JPH0524931A - Aluminum nitride sintered compact - Google Patents

Aluminum nitride sintered compact

Info

Publication number
JPH0524931A
JPH0524931A JP3174254A JP17425491A JPH0524931A JP H0524931 A JPH0524931 A JP H0524931A JP 3174254 A JP3174254 A JP 3174254A JP 17425491 A JP17425491 A JP 17425491A JP H0524931 A JPH0524931 A JP H0524931A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
thermal conductivity
elements
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3174254A
Other languages
Japanese (ja)
Inventor
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3174254A priority Critical patent/JPH0524931A/en
Publication of JPH0524931A publication Critical patent/JPH0524931A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the AlN sintered which is dense and has a high thermal conductivity by decreasing the oxygen content in the sintered compact while assuring the contents of one or >=2 kinds of the elements constituting auxiliary component selected from alkaline earth elements and rare earth elements necessary for yielding the dense sintered body. CONSTITUTION:This aluminum nitride sintered compact consists essentially of aluminum nitride and contains the oxides of one or >=2 kinds of the elements selected from alkaline earth elements and rare earth elements as the auxiliary components. The content of the elements constituting the auxiliary components in the above-mentioned aluminum nitride sintered compact is >=4wt.% and <=15wt.%, the oxygen content thereof is <=2.3wt.% and the thermal conductivity thereof is >=170W/m.K.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化アルミニウム焼結
体に関し、特に新規な組成を有する高熱伝導性の窒化ア
ルミニウム焼結体に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body, and more particularly to a high thermal conductivity aluminum nitride sintered body having a novel composition.

【0002】[0002]

【従来の技術】窒化アルミニウム(AlN)は、その材
料がもつ高い電気絶縁性、Siに近い熱膨張係数、高熱
伝導性等の特性により放熱性基板としての期待が高い。
その結果、AlN原料粉末や焼結方法を検討することに
より、AlNの特性として非常に重要である熱伝導率を
向上させる研究が盛んに行われている。
2. Description of the Related Art Aluminum nitride (AlN) is highly expected as a heat-dissipating substrate due to its properties such as high electrical insulation, thermal expansion coefficient close to that of Si, and high thermal conductivity.
As a result, studies have been actively conducted to improve the thermal conductivity, which is very important as the characteristics of AlN, by examining the AlN raw material powder and the sintering method.

【0003】ところで、AlN焼結体は現在、主成分を
構成するAlN粉末と、副成分を構成するアルカリ土類
や希土類元素の酸化物等の焼結助剤とを配合、混合、造
粒、成形し、常圧焼結により緻密な焼結体を得る方法が
一般的である。なお、緻密な焼結体を得るためには、ア
ルカリ土類や希土類元素として4wt%以上残存する程
度の量が必要とされている。そして、この焼結助剤は、
焼結時にAlN粉末中に不可避的に混入されている酸素
と反応し、アルミナと焼結助剤との複合酸化物からなる
液相を生成することにより緻密化を可能にしている。ま
た、この複合酸化物の生成は、結果的に不純物酸素を粒
界に固定し、粒内への酸素の固溶を抑制しているため、
熱伝導率の向上にも寄与している。
By the way, the AlN sintered body is currently mixed with, mixed with, and granulated by mixing AlN powder as a main component and a sintering aid such as an oxide of an alkaline earth element or a rare earth element as a secondary component. A general method is to form a compact and obtain a dense sintered body by pressureless sintering. In order to obtain a dense sintered body, it is necessary that the amount of alkaline earth or rare earth element is 4 wt% or more. And this sintering aid is
Densification is made possible by reacting with oxygen that is unavoidably mixed in the AlN powder during sintering to generate a liquid phase composed of a composite oxide of alumina and a sintering aid. Further, since the formation of this composite oxide fixes the impurity oxygen at the grain boundary as a result and suppresses the solid solution of oxygen in the grain,
It also contributes to the improvement of thermal conductivity.

【0004】[0004]

【発明が解決しようとする課題】このように焼結助剤を
AlN原料粉末中に添加することは、AlN焼結体の緻
密化、高熱伝導化を可能とするが、より高熱伝導のAl
N焼結体(例えば ≧170W/m・K)を得るために
は、いまだいくつかの課題が残されている。
The addition of the sintering aid to the AlN raw material powder as described above enables the AlN sintered body to be densified and to have high thermal conductivity, but the Al having higher thermal conductivity can be used.
In order to obtain N sintered body (for example, ≧ 170 W / m · K), some problems still remain.

【0005】その一つが焼結体中の酸素量の低減であ
る。最近のAlN原料粉末は、金属不純物量としては1
00ppm以下と非常に高純度になってきているが、依
然として酸素は0.5〜2.0wt%含有している。こ
れらの酸素は、AlN原料粉末を安定な状態で維持する
のに必要な不純物という一面を持っている一方、焼結過
程においてAlN粒内に固溶しAlN焼結体の高熱伝導
化を阻害する因子となる。そこで前述のように焼結助剤
を添加し、焼結過程でAlN原料粉末中に存在していた
不純物酸素をアルミナと焼結助剤の複合酸化物として粒
界に固定することにより高熱伝導化を図っている。しか
し、この方法は≦170W/m・K程度の熱伝導率を達
成することは可能であるが≧170W/m・Kとするこ
とは困難である。なぜならば、熱伝導率≧170W/m
・Kを達成する場合は、粒界に存在する複合酸化物が高
熱伝導化を阻害する因子となるからである。そこで、還
元窒素雰囲気で焼結するなどして、複合酸化物を除去す
る手法が検討されている。
One of them is to reduce the amount of oxygen in the sintered body. Recent AlN raw material powder has a metal impurity content of 1
Although it has become extremely high in purity of 00 ppm or less, it still contains 0.5 to 2.0 wt% of oxygen. While these oxygen have the aspect of impurities necessary for maintaining the AlN raw material powder in a stable state, they form a solid solution in the AlN grains during the sintering process and hinder the high thermal conductivity of the AlN sintered body. Become a factor. Therefore, as described above, a sintering aid is added, and the impurity oxygen existing in the AlN raw material powder during the sintering process is fixed to the grain boundary as a composite oxide of alumina and the sintering aid to achieve high thermal conductivity. I am trying. However, this method can achieve a thermal conductivity of ≤170 W / m · K, but it is difficult to achieve ≥170 W / m · K. Because, thermal conductivity ≧ 170 W / m
-When K is achieved, the complex oxide existing at the grain boundary becomes a factor that hinders high thermal conductivity. Therefore, a method of removing the composite oxide by sintering in a reducing nitrogen atmosphere has been studied.

【0006】この手法による焼結体として例えば、特開
昭60−65768号、同60−71575号、同60
−127267号、同62−270467号公報に記載
された焼結体が知られているが、この焼結体は、アルカ
リ土類元素および希土類元素から選ばれる1種または2
種以上の副成分を構成する元素の量が4wt%以上にな
ると酸素量も2.3wt%以上になり、熱伝導率が17
0W/m・K以上という高熱伝導率を達成することは困
難である。
Examples of the sintered body produced by this method include those disclosed in JP-A-60-65768, 60-71575, and 60.
The sintered bodies described in JP-A-127267 and JP-A-62-270467 are known, and this sintered body is one or two selected from alkaline earth elements and rare earth elements.
When the amount of the element that constitutes one or more subcomponents is 4 wt% or more, the oxygen amount is 2.3 wt% or more, and the thermal conductivity is 17%.
It is difficult to achieve a high thermal conductivity of 0 W / m · K or more.

【0007】本発明は、以上の点を考慮してなされたも
ので、緻密な焼結体をえるために必要な副成分元素量を
確保しつつ焼結体中の酸素量を低減することにより、緻
密でかつ高熱伝導性のAlN焼結体を提供するものであ
る。
The present invention has been made in consideration of the above points. By reducing the amount of oxygen in the sintered body while ensuring the amounts of sub-component elements necessary for obtaining a dense sintered body. The present invention provides a dense and highly heat-conductive AlN sintered body.

【0008】[0008]

【課題を解決するための手段】本発明者は、焼結時に粒
界の複合酸化物を還元する物質を加えて焼結するという
手法を採用することにより、緻密な焼結体をえるために
必要な副成分元素量を確保しつつ焼結体中の酸素量を低
減することができることを知見し本発明を完成した。即
ち本発明は、窒化アルミニウムを主成分とし、副成分と
してアルカリ土類元素および希土類元素から選ばれる1
種または2種以上の元素の酸化物を含む窒化アルミニウ
ム焼結体において、副成分を構成する元素の量が4wt
%以上15wt%以下、酸素量が2.3wt%以下、熱
伝導率が170W/m・K以上であることを特徴とする
窒化アルミニウム焼結体である。本発明によれば、より
完全な粒内への酸素の固溶防止と複合酸化物中のアルミ
ナ分、すなわち酸素量を減少させることにより、高熱伝
導性を実現する。
In order to obtain a dense sintered body, the present inventor adopts a method of sintering by adding a substance that reduces the complex oxide at the grain boundary at the time of sintering. The present invention has been completed by finding that it is possible to reduce the amount of oxygen in the sintered body while ensuring the required amount of sub-component elements. That is, the present invention is mainly composed of aluminum nitride, and is selected from alkaline earth elements and rare earth elements as a subcomponent.
In an aluminum nitride sintered body containing an oxide of one kind or two or more kinds of elements, the amount of the element constituting the subcomponent is 4 wt.
% Or more and 15 wt% or less, the amount of oxygen is 2.3 wt% or less, and the thermal conductivity is 170 W / m · K or more. According to the present invention, high thermal conductivity is realized by more completely preventing solid solution of oxygen in grains and reducing the alumina content in the composite oxide, that is, the amount of oxygen.

【0009】本発明窒化アルミニウム焼結体の粒界相の
組成は、例えばアルミニウムをA、アルカリ土類や希土
類元素をR、酸素をOとしたとき、A249、あるい
はR23等の組成が単独かあるいはそれらの物質が混合
した状態の組成を挙げることができる。ここで、アルカ
リ土類元素としてはMg、Ca、Sr、Ba、を挙げる
ことができ、特にCaが好ましい。希土類元素としては
Sc,Y,La、Ce、Sm,Eu、Tm、Tb、D
y、Nd、Gd、Pr、Ho、Er、Yb等を挙げるこ
とができ、特に、Y、Dyが好ましい。
The composition of the grain boundary phase of the aluminum nitride sintered body of the present invention is A 2 R 4 O 9 or R 2 O, where A is aluminum, R is an alkaline earth element or rare earth element, and O is oxygen. Examples of the composition may include compositions such as 3 or the like, or a composition in which these substances are mixed. Here, examples of the alkaline earth element include Mg, Ca, Sr, and Ba, and Ca is particularly preferable. As rare earth elements, Sc, Y, La, Ce, Sm, Eu, Tm, Tb, D
Examples thereof include y, Nd, Gd, Pr, Ho, Er and Yb, and Y and Dy are particularly preferable.

【0010】次に、本発明のAlN焼結体を得るための
製造方法を説明する。まず、AlN粉末にアルカリ土類
元素、希土類元素のいずれか一方か、あるいは両方を所
定量添加し、さらに焼結過程で粒界の複合酸化物を還元
する物質を加える。この粒界の複合酸化物を還元する物
質としては、有機系バインダ、2a族、3a族、4a
族、5a族、6a族、希土類元素からなる炭化物(特に
Ca、Y、Dyからなる炭化物が好ましい)、炭素、あ
るいは加熱処理により炭素になる物質等が掲げられる。
次いでボールミル等を用いて粉砕、混合し、スプレイド
ライヤーなどにより造粒する。次いでその造粒粉を所定
の形状に成形した後、加熱してバインダ中に含まれる水
素分や酸素分を除去する。つづいてその成形体を焼結炉
内にセットし、窒素ガス雰囲気中で焼結を行う。この
際、熱伝導率≧170W/m・KのAlN焼結体を得る
場合には1400℃〜2000℃で焼結体中の粒界相を
形成している物質を充分還元窒化させ、酸化物量を減少
させる。
Next, a manufacturing method for obtaining the AlN sintered body of the present invention will be described. First, one or both of the alkaline earth element and the rare earth element are added to the AlN powder in a predetermined amount, and a substance that reduces the composite oxide at the grain boundary during the sintering process is added. Examples of substances that reduce the complex oxides at the grain boundaries include organic binders, 2a group, 3a group, and 4a.
Examples thereof include carbides made of group 5a, 6a, and rare earth elements (particularly preferably made of Ca, Y, and Dy), carbon, and substances that become carbon by heat treatment.
Then, it is crushed and mixed using a ball mill or the like, and granulated by a spray dryer or the like. Next, the granulated powder is molded into a predetermined shape and then heated to remove hydrogen and oxygen contained in the binder. Subsequently, the molded body is set in a sintering furnace and sintered in a nitrogen gas atmosphere. At this time, in the case of obtaining an AlN sintered body having a thermal conductivity of ≧ 170 W / m · K, the substance forming the grain boundary phase in the sintered body is sufficiently reduced and nitrided at 1400 ° C. to 2000 ° C. To reduce.

【0011】上述した焼結により作製されたAlN焼結
体中のAlN以外の構成相は、X線回折により同定した
結果、R及び複合酸化物を還元する物質の添加量、そし
て焼結条件により、A249のみ存在、A249とR
23の共存、R23のみの存在などの場合があるが、そ
れらのアルカリ土類元素、希土類元素の量はすべて4w
t%以上15wt%以下、酸素量が2.3wt%以下、
熱伝導率は170W/m・K以上である。
The constituent phases other than AlN in the AlN sintered body produced by the above-mentioned sintering were identified by X-ray diffraction, and as a result, the amount of R and the substance reducing the complex oxide was added, and the sintering conditions. , Only A 2 R 4 O 9 exists, A 2 R 4 O 9 and R
Coexistence 2 O 3, there are cases such as the presence of only R 2 O 3, all their alkali earth element, the amount of rare earth element 4w
t% or more and 15 wt% or less, oxygen amount is 2.3 wt% or less,
The thermal conductivity is 170 W / m · K or more.

【0012】[0012]

【作用】本発明によれば、窒化アルミニウムを主成分と
し、副成分をアルカリ土類元素および希土類元素から選
ばれる1種または2種以上の元素を酸化物として含む窒
化アルミニウム焼結体において、従来と比較してより少
ない酸素量で粒界相が構成されているにもかかわらず、
充分な緻密化が達成され、かつ高熱伝導率の窒化アルミ
ニウム焼結体を得ることができる。
According to the present invention, an aluminum nitride sintered body containing aluminum nitride as a main component and an auxiliary component containing one or more elements selected from alkaline earth elements and rare earth elements as oxides is conventionally used. Although the grain boundary phase is composed with a smaller amount of oxygen compared to
Sufficient densification is achieved, and an aluminum nitride sintered body having high thermal conductivity can be obtained.

【0013】[0013]

【実施例】次に本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0014】平均粒径0.8μm、酸素量1.2wt%
の窒化アルミニウム粉末にY23、Dy23をそれぞれ
単独あるいは混合した状態で5、7、9wt%添加し、
さらにバインダとしてポリビニルアルコールを3、5、
7、9wt%加えた後、ボールミルを用いて粉砕、混
合、造粒した。つづいてこの造粒粉を1ton/cm2
の圧力でプレス成形した。ひきつづきこの成形体を窒素
ガス雰囲気で500℃まで加熱し、水素分、酸素分を除
去した。次いで焼結路内にセットし、窒素ガス雰囲気下
にて1900℃、2000℃の各温度で1〜5時間保持
し焼結した。
Average particle diameter 0.8 μm, oxygen content 1.2 wt%
Of aluminum nitride powder Y 2 O 3, Dy 2 O 3 was added 5,7,9Wt%, respectively alone or in mixed state,
Furthermore, polyvinyl alcohol is used as a binder in 3, 5,
After adding 7 and 9 wt%, it was crushed, mixed and granulated using a ball mill. Next, add this granulated powder to 1 ton / cm 2
It was press-molded under the pressure of. Subsequently, the molded body was heated to 500 ° C. in a nitrogen gas atmosphere to remove hydrogen and oxygen. Then, it was set in a sintering path, and sintered at a temperature of 1900 ° C. and 2000 ° C. for 1 to 5 hours in a nitrogen gas atmosphere for sintering.

【0015】このようにして得られた焼結体中のアルカ
リ土類、希土類元素量を高周波誘導結合プラズマ発光分
光分析により測定した。また、酸素量を不活性ガス融解
赤外線吸収法により、測定した。更にレーザフラッシュ
法により室温での熱伝導率を測定した。その結果を相対
密度と共に表1および表2に示す。
The amounts of alkaline earth and rare earth elements in the thus obtained sintered body were measured by high frequency inductively coupled plasma emission spectroscopy. Further, the amount of oxygen was measured by an inert gas melting infrared absorption method. Furthermore, the thermal conductivity at room temperature was measured by the laser flash method. The results are shown in Tables 1 and 2 together with the relative density.

【0016】[0016]

【表1】 [Table 1]

【表2】 表1及び表2から、本実施例のAlN焼結体はアルカリ
土類、希土類元素量を4wt%以上15wt%以下含
み、かつ酸素量が2wt%以下であり、比較例に比べて
アルカリ土類、希土類の元素量に対する酸素量がより少
ない量で熱伝導率≧170W/m・Kという高熱伝導率
を達成できることがわかる。
[Table 2] From Table 1 and Table 2, the AlN sintered body of this example contains alkaline earth and rare earth elements in an amount of 4 wt% to 15 wt% and an oxygen amount of 2 wt% or less. It can be seen that a high thermal conductivity of 170 W / m · K can be achieved with a smaller amount of oxygen relative to the amount of rare earth element.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
副成分元素であるアルカリ土類、希土類元素量を4wt
%以上、15wt%以下含み、かつ酸素量が2wt%以
下で、かつ熱伝導率≧170W/m・Kを同時に満たす
窒化アルミニウム焼結体を提供できる。
As described above, according to the present invention,
The amount of alkaline earth and rare earth elements, which are subordinate elements, is 4 wt.
% And 15 wt% or less, the oxygen content is 2 wt% or less, and the thermal conductivity ≧ 170 W / m · K can be simultaneously satisfied to provide an aluminum nitride sintered body.

Claims (1)

【特許請求の範囲】 【請求項1】 窒化アルミニウムを主成分とし、副成分
としてアルカリ土類元素および希土類元素から選ばれる
1種または2種以上の元素の酸化物を含む窒化アルミニ
ウム焼結体において、副成分を構成する元素の量が4w
t%以上15wt%以下、酸素量が2.3wt%以下、
熱伝導率が170W/m・K以上であることを特徴とす
る窒化アルミニウム焼結体。
Claim: What is claimed is: 1. An aluminum nitride sintered body containing aluminum nitride as a main component and an oxide of one or more elements selected from alkaline earth elements and rare earth elements as a subcomponent. , The amount of elements that make up the subcomponent is 4w
t% or more and 15 wt% or less, oxygen amount is 2.3 wt% or less,
An aluminum nitride sintered body having a thermal conductivity of 170 W / mK or more.
JP3174254A 1991-07-16 1991-07-16 Aluminum nitride sintered compact Pending JPH0524931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174254A JPH0524931A (en) 1991-07-16 1991-07-16 Aluminum nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174254A JPH0524931A (en) 1991-07-16 1991-07-16 Aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH0524931A true JPH0524931A (en) 1993-02-02

Family

ID=15975416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174254A Pending JPH0524931A (en) 1991-07-16 1991-07-16 Aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH0524931A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173314A (en) * 2005-12-19 2007-07-05 Renesas Technology Corp Semiconductor device
US7759746B2 (en) * 2006-03-31 2010-07-20 Tokyo Electron Limited Semiconductor device with gate dielectric containing aluminum and mixed rare earth elements
US7767262B2 (en) 2006-09-29 2010-08-03 Tokyo Electron Limited Nitrogen profile engineering in nitrided high dielectric constant films
US8012442B2 (en) 2006-03-31 2011-09-06 Tokyo Electron Limited Method of forming mixed rare earth nitride and aluminum nitride films by atomic layer deposition
US8076241B2 (en) 2009-09-30 2011-12-13 Tokyo Electron Limited Methods for multi-step copper plating on a continuous ruthenium film in recessed features
US8097300B2 (en) 2006-03-31 2012-01-17 Tokyo Electron Limited Method of forming mixed rare earth oxynitride and aluminum oxynitride films by atomic layer deposition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173314A (en) * 2005-12-19 2007-07-05 Renesas Technology Corp Semiconductor device
US7759746B2 (en) * 2006-03-31 2010-07-20 Tokyo Electron Limited Semiconductor device with gate dielectric containing aluminum and mixed rare earth elements
US8012442B2 (en) 2006-03-31 2011-09-06 Tokyo Electron Limited Method of forming mixed rare earth nitride and aluminum nitride films by atomic layer deposition
US8097300B2 (en) 2006-03-31 2012-01-17 Tokyo Electron Limited Method of forming mixed rare earth oxynitride and aluminum oxynitride films by atomic layer deposition
US7767262B2 (en) 2006-09-29 2010-08-03 Tokyo Electron Limited Nitrogen profile engineering in nitrided high dielectric constant films
US8076241B2 (en) 2009-09-30 2011-12-13 Tokyo Electron Limited Methods for multi-step copper plating on a continuous ruthenium film in recessed features

Similar Documents

Publication Publication Date Title
KR960016070B1 (en) Sintered aluminium nitride and its production
JPH0524931A (en) Aluminum nitride sintered compact
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
US5059565A (en) Silicon nitride ceramic and a process for its preparation
JP2000128643A (en) Highly heat conductive silicon nitride-based sintered compact and its production
EP0941976B1 (en) Highly heat-conductive silicon nitride-base sintered-body and method for fabricating the same
JP2666942B2 (en) Aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP3145519B2 (en) Aluminum nitride sintered body
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
KR102626997B1 (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JP4181359B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body
JPH09175867A (en) Aluminum nitride sintered product
JP2704194B2 (en) Black aluminum nitride sintered body
JP2605045B2 (en) Aluminum nitride sintered body
US5061664A (en) Preparation of sintered aluminum nitride
JP2742599B2 (en) Aluminum nitride sintered body and method for producing the same
JP2001270779A (en) Method for producing aluminum nitride sintered compact
KR960006249B1 (en) Process for producing an aluminium sintered product
JPH0566339B2 (en)
JPH0641390B2 (en) High thermal conductivity aluminum nitride sintered body and manufacturing method thereof
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JP2001151575A (en) Method of producing aluminum nitride sintered compact