する。つづいて、成形体を
N2 ガス気流中で700℃前後で加熱してバインダを
除去する。次いで、前記成形体を黒鉛または窒化アルミ
ニウムの容器にセットし、N2 ガス雰囲気中にて16
00〜1900℃で常圧焼結を行なってAlN焼結体を
製造する。この際、比較的低温(1000〜1300℃
)で後述するアルカリ土類金属・アルミニウム複合酸化
物が生成され、さらに高温で融解され、その液相焼結機
構によって常圧焼結がなされる。
(1) First, Al containing a predetermined amount of oxygen
Adding alkaline earth metals and their compounds to N powder,
After mixing using a ball mill or the like, a binder is added, kneading, granulation, and sizing are performed, and a molded body is produced by molding, isostatic pressing, or sheet molding. Subsequently, the molded body is heated at around 700° C. in a N2 gas stream to remove the binder. Next, the molded body was set in a graphite or aluminum nitride container, and heated for 16 hours in a N2 gas atmosphere.
An AlN sintered body is produced by pressureless sintering at 00 to 1900°C. At this time, relatively low temperature (1000 to 1300℃
), an alkaline earth metal/aluminum composite oxide, which will be described later, is produced, further melted at a high temperature, and pressureless sintered by the liquid phase sintering mechanism.

【0011】(2)所定量の酸素を含有するAlN粉末
にアルカリ土類金属およびその化合物を添加し、ボール
ミル等を用いて混合した原料を1600〜1900℃で
ホットプレスすることによりAlN焼結体を製造する。
(2) An AlN sintered body is produced by adding alkaline earth metals and their compounds to AlN powder containing a predetermined amount of oxygen, and hot pressing the mixed raw materials using a ball mill or the like at 1600 to 1900°C. Manufacture.

【0012】0012

【作用】本発明者らは、放熱板として用いられるAlN
焼結体(助剤を含む)を従来法で製造した場合における
低熱伝導性について種々検討した結果、その低熱伝導性
はAlN焼結体中の助剤量と共に焼結性に関与する酸素
含有量に起因することを究明した。AlN原料中には、
焼結性を高めて緻密なAlN焼結体を得るために酸素が
含まれていることが必要であるが、酸素が多くなると高
熱伝導性の阻害要因となることがわかった。
[Operation] The present inventors have discovered that AlN used as a heat sink
As a result of various studies on the low thermal conductivity of sintered bodies (including auxiliary agents) produced using conventional methods, it was found that the low thermal conductivity is due to the amount of auxiliary agents in the AlN sintered body as well as the oxygen content, which is involved in sinterability. It was determined that this was caused by In the AlN raw material,
It is necessary to contain oxygen in order to improve sinterability and obtain a dense AlN sintered body, but it was found that too much oxygen becomes a factor that inhibits high thermal conductivity.

【0013】そこで、本発明者らは前記究明結果を踏ま
えて鋭意研究を重ねたところ、酸素を0.001〜7重
量%含む窒化アルミニウムに最終的に酸化物となるアル
カリ土類金属およびその化合物から選ばれる1種以上を
アルカリ土類金属換算で0.002〜15重量%混合し
、焼結することによって従来の窒化アルミニウム焼結体
に比べて熱伝導性の極めて高い窒化アルミニウム焼結体
からなる放熱板を見い出だした。このように本発明の放
熱板を構成する窒化アルミニウム焼結体が高熱伝導性を
示すのは以下に説明する組織となることによるものと推
定される。
[0013] Therefore, the inventors of the present invention conducted extensive research based on the above investigation results, and found that alkaline earth metals and their compounds that eventually become oxides in aluminum nitride containing 0.001 to 7% by weight of oxygen. By mixing 0.002 to 15% by weight of one or more selected from the following in alkaline earth metal terms and sintering, an aluminum nitride sintered body with extremely high thermal conductivity compared to conventional aluminum nitride sintered bodies is produced. I discovered a heat sink. It is presumed that the reason why the aluminum nitride sintered body constituting the heat sink of the present invention exhibits high thermal conductivity is due to the structure described below.

【0014】アルカリ土類金属またはそれらの化合物を
添加した、酸素を含むAlN原料を成形して焼結すると
、前記アルカリ土類金属がAlN中の酸素(通常、酸化
アルミニウムとして存在)と反応して、組成式6Al2
 O3 −MeO、2Al2 O3・MeO、3Al2
 O3 ・5MeO、Al2 O3 ・MeO〔ただし
、Meはアルカリ土類金属〕の形で表わされるアルカリ
土類金属・アルミニウム複合酸化物のうちのいくつかの
形態のものを生成し、前記複合酸化物が焼結を促進する
と共に、最終的にAlNの粒界に集まり、AlN中の酸
素を固定化する。前記アルカリ土類金属・アルミニウム
複合酸化物のうち、いずれが生成するかはAlN中の酸
素量、アルカリ土類金属の添加量および焼結条件との兼
ね合いで決まる。
[0014] When an oxygen-containing AlN raw material to which an alkaline earth metal or a compound thereof is added is shaped and sintered, the alkaline earth metal reacts with the oxygen (usually present as aluminum oxide) in the AlN. , composition formula 6Al2
O3 -MeO, 2Al2 O3・MeO, 3Al2
Several forms of alkaline earth metal/aluminum composite oxides expressed in the form of O3 ・5MeO, Al2 O3 ・MeO [where Me is an alkaline earth metal] are produced, and the composite oxide is It promotes sintering and ultimately gathers at grain boundaries of AlN to fix oxygen in AlN. Which of the alkaline earth metal/aluminum composite oxides is produced depends on the amount of oxygen in AlN, the amount of alkaline earth metal added, and the sintering conditions.

【0015】前記焼結工程において、酸素量の多いAl
N原料を用いると、前記アルカリ土類金属・アルミニウ
ム複合酸化物として取り込み切れない酸素が残留するこ
とになり、その酸素がAlN粒子に固溶拡散する。絶縁
体の熱伝導率は、弾性波(フォノン)の拡散によって支
配されるが、酸素が固溶拡散したAlN粒子を含むAl
N焼結体ではフォノンが固溶拡散された領域で散乱し、
結果として熱伝導性の低下を招く。
[0015] In the sintering process, Al containing a large amount of oxygen
When a N raw material is used, oxygen that cannot be incorporated into the alkaline earth metal/aluminum composite oxide remains, and the oxygen diffuses into the AlN particles as a solid solution. The thermal conductivity of an insulator is controlled by the diffusion of elastic waves (phonons), but Al containing AlN particles in which oxygen is diffused as a solid solution
In the N sintered body, phonons are scattered in the solid solution diffused region,
As a result, thermal conductivity decreases.

【0016】このようなことから、AlN原料中の酸素
をアルカリ土類金属の添加量との兼ね合いでアルカリ土
類金属・アルミニウム複合酸化物の生成に全て寄与する
量(0.001〜7重量%)に抑えて固定化し、AlN
への固溶拡散を阻止することによって、フォノンの散乱
が少なく、結果として熱伝導性が向上されたAlN焼結
体が得られるものと推定される。以上のようなAlN焼
結体からなる放熱板は、その優れた熱伝導性により良好
な放熱特性を有するため、半導体装置の実装基板等に利
用できる。
For this reason, the amount of oxygen in the AlN raw material that fully contributes to the production of alkaline earth metal/aluminum composite oxide (0.001 to 7% by weight) should be adjusted in balance with the amount of alkaline earth metal added. ) and immobilized with AlN
It is presumed that by inhibiting solid solution diffusion into the AlN sintered body, phonon scattering is reduced, resulting in an AlN sintered body with improved thermal conductivity. The heat sink made of the AlN sintered body as described above has good heat dissipation characteristics due to its excellent thermal conductivity, and therefore can be used for mounting substrates of semiconductor devices, etc.

【0017】[0017]

【実施例】以下、本発明の実施例を詳細に説明する。 実施例1EXAMPLES Examples of the present invention will be described in detail below. Example 1

【0018】まず、酸素を0.87重量%含有する窒化
アルミニウム粉末(平均粒径1μm)にシュウ酸ストロ
ンチウム粉末(平均粒径1μm)を3重量%添加し、ボ
ールミルを用いて粉砕、混合を行って原料を調製した。 つづいて、この原料を直径10mmのカーボン型に充填
し、圧力300kg/cm2 、温度1800℃の条件
で1時間ホットプレスを行なってAlN焼結体を製造し
た。その後、AlN焼結体を所定の寸法に加工して放熱
板を製作した。 比較例1
First, 3% by weight of strontium oxalate powder (average particle size: 1 μm) was added to aluminum nitride powder (average particle size: 1 μm) containing 0.87% by weight of oxygen, and the mixture was ground and mixed using a ball mill. The raw material was prepared. Subsequently, this raw material was filled into a carbon mold with a diameter of 10 mm, and hot-pressed for 1 hour at a pressure of 300 kg/cm 2 and a temperature of 1800° C. to produce an AlN sintered body. Thereafter, the AlN sintered body was processed into predetermined dimensions to produce a heat sink. Comparative example 1

【0019】酸素を3重量%含有する窒化アルミニウム
粉末(平均粒径1μm)そのものを原料として用いた以
外、実施例1と同様な方法によりAlN焼結体を製造し
、さらに加工を施して放熱板を製作した。 比較例2
An AlN sintered body was produced in the same manner as in Example 1, except that aluminum nitride powder (average particle size 1 μm) containing 3% by weight of oxygen was used as the raw material, and further processed to form a heat sink. was produced. Comparative example 2

【0020】酸素を10重量%含有する窒化アルミニウ
ム粉末(平均粒径1μm)にシュウ酸ストロンチウム粉
末(平均粒径1μm)を3重量%添加し、ボールミルを
用いて粉砕、混合を行って原料を調製した。つづいて、
この原料を実施例1と同様にホットプレスを行なってA
lN焼結体を製造し、さらに所定の寸法に加工して放熱
板を製作した。
A raw material was prepared by adding 3% by weight of strontium oxalate powder (average particle size: 1 μm) to aluminum nitride powder (average particle size: 1 μm) containing 10% by weight of oxygen, and grinding and mixing using a ball mill. did. Continuing,
This raw material was hot pressed in the same manner as in Example 1, and A
A 1N sintered body was manufactured and further processed into predetermined dimensions to produce a heat sink.

【0021】実施例1および比較例1、2により得られ
た各放熱板を、それぞれ約3.5mmの厚さに研磨した
後、レーザフラッシュ法によって室温での熱伝導率を測
定した。その結果、実施例1の放熱板では106W/m
・Kであったのに対し、比較例1の放熱板では36W/
m・K、比較例2の放熱板では32W/m・Kであった
Each of the heat sinks obtained in Example 1 and Comparative Examples 1 and 2 was polished to a thickness of about 3.5 mm, and then the thermal conductivity at room temperature was measured by a laser flash method. As a result, the heat sink of Example 1 had a power of 106 W/m.
・While it was 36W/K for the heat sink of Comparative Example 1,
m·K, and in the case of the heat sink of Comparative Example 2, it was 32 W/m·K.

【0022】また、X線回折により前記実施例1および
比較例1、2の各放熱板の材料であるAlN焼結体の構
成相を調べた。その結果、実施例1のAlN焼結体では
AlN相およびAl2 O3 ・SrO相、2Al2 
O3 ・SrO相が、比較例1のAlN焼結体ではAl
N相以外にかなりの量の酸窒化物相が、比較例2のAl
N焼結体ではAlN相以外にかなりの量の酸窒化物相が
、それぞれ検出された。 実施例2
Furthermore, the constituent phases of the AlN sintered body, which is the material of each of the heat sinks of Example 1 and Comparative Examples 1 and 2, were investigated by X-ray diffraction. As a result, in the AlN sintered body of Example 1, an AlN phase, an Al2O3 ・SrO phase, and a 2Al2
The O3 ・SrO phase is Al in the AlN sintered body of Comparative Example 1.
In addition to the N phase, a considerable amount of oxynitride phase was present in the Al of Comparative Example 2.
In addition to the AlN phase, a considerable amount of oxynitride phases were detected in the N sintered body. Example 2

【0023】シュウ酸ストロンチウム粉末の代りに、炭
酸カルシウム粉末を用いた以外、実施例1と同様に原料
を調製し、これをホットプレスしてAlN焼結体を製造
し、さらに所定の寸法に加工して放熱板を製作した。
[0023] Raw materials were prepared in the same manner as in Example 1, except that calcium carbonate powder was used instead of strontium oxalate powder, and this was hot-pressed to produce an AlN sintered body, which was further processed to predetermined dimensions. I made a heat sink.

【0024】得られた放熱板を、約3.5mmの厚さに
研磨した後、レーザフラッシュ法によって室温での熱伝
導率を測定したところ、120W/m・Kと極めて高い
熱伝導性を示した。また、X線回折により前記放熱板の
材料であるAlN焼結体の構成相を調べた。その結果、
AlN相およびAl2 O3・CaO相、2Al2 O
3・CaO相が検出された。 実施例3〜8
After polishing the obtained heat sink to a thickness of about 3.5 mm, the thermal conductivity at room temperature was measured by the laser flash method, and it showed an extremely high thermal conductivity of 120 W/m·K. Ta. Furthermore, the constituent phases of the AlN sintered body, which is the material of the heat sink, were investigated by X-ray diffraction. the result,
AlN phase and Al2O3・CaO phase, 2Al2O
3.CaO phase was detected. Examples 3-8

【0025】まず、酸素を0.95重量%含有する窒化
アルミニウム粉末(平均粒径1μm)に炭酸カルシウム
粉末(平均粒径1μm)をそれぞれ0.1重量%、0.
5重量%、1重量%、3重量%および5重量%添加し、
ボールミルを用いて粉砕、混合して重量が200gの5
種の原料を調製した。つづいて、これら原料にそれぞれ
パラフィンを7重量%添加し、造粒した後、圧力300
kg/cm2 で冷間成形して37mm×37mm×6
cmの寸法の板状とした。次いで、これら板状体を窒素
ガス雰囲気中で700℃まで加熱し、10時間保持して
脱脂した後、窒化アルミニウム容器中にセットし、窒素
ガス雰囲気にて1800℃、20時間常圧焼結して6種
のAlN焼結体を製造した。その後、これら焼結体を所
定の寸法に加工して放熱板を製作した。
First, calcium carbonate powder (average particle size 1 μm) was added to aluminum nitride powder (average particle size 1 μm) containing 0.95 weight % oxygen and 0.1% by weight, respectively.
Adding 5% by weight, 1% by weight, 3% by weight and 5% by weight,
Grind and mix using a ball mill to make 5 pieces weighing 200g.
Seed raw material was prepared. Next, 7% by weight of paraffin was added to each of these raw materials, and after granulation, the pressure was 300%.
Cold-formed at kg/cm2 to 37mm x 37mm x 6
It was made into a plate shape with a size of cm. Next, these plate-shaped bodies were heated to 700°C in a nitrogen gas atmosphere, held for 10 hours to degrease them, placed in an aluminum nitride container, and sintered at 1800°C in a nitrogen gas atmosphere for 20 hours under normal pressure. Six types of AlN sintered bodies were manufactured. Thereafter, these sintered bodies were processed into predetermined dimensions to produce a heat sink.

【0026】実施例3〜8の各放熱板について、密度お
よび熱伝導率を調べた。その結果を下記表1に示した。 なお、表1中には炭酸カルシウムを添加しない窒化アル
ミニウム粉末そのものを原料とした以外、実施例3と同
様な方法によりAlN焼結体を製造し、所定の寸法に加
工して製作した放熱板について比較例3として併記した
。                          
       表    1            
    CaCO3 の添加量    密      
度    熱  伝  導  率          
          (重量%)      (g/c
m3 )  (W/m・K)      比較例3  
      0                2.
03            8      実施例3
        0.1            3.
07          65      実施例4 
       0.5            3.1
9          81      実施例5  
      1                3.
23        110      実施例6  
      2                3.
20        105      実施例7  
      3                3.
21        110      実施例8  
      5                3.
21        105
The density and thermal conductivity of each of the heat sinks of Examples 3 to 8 were examined. The results are shown in Table 1 below. In addition, Table 1 shows heat sinks produced by manufacturing AlN sintered bodies in the same manner as in Example 3, except that aluminum nitride powder itself without adding calcium carbonate was used as the raw material, and processed into predetermined dimensions. It is also listed as Comparative Example 3.
Table 1
Addition amount of CaCO3
degree thermal conductivity
(wt%) (g/c
m3) (W/m・K) Comparative example 3
0 2.
03 8 Example 3
0.1 3.
07 65 Example 4
0.5 3.1
9 81 Example 5
1 3.
23 110 Example 6
2 3.
20 105 Example 7
3 3.
21 110 Example 8
5 3.
21 105

【0027】また、実施例
3〜7の各放熱板の材料であるAlN焼結体の構成相を
調べた。その結果、いずれもAlN相および6Al2 
O3 ・CaO相、2Al2 O3 ・CaO相、3A
l2 O3 ・5CaO相、Al2 O3 ・CaO相
および僅かな酸窒化物相が検出されたが、CaCO3 
の添加量が増すに従って、酸窒化物相が減少し、アルカ
リ土類金属・アルミニウム複合酸化物相が増大した。し
かも、同複合酸化物相の中でもCaCO3 の添加量が
増すに従ってCaO/Al2 O3 比が大きい酸化物
相の割合が増大した。 実施例9〜11
Furthermore, the constituent phases of the AlN sintered body, which is the material of each of the heat sinks of Examples 3 to 7, were investigated. As a result, both AlN phase and 6Al2
O3 ・CaO phase, 2Al2 O3 ・CaO phase, 3A
l2 O3 ・5CaO phase, Al2 O3 ・CaO phase and a slight oxynitride phase were detected, but CaCO3
As the amount of addition increased, the oxynitride phase decreased and the alkaline earth metal/aluminum composite oxide phase increased. Furthermore, among the composite oxide phases, as the amount of CaCO3 added increased, the proportion of the oxide phase with a high CaO/Al2 O3 ratio increased. Examples 9-11

【0028】酸素を1重量%含有する窒化アルミニウム
粉末(平均粒径1μm)に平均粒径が1μmのCaCO
3 、SrCO3 、BaCO3 をそれぞれ3重量%
添加し、ボールミルを用いて粉砕、混合して3種の原料
を調製した。つづいて、これら原料を用いて実施例3と
同様な方法により常圧焼結して3種のAlN焼結体を製
造した。その後、これら焼結体を所定の寸法に加工して
放熱板を製作した。
CaCO having an average particle size of 1 μm was added to aluminum nitride powder (average particle size 1 μm) containing 1% by weight of oxygen.
3, SrCO3 and BaCO3 at 3% by weight each
The mixture was added, ground using a ball mill, and mixed to prepare three types of raw materials. Subsequently, these raw materials were subjected to pressureless sintering in the same manner as in Example 3 to produce three types of AlN sintered bodies. Thereafter, these sintered bodies were processed into predetermined dimensions to produce a heat sink.

【0029】実施例9〜11の各放熱板について、熱伝
導率を調べた。その結果を下記表2に示した。なお、表
2中には助剤を加えない窒化アルミニウム粉末そのもの
を原料として1800℃でホットプレスしてAlN焼結
体を製造し、所定の寸法に加工して製作した放熱板につ
いて参照例として併記した。                          
       表    2            
                添加助剤     
   熱  伝  導  率            
                         
       (W/m・K)           
   実施例9      CaCO3       
    105              実施例1
0    SrCO3             90
              実施例11    Ba
CO3             80       
       参照例          無添加  
            50また、実施例9〜11の
各放熱板は密度が3.2g/cm3 以上であった。 実施例12〜15
The thermal conductivity of each of the heat sinks of Examples 9 to 11 was examined. The results are shown in Table 2 below. In addition, Table 2 also lists as a reference example a heat sink produced by hot pressing aluminum nitride powder itself at 1800°C to produce an AlN sintered body and processing it to a predetermined size using aluminum nitride powder as a raw material without adding any auxiliary agent. did.
Table 2
additive auxiliary agent
Thermal conductivity

(W/m・K)
Example 9 CaCO3
105 Example 1
0 SrCO3 90
Example 11 Ba
CO3 80
Reference example No additives
50 Furthermore, each of the heat sinks of Examples 9 to 11 had a density of 3.2 g/cm 3 or more. Examples 12-15

【0030】酸素を3.5重量%含有する窒化アルミニ
ウム粉末(平均粒径1.1μm)にCa(NO3 )2
 ・4H2 Oを15重量%添加した。これを実施例3
と同様な条件(但し、焼結は下記表3に示す条件)によ
り常圧焼結して4種のAlN焼結体を製造した。その後
、これら焼結体を所定寸法に加工して放熱板を製作した
。実施例12〜15の各放熱板について、熱伝導率を調
べた。 その結果を同表3に併記した。                          
       表    3            
              焼  結    条  
件    熱  伝  導  率          
                温    度   
 時間    (W/m・K)           
 実施例12    1750℃  2hr     
   62            実施例13   
 1800℃  2hr        66    
        実施例14    1850℃  8
hr        70            実
施例15    1800℃  2hr       
 95
[0030] Ca(NO3)2 was added to aluminum nitride powder (average particle size 1.1 μm) containing 3.5% by weight of oxygen.
- 15% by weight of 4H2O was added. Example 3
Four types of AlN sintered bodies were produced by pressureless sintering under the same conditions as (however, the sintering conditions were as shown in Table 3 below). Thereafter, these sintered bodies were processed into predetermined dimensions to produce a heat sink. The thermal conductivity of each of the heat sinks of Examples 12 to 15 was examined. The results are also listed in Table 3.
Table 3
Sintered strip
Thermal conductivity
temperature
Time (W/m・K)
Example 12 1750°C 2hr
62 Example 13
1800℃ 2hr 66
Example 14 1850°C 8
hr 70 Example 15 1800℃ 2hr
95

【0031】また、実施例12〜15の各放熱板
は密度が3.2g/cm3 以上であり、充分に緻密化
されたものであった。実施例2〜15の各放熱板の材料
であるAlN焼結体のX線回折結果によれば、いずれも
AlN相の他に2Al2 O3 ・CaO相、Al2 
O3 ・CaO相、12Al2 O3 ・7CaO相、
Al2 O3 ・3CaO相が検出された。 実施例16〜19
Further, each of the heat sinks of Examples 12 to 15 had a density of 3.2 g/cm 3 or more, and was sufficiently densified. According to the X-ray diffraction results of the AlN sintered body which is the material of each of the heat sinks of Examples 2 to 15, in addition to the AlN phase, 2Al2O3 ・CaO phase, Al2
O3 ・CaO phase, 12Al2 O3 ・7CaO phase,
An Al2O3.3CaO phase was detected. Examples 16-19

【0032】酸素を5重量%含有する窒化アルミニウム
粉末(平均粒径0.7μm)に平均粒径が1μmのCa
CO3 を10重量%、5重量%、SrCO3 を10
重量%、BaCO3 を10重量%それぞれ添加し、ボ
ールミルを用いて粉砕、混合して3種の原料を調製した
。これら原料を実施例3と同様な条件(但し、焼結は下
記表4に示す条件)により常圧焼結して4種のAlN焼
結体を製造した。その後、これら焼結体を所定寸法に加
工して放熱板を製作した。実施例16〜19の各放熱板
について、熱伝導率を調べた。その結果を同表4に併記
した。                          
       表    4            
    添  加    助  剤    焼  結 
 条  件    熱  伝  導  率      
          種類      添加量    
温  度    時間               
               (wt%)     
(℃)    (hr)    (W/m・K)  実
施例16  CaCO3   10      180
0  2            62  実施例17
  CaCO3     5      1800  
2            58  実施例18  S
rCO3   10      1800  2   
         62  実施例19  BaCO3
   10      1800  2       
     59また、実施例16〜19の各放熱板は密
度が3.2g/cm3 以上であり、充分に緻密化され
たものであった。
[0032] Ca having an average particle size of 1 μm was added to aluminum nitride powder (average particle size 0.7 μm) containing 5% by weight of oxygen.
10% by weight of CO3, 5% by weight of SrCO3, 10% by weight of SrCO3
% by weight and 10% by weight of BaCO3 were added, and the mixture was ground and mixed using a ball mill to prepare three types of raw materials. These raw materials were pressureless sintered under the same conditions as in Example 3 (however, the sintering conditions were as shown in Table 4 below) to produce four types of AlN sintered bodies. Thereafter, these sintered bodies were processed into predetermined dimensions to produce a heat sink. The thermal conductivity of each of the heat sinks of Examples 16 to 19 was examined. The results are also listed in Table 4.
Table 4
Added aids Sintering
Conditions Thermal conductivity
Type Addition amount
temperature time
(wt%)
(℃) (hr) (W/m・K) Example 16 CaCO3 10 180
0 2 62 Example 17
CaCO3 5 1800
2 58 Example 18 S
rCO3 10 1800 2
62 Example 19 BaCO3
10 1800 2
59 Furthermore, each of the heat sinks of Examples 16 to 19 had a density of 3.2 g/cm 3 or more, and was sufficiently densified.

【0033】[0033]

【発明の効果】以上詳述した如く本発明によれば、高熱
伝導性のAlN焼結体からなり、優れた放熱特性を有し
、半導体装置の実装基板等に有用な放熱板を提供するこ
とができる。
As detailed above, according to the present invention, it is possible to provide a heat sink that is made of a highly thermally conductive AlN sintered body, has excellent heat dissipation properties, and is useful for mounting boards of semiconductor devices, etc. Can be done.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸素を0.001〜7重量%含む窒化
アルミニウムと、最終的に酸化物となるアルカリ土類金
属及びその化合物から選ばれる1種以上をアルカリ土類
金属換算で0.002〜15重量%とを混合し、焼結し
てなる窒化アルミニウム焼結体からなることを特徴とす
る放熱板。
Claim 1: Aluminum nitride containing 0.001 to 7% by weight of oxygen, and one or more selected from alkaline earth metals and their compounds, which will eventually become oxides, in an amount of 0.002 to 7% in terms of alkaline earth metal. 1. A heat dissipation plate comprising a sintered body of aluminum nitride mixed with 15% by weight of aluminum nitride and sintered.
JP3147736A 1991-06-20 1991-06-20 Heat radiating plate Pending JPH04254475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147736A JPH04254475A (en) 1991-06-20 1991-06-20 Heat radiating plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147736A JPH04254475A (en) 1991-06-20 1991-06-20 Heat radiating plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59128756A Division JPS6110071A (en) 1984-06-22 1984-06-22 High heat conductivity aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPH04254475A true JPH04254475A (en) 1992-09-09

Family

ID=15436985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147736A Pending JPH04254475A (en) 1991-06-20 1991-06-20 Heat radiating plate

Country Status (1)

Country Link
JP (1) JPH04254475A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849510A (en) * 1981-09-18 1983-03-23 Nissan Motor Co Ltd Intake unit of air conditioning equipment
JPS5855377A (en) * 1981-09-28 1983-04-01 株式会社東芝 Manufacture of aluminum nitride sintered body
JPS5950077A (en) * 1982-09-14 1984-03-22 株式会社東芝 High heat conductivity aluminum nitride sintered body
JPS60171270A (en) * 1984-02-13 1985-09-04 株式会社トクヤマ Aluminum nitride composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849510A (en) * 1981-09-18 1983-03-23 Nissan Motor Co Ltd Intake unit of air conditioning equipment
JPS5855377A (en) * 1981-09-28 1983-04-01 株式会社東芝 Manufacture of aluminum nitride sintered body
JPS5950077A (en) * 1982-09-14 1984-03-22 株式会社東芝 High heat conductivity aluminum nitride sintered body
JPS60171270A (en) * 1984-02-13 1985-09-04 株式会社トクヤマ Aluminum nitride composition

Similar Documents

Publication Publication Date Title
EP0147101B1 (en) Aluminum nitride-based sintered body of high thermal conductivity
EP0166073B1 (en) Aluminum nitride sintered body
CA1193618A (en) Highly heat-conductive ceramic material
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2962466B2 (en) Aluminum nitride sintered body
JPH04254475A (en) Heat radiating plate
JP3145519B2 (en) Aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPS6110071A (en) High heat conductivity aluminum nitride sintered body
JP2535139B2 (en) Heat dissipation board
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPH01183469A (en) Sintered aluminum nitride
JPH0453831B2 (en)
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JPH03218977A (en) Production of aluminum nitride sintered body
JP2901135B2 (en) Semiconductor device
JPH0522670B2 (en)
JP2851712B2 (en) Aluminum nitride circuit board
JPS61183173A (en) High heat transmission aluminum nitride sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPH01179765A (en) Aluminum nitride sintered body and production thereof
EP0260865A1 (en) Process for preparation of aluminium nitride sintered material
JPH0566339B2 (en)
JPH0641390B2 (en) High thermal conductivity aluminum nitride sintered body and manufacturing method thereof
JPH0678195B2 (en) Aluminum nitride sintered body