JPS61286267A - Manufacture of aluminum nitride base sintered body - Google Patents

Manufacture of aluminum nitride base sintered body

Info

Publication number
JPS61286267A
JPS61286267A JP60129351A JP12935185A JPS61286267A JP S61286267 A JPS61286267 A JP S61286267A JP 60129351 A JP60129351 A JP 60129351A JP 12935185 A JP12935185 A JP 12935185A JP S61286267 A JPS61286267 A JP S61286267A
Authority
JP
Japan
Prior art keywords
boron
aluminum nitride
sintered body
density
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60129351A
Other languages
Japanese (ja)
Inventor
枝 和男
山内 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60129351A priority Critical patent/JPS61286267A/en
Publication of JPS61286267A publication Critical patent/JPS61286267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度の窒化アルミニウム質焼結体の製造方
法に関し、特に本発明は、電子回路用基板としての用途
に適した高い熱伝導率を有する窒化アルミニウム質焼結
体の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high-density aluminum nitride sintered body, and in particular, the present invention relates to a method for manufacturing a high-density aluminum nitride sintered body, and in particular, the present invention relates to a method for manufacturing a high-density aluminum nitride sintered body. The present invention relates to a method for manufacturing an aluminum nitride sintered body having a high yield.

〔従来の技術〕[Conventional technology]

近年、電子技術の進歩に伴い電子機器に対する高密度化
あるいは演算機能の高速化が進められている。その結果
、配線基板には高集積性および高い信頼性が要求されて
おり、なかでも低い熱膨張性、高い熱伝導性、優れた寸
法安定性および長期安定性などの特性を具備するものが
要求されている。
In recent years, advances in electronic technology have led to higher density and higher speed calculation functions for electronic devices. As a result, wiring boards are required to have high integration and high reliability, especially those with characteristics such as low thermal expansion, high thermal conductivity, excellent dimensional stability, and long-term stability. has been done.

前述の如き特性を具備する配線基板としては種々のセラ
ミワク材料、例えばアルミナ、ベリリア、炭化3素ある
いは窒化アルミニウムなどの焼結体が知られているが、
これらのうち窒化アルミニウム焼結体は、配線基板材料
として要求される特性のうち電気絶縁性、熱伝導性、熱
膨張率、機械的強度等において特に優れた特性を有する
材料であり、注目されている。
Various ceramic materials, such as sintered bodies of alumina, beryllia, tricarbide, or aluminum nitride, are known as wiring boards having the above-mentioned characteristics.
Among these, aluminum nitride sintered body is a material that has particularly excellent properties in terms of electrical insulation, thermal conductivity, coefficient of thermal expansion, mechanical strength, etc. among the properties required as a wiring board material, and is attracting attention. There is.

ところで、窒化アμミニウムはそれ自体を焼結し緻密化
することは困難であるが、最近になって種々の焼結助剤
による焼結方法が提案されている。
By the way, aluminum nitride itself is difficult to sinter and become dense, but recently sintering methods using various sintering aids have been proposed.

例えば、特開昭58−55877号公報に[(a)窒化
アルミニウム粉末、(b)酸化カルシウム、酸化バリウ
ム、酸化ストロンチウム、及び焼成によってこれらの酸
化物となる化合物から選ばれた少なくとも1種の化合物
の粉末、及び、(6)炭素粉末もしくは焼成によって炭
素となる物質の粉末、を含む混合粉末を、成形、次いで
焼結することを特徴とする窒化アVミニウム焼結体の製
造方法」に係る発明が開示されている。
For example, JP-A-58-55877 discloses [(a) aluminum nitride powder, (b) at least one compound selected from calcium oxide, barium oxide, strontium oxide, and compounds that become oxides of these upon firing. and (6) carbon powder or powder of a substance that becomes carbon upon firing, is molded and then sintered. An invention is disclosed.

特開昭58−82072号公報に「窒化アルミニウムを
主成分とし、これにリチウム又はリチウム含有物質を含
み、理論密度の90%以上の密度を有することを特徴と
する窒化アルミニウム焼結体」に係る発明が開示されて
いる。
Japanese Unexamined Patent Publication No. 58-82072 describes a ``aluminum nitride sintered body comprising aluminum nitride as a main component, containing lithium or a lithium-containing substance, and having a density of 90% or more of the theoretical density.'' An invention is disclosed.

特開昭58−82078号公報に「窒化アμミニウムに
対して窒化ホウ素を0.1〜30重量%添加して成るこ
とを特徴とする焼結体」に係る発明が開示されている。
JP-A-58-82078 discloses an invention relating to ``a sintered body characterized by adding 0.1 to 30% by weight of boron nitride to aluminum nitride.''

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前記特開昭58−55877号公報記載の発
明によれば、高密度で電電絶縁性および低熱膨張性を有
する窒化アルミニウム焼結体を得ることができるが、酸
化物を焼結助剤として使用するため、得られる焼結体の
熱伝導性はそれ程高くない欠点を有している。
By the way, according to the invention described in JP-A-58-55877, it is possible to obtain an aluminum nitride sintered body having high density, electrical insulation properties, and low thermal expansion. The disadvantage is that the thermal conductivity of the resulting sintered body is not very high.

また、前記特開昭58−82072号公報および特開昭
58−82078号公報記載の発明によれば、いずれも
高密度で電気絶縁性、低熱膨張性および高熱伝導性を有
する窒化アルミニウム焼結体を得ることができるが、特
に高密度に印刷回路が形成されるハイブリッドIC基板
等の用途に使用する際に好適な誘電率の低い窒化アルミ
ニウム焼結体については何ら記載されていない。
Further, according to the inventions described in JP-A-58-82072 and JP-A-58-82078, both are aluminum nitride sintered bodies having high density, electrical insulation, low thermal expansion, and high thermal conductivity. However, there is no description of an aluminum nitride sintered body having a low dielectric constant that is suitable for use in applications such as hybrid IC substrates on which printed circuits are formed at high density.

本発明は、前述の如き従来知られた窒化アμミニクム焼
結体と異なり、電気絶縁性、低熱膨張性、高熱伝導性、
低誘電性等のすべての特性において優れた電子回路用基
板として好適な窒化アルミニウム質焼結体を製造する方
法を提供することを目的とする。
Unlike the previously known aluminum nitride sintered bodies as described above, the present invention has electrical insulation properties, low thermal expansion properties, high thermal conductivity,
The object of the present invention is to provide a method for producing an aluminum nitride sintered body suitable for use as an electronic circuit board, which is excellent in all properties such as low dielectric property.

〔問題を解決するための手段〕[Means to solve the problem]

本発明によれば、窒化アルミニウム粉末100重量部に
対し、下記(a)群より選択されるいずれか少なくとも
1種のホウ素含有添加剤をホウ素含有量に換算して0.
1〜30重量部添加し均質混合した後、非酸化性雰囲気
中で焼成し、2.75f/14以上の密度となすことを
特徴とする窒化アルミニウム質焼結体の製造方法によっ
て前記目的を達成す、ることかできる。
According to the present invention, at least one boron-containing additive selected from the following group (a) is added to 100 parts by weight of aluminum nitride powder in terms of boron content of 0.
The above object is achieved by a method for manufacturing an aluminum nitride sintered body, which comprises adding 1 to 30 parts by weight, homogeneously mixing, and then firing in a non-oxidizing atmosphere to obtain a density of 2.75 f/14 or more. I can do that.

(a)  金属ホウ素、炭化ホウ素、ホウ化アμミニ1
7A、リン化ホウ素、ホウ化ランタン、アモルファスホ
ウ素。
(a) Metal boron, boron carbide, boron aluminum mini 1
7A, boron phosphide, lanthanum boride, amorphous boron.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明によれば、窒化アルミニウム粉末100重量部に
対し、前記(a)群より選択されるいずれか少なくとも
1種のホウ素含有添加剤をホウ素含有量゛に換算して0
.1〜aO重量部添加することが必要である。その理由
は、ホウ素含有添加剤′t−焼結助剤として添加し焼結
して得られる窒化アルミニウム質焼結体は電電絶縁性、
低熱膨張性、高謔伝導性等の電子回路用基板材料として
要求される緒特性に極めて優れており、しかもハイプリ
ウドIC基板等の特に高密度の印刷回路が形成される用
途において要求される低い誘電特性をも充分に満足させ
ることができるからであり、また前記ホウ素含有添加剤
の添加量をホウ素含有量に換算して0.1〜30重量部
に限定する理由は、前記添加量が0.1重量部より少な
いと焼結助剤としての効果を充分に発揮させることがで
きず、高密度の焼結体を得ることが困難であるからであ
り、一方30重量部より多いと逆に焼結を阻害するため
高密度の焼結体を製造することが困難になるばかりでな
く、得られる焼結体の特性が劣化するからである。
According to the present invention, at least one boron-containing additive selected from group (a) is added to 100 parts by weight of aluminum nitride powder in terms of boron content of 0.
.. It is necessary to add 1 to aO parts by weight. The reason is that the aluminum nitride sintered body obtained by adding a boron-containing additive as a sintering aid and sintering has electrical insulation properties,
It has extremely excellent mechanical properties required for electronic circuit board materials such as low thermal expansion and high conductivity, and also has low dielectric properties required in applications where high-density printed circuits are formed, such as high-priority IC boards. The reason for limiting the amount of the boron-containing additive added to 0.1 to 30 parts by weight in terms of boron content is that the added amount of the boron-containing additive is 0.1 to 30 parts by weight. If the amount is less than 1 part by weight, the effect as a sintering aid cannot be fully exhibited and it is difficult to obtain a high-density sintered body, whereas if the amount is more than 30 parts by weight, the sintering aid will be difficult to obtain. This is because not only does it become difficult to produce a high-density sintered body because it inhibits sintering, but also the properties of the obtained sintered body deteriorate.

前記ホウ素含有添加剤′fI:焼結助剤として使用して
窒化アルミニウム質焼結体を製造することにより、誘電
率の低い窒化アルミニウム質焼結体を製造することがで
きる理由は、通常窒化アルミニウム質焼結体の主原料で
あるところの窒化アルミニ捩 ラム粉末には製造工程あるいは取挨い過程中に不可避的
に含有された酸素あるいは酸化物が含まれており、この
酸素あるいは酸化物が結晶粒界層に偏析するため、従来
の窒化アルミニウム焼結体は誘電率が高いものであった
のに対し、本発明によれば、焼結助剤として添加される
ホウ素含有添加剤に含有されるホウ素が焼J@温度域で
樺めて拡散し易く、しかも酸素と結合して揮散し易い亜
酸化物を生成し、窒化アルミニウム質焼結体の結晶粒界
に生成する酸化物層を減少させることができるためであ
ると考えられる。
The reason why an aluminum nitride sintered body with a low dielectric constant can be produced by using the boron-containing additive 'fI as a sintering aid is that aluminum nitride Aluminum nitride twisted ram powder, which is the main raw material for quality sintered bodies, contains oxygen or oxides that are unavoidably contained during the manufacturing or handling process. Conventional aluminum nitride sintered bodies had a high dielectric constant due to segregation in the grain boundary layer, but according to the present invention, boron is contained in the boron-containing additive added as a sintering aid. Boron easily oxidizes and diffuses in the sintering temperature range, and also combines with oxygen to form suboxides that easily volatilize, reducing the oxide layer that forms at the grain boundaries of aluminum nitride sintered bodies. This is thought to be because it is possible to

本発明によれば、前記ホウ素含有添加剤としては、金属
ホウ素、炭化ホウ素、ホウ化アμミニウム、リン化ホウ
素、ホウ化ランタン、アモ〃ファスホウ素から選択され
るいずれか少なくとも1種−を使用することが好適であ
り、なかでも金属ホウ本発明によれば、前記窒化アルミ
ニウム粉末と前記ホウ素含有添加剤はなるべく均質分散
させて混合せしめることが望ましく、窒化アルミニウム
粉末は平均粒径が20μm以下、ホウ素含有添加物は平
均粒径が50μm以下の粉末を使用することが好ましい
According to the present invention, as the boron-containing additive, at least one selected from metallic boron, boron carbide, aluminum boride, boron phosphide, lanthanum boride, and amorphous boron is used. According to the present invention, it is desirable that the aluminum nitride powder and the boron-containing additive are mixed in a homogeneous dispersion as much as possible, and the aluminum nitride powder has an average particle size of 20 μm or less, It is preferable to use a powder having an average particle size of 50 μm or less as the boron-containing additive.

なお、前記ホウ素含有添加剤は微粉末状で混合する方法
の他に窒化アルミニウム粉末表面に例えば化学蒸着する
ことにより被覆して用いることもできる。
In addition to the method of mixing the boron-containing additive in the form of fine powder, it can also be used by coating the surface of the aluminum nitride powder by, for example, chemical vapor deposition.

本発明によれば、前記窒化アルミニウム粉末とホウ素含
有添加剤とからなる生成形体は、非酸化性雰囲気中で構
成され、2.75f〜以上の密度まで緻密化される。
According to the present invention, the product formed from the aluminum nitride powder and the boron-containing additive is formed in a non-oxidizing atmosphere and densified to a density of 2.75 f or more.

本発明によれば、前記生成形体は1500〜2000℃
の温度範囲内で焼成される。その理由は、温度が150
0℃より低いと緻密な焼結体を製造することが困難であ
るからであり、一方2000″Cより高いと一旦焼結し
た焼結体の結晶粒が粗大化し易いからである。
According to the present invention, the temperature of the formed body is 1500 to 2000°C.
Fired within the temperature range of The reason is that the temperature is 150
This is because if the temperature is lower than 0°C, it is difficult to produce a dense sintered body, while if the temperature is higher than 2000″C, the crystal grains of the sintered body once sintered tend to become coarse.

なお、本発明における焼成は常圧焼結法あるいは加圧焼
結法のいずれの方法でも適用することができる。
Incidentally, the firing in the present invention can be performed by either a pressureless sintering method or a pressure sintering method.

本発明によれば、窒化アルミニウム粉末とホウ素含有添
加剤との混合物よりなる成形体を焼成する雰囲気も、本
発明の目的とする誘電率の低い焼結体を得る上で極めて
重要であり、前記成形体は非酸化性雰囲気中で焼成され
る。前記非酸化性雰囲気としては、例えばアルゴン、ヘ
リウム、水素、窒素などのいずれか少なくとも1種ある
いは真空であることが有利である。なお、前記非酸化性
雰囲気として使用される非酸化性ガスのうち、窒素はホ
ウ素含有添加剤中のホウ素と反応して窒化ホウ素を生成
するため、ホウ素と窒化アルミニウム中の酸素との反応
が終了するまではなるべく使用しないことが望ましい。
According to the present invention, the atmosphere in which the compact made of the mixture of aluminum nitride powder and a boron-containing additive is fired is also extremely important in obtaining the sintered compact with a low dielectric constant, which is the object of the present invention. The compact is fired in a non-oxidizing atmosphere. The non-oxidizing atmosphere is advantageously, for example, at least one of argon, helium, hydrogen, nitrogen, etc., or vacuum. Note that among the non-oxidizing gases used as the non-oxidizing atmosphere, nitrogen reacts with boron in the boron-containing additive to produce boron nitride, so the reaction between boron and oxygen in aluminum nitride is completed. It is recommended that you refrain from using it until you do so.

その理由は、窒化ホウ素は極めて安定な化合物であるた
め、一旦窒化ホウ素となったホウ素は窒化アルミニウム
中の酸素を除去する効果が著しく減少するため、誘電率
の低い焼結体を製造することが困難になるからである。
The reason for this is that boron nitride is an extremely stable compound, and once boron nitride is formed, its effectiveness in removing oxygen from aluminum nitride is significantly reduced, making it difficult to produce a sintered body with a low dielectric constant. This is because it becomes difficult.

本発明の方法によって製造される窒化アルミニウム質焼
結体は、室温における電気抵抗率が1018オームα以
上、室温における熱伝導率が0.15d/α・s9上、
室温から400″Cにおける平均熱膨張係数が4. O
X 10”’〜6. OX 1G−’/ ”Cの範囲内
、比誘電率(I MHz )が7.5以下であり、電子
回路用基板としての適用に優れたものである。
The aluminum nitride sintered body produced by the method of the present invention has an electrical resistivity at room temperature of 1018 ohm α or more, a thermal conductivity at room temperature of 0.15 d/α·s9 or more,
The average coefficient of thermal expansion from room temperature to 400″C is 4.O
The specific dielectric constant (I MHz) is within the range of X 10'' to 6.OX 1G-'/''C and is 7.5 or less, making it excellent for use as an electronic circuit board.

次に本発明を実施例および比較例によって説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例1 平均粒径が20μmで酸素含有量が1.5重量%の窒化
アルミニウム粉末100fと平均粒径が20μmの金属
ホウ素粉末5gとベンゼン400コとを炭化珪素製のポ
ールミ〃中へ装入し、24時間混合した後、凍結乾燥し
た。
Example 1 100 f of aluminum nitride powder with an average particle size of 20 μm and an oxygen content of 1.5% by weight, 5 g of metal boron powder with an average particle size of 20 μm, and 400 pieces of benzene were charged into a silicon carbide pole mill. After mixing for 24 hours, the mixture was lyophilized.

この乾燥物を適量採取し、成形した後、加圧焼結して焼
結体を得た。
An appropriate amount of this dried material was collected, molded, and then pressure sintered to obtain a sintered body.

昇温過程は常温〜1500”Oまでの間は35°C/分
で昇温し、1500°Cにて30分間保持した後、さら
に10℃/分の割合で昇温し、最高温度1900°Cで
1時間保持した。
The temperature was raised at a rate of 35°C/min from room temperature to 1500"O, held at 1500°C for 30 minutes, and then further raised at a rate of 10°C/min until a maximum temperature of 1900° It was held at C for 1 hour.

雰囲気は常温〜1500℃まで減圧下で昇温し、150
0℃では最終的にI X 10−’Torrまで到達さ
せた。1500″Cより高温域は大気圧の窒素気流とし
た。
The atmosphere was heated under reduced pressure from room temperature to 1500°C.
At 0°C, the temperature was finally reached to I x 10-'Torr. In the high temperature range above 1500″C, a nitrogen stream was used at atmospheric pressure.

成形圧力は常温〜1500”Cまでは無加圧、1500
°Cよりも高温域では300 kW/eJの圧力を負荷
した。
Molding pressure is no pressure from room temperature to 1500"C, 1500"
In the temperature range higher than °C, a pressure of 300 kW/eJ was applied.

得られた焼結体は8.02f/−の密度であり、室温に
おける電気抵抗率は8 X 1014Ωα、室温におけ
る準伝導率は0.85 ed/ex see ”(:j
 、室温から400℃における平均熱膨張係数は4.2
 X 10−’/”C1比誘電率(IMHg)は4.9
と電子回路用基板として極めて優れた特性を有していた
The obtained sintered body has a density of 8.02 f/-, an electrical resistivity at room temperature of 8 x 1014 Ωα, and a quasi-conductivity at room temperature of 0.85 ed/ex see ”(:j
, the average coefficient of thermal expansion from room temperature to 400℃ is 4.2
X 10-'/”C1 relative permittivity (IMHg) is 4.9
It had extremely excellent properties as a substrate for electronic circuits.

またこの焼結体の平均曲げ強度は88.8 kg/−と
比較的高強度で、構造用材料としての用途にも充分適用
が可能であることが認められた。
Furthermore, the average bending strength of this sintered body was 88.8 kg/-, which was relatively high, and it was recognized that it could be sufficiently applied to use as a structural material.

実施例2、比較例1 実施例1と同様であるが、窒化アルミニウム粉末と金属
ホウ素粉末の配合比率を第1表に示す如く変化させて焼
結体を得た。
Example 2, Comparative Example 1 Sintered bodies were obtained in the same manner as in Example 1, except that the blending ratio of aluminum nitride powder and metal boron powder was changed as shown in Table 1.

得られた焼結体の特性は第1表に示した。The properties of the obtained sintered body are shown in Table 1.

第1表に示した結果よりわかるように、金属ホウ素の添
加量の少ない比較例1−1は高密度の焼結体を得ること
が困難であり、一方金属ホウ素の添加量の多い比較例1
−2の焼結体は熱伝導率および比誘電率に劣っていた。
As can be seen from the results shown in Table 1, it was difficult to obtain a high-density sintered body in Comparative Example 1-1, in which the amount of metal boron added was small, whereas Comparative Example 1-1, in which the amount of metal boron added was large.
The sintered body of -2 was inferior in thermal conductivity and dielectric constant.

比較例2 実施例1と同様であるが、金属ホウ素に換えて窒化ホウ
素をホウ素添加量が実施例2−2とほぼ同量となるよう
約2.5g添加して焼結体を得た。
Comparative Example 2 A sintered body was obtained in the same manner as in Example 1, except that about 2.5 g of boron nitride was added in place of metallic boron so that the amount of boron added was almost the same as in Example 2-2.

得られた焼結体の特性は第2表に示した。The properties of the obtained sintered body are shown in Table 2.

第2表に示した結果より、熱伝導率が0,15at/e
x see ”Q、比誘電率が8.0でsb、ホウ素添
加量がほぼ同量の実施例2−2に比較して劣っていた。
From the results shown in Table 2, the thermal conductivity is 0.15 at/e.
x see "Q, dielectric constant was 8.0, sb, and the amount of boron added was inferior to Example 2-2, which had approximately the same amount.

第2表 実施例8 実施例1と同様であるが、焼成雰囲気を減圧することな
く大気圧の窒素気流中で焼成し、焼結体を得た。
Table 2 Example 8 A sintered body was obtained in the same manner as in Example 1, except that the firing atmosphere was fired in a nitrogen stream at atmospheric pressure without reducing the pressure.

得られた焼結体の特性はWIJ2表に示した。The properties of the obtained sintered body are shown in Table WIJ2.

第2表に示した結果よりわかるように、1500°C以
下を減圧して焼成した実施例1の焼結体に比較して、熱
伝導率が0.20 rd/cm met″C1比誘電率
が7.4と若干劣るものであった。
As can be seen from the results shown in Table 2, the thermal conductivity is 0.20 rd/cm met''C1 dielectric constant compared to the sintered body of Example 1 which was fired at 1500°C or less under reduced pressure. was slightly inferior at 7.4.

実施例4、比較例8 実施例1と同様であるが、焼成時の焼成温度、時間、成
形圧力を第3表に示す如く変化させて焼結体を得た。
Example 4, Comparative Example 8 Sintered bodies were obtained in the same manner as in Example 1, except that the firing temperature, time, and molding pressure during firing were changed as shown in Table 3.

得られた焼結体の焼結条件と密度の関係を第8表に示し
た。
Table 8 shows the relationship between the sintering conditions and the density of the obtained sintered bodies.

第8表 本実施例の焼結体は、hずれも室温における電気抵抗が
1012Ω1以上、室温における熱伝導率が0、15 
cd/am sec″C以上、室温から400″Cにお
ける平均熱膨張係数が6. OX 10−@/”C以下
、比誘電率(I MHz )が7.5以下であった。こ
れに対して、焼成温度を2100°Cに高めた比較例8
の焼結体は、窒化アルミニウムの揮散が著しく低密度で
おった。
Table 8: The sintered body of this example has an electrical resistance of 1012 Ω1 or more at room temperature and a thermal conductivity of 0.15 at room temperature.
cd/am sec"C or more, average thermal expansion coefficient from room temperature to 400"C is 6. OX 10-@/”C or less, and the relative dielectric constant (I MHz) was 7.5 or less. On the other hand, Comparative Example 8 in which the firing temperature was raised to 2100°C
In the sintered body, aluminum nitride was volatilized at a significantly low density.

実施例5 実施例1と同様であるが、金属ホウ素に換えてlと嫌ぼ
同量となる量添加して焼結体を得た。
Example 5 A sintered body was obtained in the same manner as in Example 1, except that metal boron was replaced with an amount that was approximately the same as 1.

得られた焼結体は、いずれも電子回路用基板として好適
な特性を有していた。
All of the obtained sintered bodies had characteristics suitable as substrates for electronic circuits.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、従来知られた窒化ア
ルミニウム焼結体に比較して、電気絶縁性、低熱膨張性
、高熱伝導性、低誘電性等のすべての特性にお匹て優れ
た電子回路用基板として極めて好適な窒化アμミニウム
質焼結体を製造することができ、産業上極めて有用であ
る。
As described above, the present invention is superior to conventionally known aluminum nitride sintered bodies in all properties such as electrical insulation, low thermal expansion, high thermal conductivity, and low dielectricity. It is possible to produce an aluminum nitride sintered body which is extremely suitable as a substrate for electronic circuits, and is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1、窒化アルミニウム粉末100重量部に対し、下記(
a)群より選択されるいずれか少なくとも1種のホウ素
含有添加剤をホウ素含有量に換算して0.1〜30重量
部添加し均質混合した後、非酸化性雰囲気中で焼成し、
2.75g/cm^3以上の密度となすことを特徴とす
る窒化アルミニウム質焼結体の製造方法。 (a)金属ホウ素、炭化ホウ素、ホウ化アルミニウム、
リン化ホウ素、ホウ化ランタン、 アモルファスホウ素。 2、前記窒化アルミニウム粉末は平均粒径が20μm以
下である特許請求の範囲第1項記載の製造方法。 3、前記ホウ素含有添加剤は平均粒径が50μm以下の
粉末である特許請求の範囲第1あるいは2項記載の製造
方法。
[Claims] 1. For 100 parts by weight of aluminum nitride powder, the following (
a) At least one boron-containing additive selected from group 0.1 to 30 parts by weight in terms of boron content is added and mixed homogeneously, followed by firing in a non-oxidizing atmosphere;
A method for producing an aluminum nitride sintered body, characterized in that it has a density of 2.75 g/cm^3 or more. (a) metallic boron, boron carbide, aluminum boride,
Boron phosphide, lanthanum boride, amorphous boron. 2. The manufacturing method according to claim 1, wherein the aluminum nitride powder has an average particle size of 20 μm or less. 3. The manufacturing method according to claim 1 or 2, wherein the boron-containing additive is a powder having an average particle size of 50 μm or less.
JP60129351A 1985-06-13 1985-06-13 Manufacture of aluminum nitride base sintered body Pending JPS61286267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129351A JPS61286267A (en) 1985-06-13 1985-06-13 Manufacture of aluminum nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129351A JPS61286267A (en) 1985-06-13 1985-06-13 Manufacture of aluminum nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS61286267A true JPS61286267A (en) 1986-12-16

Family

ID=15007454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129351A Pending JPS61286267A (en) 1985-06-13 1985-06-13 Manufacture of aluminum nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS61286267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242468A (en) * 1988-03-23 1989-09-27 Japan Steel Works Ltd:The Production of sintered body of aluminum nitride
US5767028A (en) * 1995-07-11 1998-06-16 Kabushiki Kaisha Toshiba Aluminum nitride sintered body and method for manufacturing the same
JP2003221279A (en) * 2001-11-26 2003-08-05 Ngk Insulators Ltd Aluminum nitride ceramics, member for manufacturing semiconductor and anticorrosive member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242468A (en) * 1988-03-23 1989-09-27 Japan Steel Works Ltd:The Production of sintered body of aluminum nitride
JPH0583515B2 (en) * 1988-03-23 1993-11-26 Japan Steel Works Ltd
US5767028A (en) * 1995-07-11 1998-06-16 Kabushiki Kaisha Toshiba Aluminum nitride sintered body and method for manufacturing the same
JP2003221279A (en) * 2001-11-26 2003-08-05 Ngk Insulators Ltd Aluminum nitride ceramics, member for manufacturing semiconductor and anticorrosive member
JP4493264B2 (en) * 2001-11-26 2010-06-30 日本碍子株式会社 Aluminum nitride ceramics, semiconductor manufacturing members and corrosion resistant members

Similar Documents

Publication Publication Date Title
US4778778A (en) Process for the production of sintered aluminum nitrides
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPH075371B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JP2710311B2 (en) Ceramic insulation material
JPS6369761A (en) Manufacture of aluminum nitride base sintered body
JPS61146764A (en) Aluminum nitride sintered body and manufacture
JPS63166765A (en) Aluminum nitride base sintered body and manufacture
JPS63233079A (en) Black aluminum nitride sintered body and manufacture
JPS6360167A (en) Manufacture of aluminum nitride base sintered body
JPS6236066A (en) Silicon carbide base sintered body and manufacture
JP3049941B2 (en) Manufacturing method of aluminum nitride sintered body
JPH02307871A (en) Production of ceramic sintered compact
JPS61146766A (en) Aluminum nitride sintered body and manufacture
KR910005542B1 (en) The make method of aln powder
JPS63190133A (en) Aluminum nitride sintered compact and its production
JPS6374966A (en) Manufacture of aluminum nitride sintered body
JPH0660060B2 (en) Method for manufacturing aluminum nitride sintered body
JPS61183174A (en) Aluminum nitride aintered body
JPS61205665A (en) Electrically insulating substrate and manufacture
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63230574A (en) Manufacture of aluminum nitride sintered body
JPS61205667A (en) Electrically insulating substrate and manufacture