JPH11180774A - Silicon nitride-base heat radiating member and its production - Google Patents

Silicon nitride-base heat radiating member and its production

Info

Publication number
JPH11180774A
JPH11180774A JP9352949A JP35294997A JPH11180774A JP H11180774 A JPH11180774 A JP H11180774A JP 9352949 A JP9352949 A JP 9352949A JP 35294997 A JP35294997 A JP 35294997A JP H11180774 A JPH11180774 A JP H11180774A
Authority
JP
Japan
Prior art keywords
silicon nitride
mol
oxide
terms
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9352949A
Other languages
Japanese (ja)
Inventor
Tomohiro Iwaida
智広 岩井田
Akihisa Makino
晃久 牧野
Masanobu Ishida
政信 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9352949A priority Critical patent/JPH11180774A/en
Priority to DE19859119A priority patent/DE19859119B4/en
Priority to US09/217,087 priority patent/US6294244B1/en
Publication of JPH11180774A publication Critical patent/JPH11180774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

PROBLEM TO BE SOLVED: To enable firing at <=1,800 deg.C under atmospheric pressure and to produce a low-cost silicon nitride-base heat radiating member having high heat conductivity. SOLUTION: A compact consisting of 70-95 mol.% silicon nitride (Si3 N4 ), 4-30 mol.% (expressed in terms of oxides), in total, of a rare earth metal (RE) and Mg in an RE2 O3 to MgO molar ratio of 0.1-15 and 0-1.0 mol.% (expressed in terms of oxide) Al is densified to >=90% relative density by firing at <=1,800 deg.C in a nonoxidizing atmosphere under atmospheric pressure to obtain the objective heat radiating member having >=30 W/m.K heat conductivity and >=600 MPa strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子用パッ
ケージにおける半導体素子から発生する熱、各種発熱体
から発生する熱を放熱するために好適な放熱部材とのそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipating member suitable for dissipating heat generated from a semiconductor element in a semiconductor element package and heat generated from various heating elements, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、半導体素子の高集積化に伴い、半
導体装置から発生する熱も増加しており、該半導体装置
の誤動作をなくす為には、このような熱を装置外に速や
かに放出する基板が必要となっている。
2. Description of the Related Art In recent years, heat generated from a semiconductor device has been increasing along with high integration of a semiconductor element. In order to eliminate malfunction of the semiconductor device, such heat is quickly released to the outside of the device. Substrate is required.

【0003】しかしながら、 従来から用いられてきた各
種絶縁基板や半導体素子収納用パッケージ等のアルミナ
材料は、熱伝導率が約20W/mKと低い事からそれに
代わるものとして高い熱伝導率を有する窒化アルミニウ
ムが注目され始めた。しかし窒化アルミニウムは強度や
破壊靭性値が低く高応力のかかる部品や高信頼性の要求
される分野には適用できない事が分かってきている。そ
こで高熱伝導率と高強度、高信頼性の要求に応える材料
として、最近、窒化珪素質焼結体が注目されてきてい
る。
[0003] However, alumina materials used in the past, such as various insulating substrates and packages for housing semiconductor elements, have a low thermal conductivity of about 20 W / mK. Began to attract attention. However, it has been found that aluminum nitride cannot be applied to parts that have low strength and fracture toughness and are subject to high stress and fields that require high reliability. Accordingly, silicon nitride sintered bodies have recently been receiving attention as a material that meets demands for high thermal conductivity, high strength, and high reliability.

【0004】従来、窒化珪素材料はガスタービンなどの
高温構造材として盛んに研究され、一部実用化の域に達
してきている。このような窒化珪素質焼結体は、室温か
ら高温までの強度特性を高めるために希土類酸化物を添
加し1800〜2000℃という非常に高い温度で焼成
する必要があり、またその場合、窒化珪素の高温での分
解反応を抑えるため数十〜100気圧の窒素雰囲気中で
焼成することが必要となる。
[0004] Conventionally, silicon nitride materials have been actively studied as high-temperature structural materials for gas turbines and the like, and some of them have reached practical use. Such a silicon nitride sintered body needs to be added with a rare earth oxide and fired at a very high temperature of 1800 to 2000 ° C. in order to enhance the strength characteristics from room temperature to a high temperature. In order to suppress the decomposition reaction at a high temperature, it is necessary to perform firing in a nitrogen atmosphere of several tens to 100 atm.

【0005】一方、高温での特性を必要としない場合
は、焼結助剤としてアルミナやマグネシアを添加するこ
とにより1700〜1800℃の比較的低温で焼成する
ことにより作製されている。
On the other hand, when characteristics at high temperatures are not required, they are manufactured by adding alumina or magnesia as a sintering aid and firing at a relatively low temperature of 1700 to 1800 ° C.

【0006】[0006]

【発明が解決しようとする課題】しかし、窒化珪素はそ
の構成元素や結晶構造から高熱伝導性を有すると予測さ
れながら、構造用材料としての研究に比べ放熱用部材と
しての研究はあまりなされていなかった。最近になっ
て、高温構造材料としての窒化珪素質焼結体の熱伝導率
がかなり高いことが見出され、この焼結体の放熱部材へ
の検討が始まってきている。
However, while silicon nitride is predicted to have high thermal conductivity due to its constituent elements and crystal structure, much less research has been done on a heat dissipating member than on a structural material. Was. Recently, it has been found that a silicon nitride sintered body as a high-temperature structural material has a considerably high thermal conductivity, and studies on a heat dissipation member of this sintered body have begun.

【0007】このような経緯から放熱部材としての研究
も高温での焼結を前提としたものがほとんどであって、
低温低圧下での放熱部材の製造技術に対する研究はあま
りおこなわれていない。例えば、特開平6−13577
1号、特開平7−149588号では、助剤として主に
希土類元素酸化物を含み1800〜2000℃にて窒素
加圧焼成することにより60W/m・K以上の熱伝導率
を有する窒化珪素焼結体が得られるとしている。また、
特開平4−219731号には90重量%以上の窒化珪
素を含み、Al,Oをともに3.5重量%以下とし、密
度3.15g/cm3 とする事により、熱伝導率40W
/mK以上の窒化珪素焼結体を得ることが記載されてい
る。
[0007] From such circumstances, most of the research as a heat dissipating member is based on the premise of sintering at a high temperature.
Very little research has been done on the manufacturing technology of heat dissipating members under low temperature and pressure. For example, JP-A-6-13577
No. 1, Japanese Patent Application Laid-Open No. 7-149588 discloses a silicon nitride sinter having a thermal conductivity of 60 W / m · K or more by sintering nitrogen under pressure at 1800 to 2000 ° C. mainly containing a rare earth element oxide as an auxiliary agent. It is said that solidification is obtained. Also,
Japanese Patent Application Laid-Open No. 4-219731 discloses that by including 90% by weight or more of silicon nitride, making both Al and O 3.5% by weight or less and having a density of 3.15 g / cm 3 , a thermal conductivity of 40 W
It is described to obtain a silicon nitride sintered body of / mK or more.

【0008】先ほども述べたが、高温での焼成は窒素加
圧焼成という特殊な焼成方法をとる必要があり焼成コス
トの増加を招く。また、窒化珪素自身の分解を完全に抑
制することは難しく、製品の焼き肌面は非常に荒れる事
になりこのような材料を実際に使うには表面研磨などの
加工処理が必要となってくるため、手間がかかり、コス
ト上昇の一因となる。
As described above, firing at a high temperature requires a special firing method such as nitrogen pressure firing, which causes an increase in firing cost. In addition, it is difficult to completely suppress the decomposition of silicon nitride itself, and the burnt surface of the product becomes extremely rough, and processing such as surface polishing is required to actually use such a material. Therefore, it is troublesome and contributes to an increase in cost.

【0009】これに対して、窒化珪素の焼成を1800
℃以下の比較的低温にて行う場合には、常圧(大気圧)
の非酸化性雰囲気中にて焼成できるために、焼き肌面の
荒れの少ない製品を得る事が出来る。しかしながら、こ
れまでの1800℃以下の低温焼成によって作製された
窒化珪素質焼結体は、熱伝導率が20〜30W/m・K
と極端に低下するという問題があった。これは主に希土
類酸化物(RE2 3)−Al2 3 系の複合助剤を用
いて行われているため、窒化珪素結晶粒子中へのAl原
子の固溶およびサイアロンの形成によって窒化珪素結晶
自体の熱伝導率が低下するためであると考えられる。
On the other hand, the firing of silicon nitride is performed at 1800
Normal pressure (atmospheric pressure) when performed at relatively low temperature below ℃
Can be fired in a non-oxidizing atmosphere, so that a product with less roughened surface can be obtained. However, the conventional silicon nitride sintered body produced by firing at a low temperature of 1800 ° C. or less has a thermal conductivity of 20 to 30 W / m · K.
And there was a problem that it was extremely reduced. Since this is mainly performed by using a rare earth oxide (RE 2 O 3 ) —Al 2 O 3 composite aid, nitriding is performed by solid solution of Al atoms in silicon nitride crystal particles and formation of sialon. This is probably because the thermal conductivity of the silicon crystal itself is reduced.

【0010】従って、本発明は、前記課題を解消する為
になされたもので、その目的は1800℃以下の常圧下
で焼成可能であって、且つ高熱伝導性を有する窒化珪素
質放熱部材と、その製造方法を提供するにある。
[0010] Accordingly, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a silicon nitride heat radiating member which can be fired under normal pressure of 1800 ° C. or less and has high thermal conductivity. It is an object of the present invention to provide a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明者らは、前記課題
に対して鋭意検討を重ねた結果、焼結助剤として希土類
元素化合物とマグネシウム化合物とを共に添加するとと
もに、焼結体中のAl量を制御する事により常圧焼成可
能な窒化珪素質放熱部材を得られることを見出した。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present inventors have added a rare earth element compound and a magnesium compound together as sintering aids, It has been found that by controlling the amount of Al, it is possible to obtain a silicon nitride heat dissipation member that can be fired under normal pressure.

【0012】即ち、本発明の窒化珪素質放熱部材は、窒
化珪素を70〜95モル%と、希土類金属(RE)およ
びMgを酸化物換算による合量で4〜30モル%と、前
記希土類金属およびMgの酸化物換算によるモル比(R
2 3 /MgO)が0.1〜15であり、且つAlを
酸化物換算で1.0モル%以下とからなり、相対密度9
0%以上、熱伝導率30W/m・K以上であることを特
徴とするものである。
That is, the silicon nitride heat radiating member of the present invention is characterized in that the silicon nitride is 70 to 95 mol%, and the rare earth metal (RE) and Mg are 4 to 30 mol% in total in terms of oxide; And the molar ratio (R
E 2 O 3 / MgO) is 0.1 to 15 and Al is 1.0 mol% or less in terms of oxide.
0% or more and a thermal conductivity of 30 W / m · K or more.

【0013】また、その製造方法として、窒化珪素(S
3 4 )を70〜95モル%と、希土類金属(RE)
およびMgを酸化物換算による合量で4〜30モル%
と、Alを酸化物換算で0〜1.0モル%とからなり、
前記希土類金属およびMgの酸化物換算によるモル比
(RE2 3 /MgO)が0.1〜15である成形体を
常圧の非酸化性雰囲気中、1800℃以下の温度で焼成
して相対密度90%以上に緻密化することを特徴とする
ものである。
Further, as a method of manufacturing the same, silicon nitride (S
i 3 N 4 ) in an amount of 70 to 95 mol% and rare earth metal (RE)
And Mg in a total amount of 4 to 30 mol% in terms of oxide
And 0 to 1.0 mol% of Al in terms of oxide.
The molded body having a molar ratio (RE 2 O 3 / MgO) of 0.1 to 15 in terms of oxides of the rare earth metal and Mg, which is fired at a temperature of 1800 ° C. or less in a non-oxidizing atmosphere at normal pressure, is used. It is characterized by densification to a density of 90% or more.

【0014】[0014]

【作用】本発明の窒化珪素質放熱部材及びその製造方法
によれば、焼結助剤として添加する希土類元素化合物お
よびMg化合物を上記特定組成範囲で配合することによ
り、窒化珪素原料中の不純物酸素と反応し液相を生成す
ることにより焼結を促進する。また液相中に希土類元素
(RE)が存在することにより、粒界相の結晶化を促進
し粒界に残留する低熱伝導性のガラス相を減少させるこ
とにより焼結体の熱伝導率を向上させる。また希土類元
素(RE)は窒化珪素のα−β転移に伴う柱状晶のアス
ペクト比を増加させ、得られる焼結体の破壊靭性を向上
する作用を有する。
According to the silicon nitride heat dissipation member and the method of manufacturing the same of the present invention, the rare earth element compound and the Mg compound to be added as sintering aids are blended in the above-mentioned specific composition range, whereby the impurity oxygen in the silicon nitride raw material is mixed. And promotes sintering by producing a liquid phase. In addition, the presence of the rare earth element (RE) in the liquid phase promotes the crystallization of the grain boundary phase and reduces the low thermal conductivity glass phase remaining at the grain boundary, thereby improving the thermal conductivity of the sintered body. Let it. Further, the rare earth element (RE) has an effect of increasing the aspect ratio of the columnar crystal accompanying the α-β transition of silicon nitride and improving the fracture toughness of the obtained sintered body.

【0015】また、Alも同様に他の助剤と反応して低
温での液相生成に役立つが、多量に存在すると窒化珪素
粒内に固溶したり、サイアロンを形成するなどして熱伝
導率を低下させる原因となるために、Al量を1.0モ
ル%以下とすることによって、低温焼結性と高熱伝導性
を同時に付与することができる。
Al also reacts with other auxiliaries to help form a liquid phase at low temperatures. However, if it is present in a large amount, it forms a solid solution in silicon nitride grains or forms sialon to conduct heat. In order to reduce the rate, the Al content is set to 1.0 mol% or less, whereby low-temperature sinterability and high thermal conductivity can be simultaneously provided.

【0016】[0016]

【発明の実施の形態】以下、本発明の窒化珪素質放熱部
材およびその製造方法について詳細に述べる。まず、本
発明の窒化珪素質放熱部材を製造する為の窒化珪素原料
としては不純物酸素量が0.5〜3.0重量%のものが
好ましい。これは不純物酸素量が3.0重量%よりも多
いと、焼結体表面が荒れ強度劣化を招く虞があり、0.
5重量%よりも少ないと焼結性が悪くなるためである。
また、平均粒径は、0.1〜1.5μmであり、α率が
90%以上であることが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a silicon nitride heat radiation member and a method of manufacturing the same according to the present invention will be described in detail. First, as a silicon nitride raw material for producing the silicon nitride heat radiation member of the present invention, a material having an impurity oxygen amount of 0.5 to 3.0% by weight is preferable. If the amount of impurity oxygen is more than 3.0% by weight, the surface of the sintered body may be roughened and the strength may be deteriorated.
If the amount is less than 5% by weight, the sinterability is deteriorated.
Further, it is desirable that the average particle size is 0.1 to 1.5 μm and the α ratio is 90% or more.

【0017】前記窒化珪素原料に添加する希土類元素
(RE)としては、Y,La,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの何れの元素でも好適に用いる事ができ
るが、これらの中でもY、Ce、Sm、Dy、Er、Y
b、Lu、とりわけ、Y、Erが特性、コストの点で望
ましい。
The rare earth elements (RE) added to the silicon nitride raw material include Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
Any of m, Yb, and Lu can be suitably used. Among them, Y, Ce, Sm, Dy, Er, Y
b and Lu, particularly Y and Er, are desirable in terms of characteristics and cost.

【0018】また、前記希土類元素(RE)は、Mgと
合わせて配合する。希土類元素(RE)およびMgは酸
化物換算による合量で4〜30モル%、特に5〜25モ
ル%の範囲で配合される。但し、前記希土類元素(R
E)とMgとの酸化物換算によるモル比(RE2 3
MgO)が0.1〜15、特に0.5〜13の範囲とな
るようにすることが必要がある。
The rare earth element (RE) is blended together with Mg. The rare earth element (RE) and Mg are compounded in the range of 4 to 30 mol%, particularly 5 to 25 mol% in terms of oxide. However, the rare earth element (R
E) and the molar ratio of Mg to oxide (RE 2 O 3 /
MgO) must be in the range of 0.1 to 15, especially 0.5 to 13.

【0019】これは、上記合量が4モル%より少ない
と、1800℃以下の温度で焼結を十分に緻密化させる
ことが難しく、30モル%を越えると焼結体中での粒界
相の絶対量が増加するために熱伝導率が低下するためで
ある。またRE2 3 /MgOの比率が15を越えた
り、0.1より小さくなっても、1800℃以下の温度
での緻密化は不十分となり、熱伝導率は低下する。
If the total amount is less than 4 mol%, it is difficult to sufficiently densify the sintering at a temperature of 1800 ° C. or less. This is because the thermal conductivity decreases due to an increase in the absolute amount of Further, even if the ratio of RE 2 O 3 / MgO exceeds 15 or becomes smaller than 0.1, densification at a temperature of 1800 ° C. or less becomes insufficient, and the thermal conductivity decreases.

【0020】また、Al2 3 等のAl化合物の配合
は、焼結性の向上に大きく寄与するが、Si3 4 結晶
中に固溶してフォノンの拡散を阻害する結果、焼結体の
熱伝導率を著しく低下するため、高熱伝導化のためには
存在しないことが最も望ましく、具体的には、Alは酸
化物換算で1.0モル%以下、望ましくは0.5モル%
以下、より望ましくは0.1モル%以下、更には0.0
1モル%以下にするのがよい。
The compounding of an Al compound such as Al 2 O 3 greatly contributes to the improvement of the sinterability. However, the solid solution in the Si 3 N 4 crystal inhibits the diffusion of phonons. Is most preferably not present for high thermal conductivity. Specifically, Al is 1.0 mol% or less, preferably 0.5 mol% in terms of oxide.
Or less, more desirably 0.1 mol% or less, and more desirably 0.0 mol% or less.
The content is preferably set to 1 mol% or less.

【0021】なお、この焼結体中には着色成分としてT
i,V,Nb,W,Moなど周期律表第4a,5a、6
a族金属のうち少なくとも1種を酸化物換算で0.05
〜1重量%の割合で含んでいてもよい。
The sintered body contains T as a coloring component.
Periodic tables 4a, 5a, 6 such as i, V, Nb, W, Mo
at least one of the group a metals is 0.05
To 1% by weight.

【0022】また、本発明の窒化珪素質放熱部材は、上
記の各成分組成からなるものであるが、その相対密度が
90%以上、特に95%以上であることが高熱伝導化を
図る上で重要であり、相対密度が90%よりも低いと熱
伝導率30W/m・K以上の達成は困難である。
The silicon nitride heat radiation member of the present invention is composed of the above-mentioned respective component compositions. The relative density of the heat radiation member is preferably at least 90%, especially at least 95% in order to achieve high thermal conductivity. Importantly, if the relative density is lower than 90%, it is difficult to achieve a thermal conductivity of 30 W / m · K or more.

【0023】本発明の窒化珪素質放熱部材は、窒化珪素
粉末、希土類元素化合物、Mg化合物、場合によっては
Al化合物を上記の比率に配合し、該混合粉末に有機バ
インダーと溶媒とを添加して調製した成形用原料を用い
て、例えばプレス成形法や、CIP成形法、テープ成形
法、押し出し成形法、射出成形法等の何れかの成形方法
で成形体を作製する。その後、該成形体を弱酸化性雰囲
気中、所定温度で脱バインダー処理してから、窒素など
の非酸化性雰囲気中で、1800℃以下、特に1750
℃以下の温度で焼成して相対密度90%以上に緻密化す
ることにより作製される。
The silicon nitride heat radiation member of the present invention is obtained by mixing a silicon nitride powder, a rare earth element compound, a Mg compound and, in some cases, an Al compound in the above ratio, and adding an organic binder and a solvent to the mixed powder. Using the prepared molding raw material, a molded body is produced by any one of molding methods such as a press molding method, a CIP molding method, a tape molding method, an extrusion molding method, and an injection molding method. Thereafter, the molded body is subjected to a binder removal treatment at a predetermined temperature in a weakly oxidizing atmosphere, and then, in a non-oxidizing atmosphere such as nitrogen, at 1800 ° C. or less, particularly
It is manufactured by firing at a temperature of not more than ° C. to densify to a relative density of 90% or more.

【0024】なお、原料において焼結助剤としての化合
物は、酸化物、炭酸塩、酢酸塩など焼成によって酸化物
を形成し得る化合物であることが望ましい。
The compound as a sintering aid in the raw material is preferably a compound capable of forming an oxide by firing, such as an oxide, a carbonate or an acetate.

【0025】なお、本発明の窒化珪素質放熱部材は、例
えば、半導体素子を搭載したパッケージにおけるヒート
シンク部材に用いることができる他、半導体素子を搭載
する配線基板の絶縁基板としても用いることができる。
その場合、絶縁基板の表面あるいは内部に配線層を形成
する場合がある。そのような場合には、焼結後の放熱部
材の表面に、Cu、W、Mo−Mn、Mo、Pd−Ag
などを焼き付け処理するか、あるいは放熱部材との焼成
前に、成形体表面にW、Moなどの高融点金属からなる
導電性ペーストを印刷塗布した後、非酸化性雰囲気中で
同時焼成することにより作製することができる。
The silicon nitride heat radiation member of the present invention can be used, for example, as a heat sink member in a package on which a semiconductor element is mounted, and also as an insulating substrate of a wiring board on which the semiconductor element is mounted.
In that case, a wiring layer may be formed on the surface or inside of the insulating substrate. In such a case, Cu, W, Mo-Mn, Mo, Pd-Ag
Before baking with a heat radiating member, or by printing and applying a conductive paste made of a refractory metal such as W or Mo on the surface of the molded body, and then simultaneously baking in a non-oxidizing atmosphere. Can be made.

【0026】[0026]

【実施例】平均粒径が1.2μm、酸素量が1.0重量
%、 α率93%の直接窒化法により製造された窒化珪素
原料粉末に、希土類酸化物、MgCO3 、Al2 3
表1、表2に示すような組成で各焼結助剤を添加混合
し、その混合粉末に対して成形用バインダーとしてパラ
フィンワックスをイソプロピルアルコールを溶媒として
添加し、混練乾燥後、篩を通して成形用顆粒を得、該顆
粒を成形圧1ton/cm2 で金型プレスにより、直径
12mm、厚さ5mmの円板状に成形した。
EXAMPLES average particle size of 1.2 [mu] m, the amount of oxygen 1.0% by weight, the silicon nitride raw material powder prepared by the α of 93% of the direct nitriding method, rare earth oxide, MgCO 3, Al 2 O 3 Each of the sintering aids is added and mixed in a composition as shown in Tables 1 and 2, paraffin wax is added as a forming binder to the mixed powder using isopropyl alcohol as a solvent, kneaded and dried, and then formed through a sieve. A granule for use was obtained, and the granule was formed into a disk having a diameter of 12 mm and a thickness of 5 mm by a mold press at a molding pressure of 1 ton / cm 2 .

【0027】かくして得られた成形体を所定温度で脱バ
インダーした後、常圧(大気圧)、窒素雰囲気中で17
00〜1800℃の温度で3時間焼成して窒化珪素質焼
結体を作製し、評価用の試料とした。
After debinding the thus obtained molded body at a predetermined temperature, the molded body is removed under a normal pressure (atmospheric pressure) and nitrogen atmosphere.
It was fired at a temperature of 00 to 1800 ° C. for 3 hours to produce a silicon nitride-based sintered body, which was used as a sample for evaluation.

【0028】前記評価試料を用いて、まずアルキメデス
法により窒化珪素質焼結体の密度を測定し、理論密度に
対する比率(%)を算出した。ついでレーザーフラッシ
ュ法により熱伝導率を測定した。さらに、JISR16
01に従い、焼肌面の室温における3点曲げ強度を測定
した。結果は表1、表2に示した。
Using the evaluation sample, first, the density of the silicon nitride sintered body was measured by the Archimedes method, and the ratio (%) to the theoretical density was calculated. Next, the thermal conductivity was measured by a laser flash method. Furthermore, JISR16
According to No. 01, the three-point bending strength of the burnt skin surface at room temperature was measured. The results are shown in Tables 1 and 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1、表2の結果によれば、試料No.1〜
9から、Si3 4 量およびRE23 +MgO量が本
発明の範囲を逸脱すると、いずれも相対密度が低下する
か、熱伝導率が低下し、目的の特性は得られなかった。
また、試料No.10〜20から、RE2 3 /MgOモ
ル比が0.1〜15を逸脱する試料No.10、19で
は、緻密化するのが困難であり、これにAl2 3 を配
合した試料No.11、20では焼結性が向上したが、熱
伝導率の向上効果は得られなかった。試料No.21〜2
5において、Alの含有量が1モル%を越える試料No.
25では、緻密質であったが、熱伝導率が低下した。試
料No.26〜33から、希土類元素としてYに代えて種
々の他の希土類元素においても同様な焼結挙動と高熱伝
導性を示した。
According to the results of Tables 1 and 2, the samples No. 1 to No. 1
As can be seen from FIG. 9, when the amount of Si 3 N 4 and the amount of RE 2 O 3 + MgO deviated from the range of the present invention, the relative density was lowered or the thermal conductivity was lowered, and the desired characteristics could not be obtained.
Further, the sample Nanba10~20, Sample No.10,19 RE 2 O 3 / MgO molar ratio is outside the 0.1 to 15, are difficult to densify, this Al 2 O 3 In the samples Nos. 11 and 20 in which sintering was added, the sinterability was improved, but the effect of improving the thermal conductivity was not obtained. Sample Nos. 21 and 2
In Sample No. 5, the content of Al exceeded 1 mol%.
In the case of No. 25, although it was dense, thermal conductivity fell. From Samples Nos. 26 to 33, similar sintering behavior and high thermal conductivity were also exhibited in various other rare earth elements in place of Y as the rare earth element.

【0032】[0032]

【発明の効果】以上、詳述したとおり、本発明の窒化珪
素質放熱部材及びその製造方法によれば、1800℃以
下の温度で焼成可能であり、且つ熱伝導率30W/m・
K以上、強度600MPa以上の高強度を達成できるこ
とから、低コストとともに、各種放熱部材として幅広い
分野に応用することができる。
As described above in detail, according to the silicon nitride heat radiation member and the method of manufacturing the same of the present invention, it can be fired at a temperature of 1800 ° C. or less and has a thermal conductivity of 30 W / m ·
Since high strength of K or more and strength of 600 MPa or more can be achieved, it can be applied to a wide range of fields as various heat dissipating members with low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を70〜95モル%と、希土類金
属(RE)およびMgを酸化物換算による合量で4〜3
0モル%と、前記希土類金属およびMgの酸化物換算に
よるモル比(RE2 3 /MgO)が0.1〜15であ
り、且つAlを酸化物換算で1.0モル%以下とからな
り、相対密度90%以上、熱伝導率30W/m・K以上
であることを特徴とする窒化珪素質放熱部材。
1. An amount of silicon nitride of 70 to 95 mol% and rare earth metal (RE) and Mg of 4 to 3 in terms of oxide.
0 mol%, the molar ratio of the rare earth metal and Mg in terms of oxide (RE 2 O 3 / MgO) is 0.1 to 15, and Al is 1.0 mol% or less in terms of oxide. A silicon nitride based heat radiation member having a relative density of 90% or more and a thermal conductivity of 30 W / m · K or more.
【請求項2】窒化珪素(Si3 4 )を70〜95モル
%と、希土類金属(RE)およびMgを酸化物換算によ
る合量で4〜30モル%と、Alを酸化物換算で0〜
1.0モル%とからなり、前記希土類金属およびMgの
酸化物換算によるモル比(RE2 3 /MgO)が0.
1〜15である成形体を常圧の非酸化性雰囲気中、18
00℃以下の温度で焼成して相対密度90%以上に緻密
化することを特徴とする窒化珪素質放熱部材の製造方
法。
2. A silicon nitride (Si 3 N 4 ) content of 70 to 95 mol%, a rare earth metal (RE) and Mg in a total content of 4 to 30 mol% in terms of oxide, and an Al content of 0 to 0 in terms of oxide. ~
1.0 mol%, and the molar ratio (RE 2 O 3 / MgO) of the rare earth metal and Mg in terms of oxide was 0.1 mol%.
1 to 15 in a non-oxidizing atmosphere at normal pressure,
A method for producing a silicon nitride-based heat radiating member, wherein the member is baked at a temperature of 00 ° C. or less to densify to a relative density of 90% or more.
JP9352949A 1997-12-22 1997-12-22 Silicon nitride-base heat radiating member and its production Pending JPH11180774A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9352949A JPH11180774A (en) 1997-12-22 1997-12-22 Silicon nitride-base heat radiating member and its production
DE19859119A DE19859119B4 (en) 1997-12-22 1998-12-21 Printed circuit board with very good heat radiation, process for its preparation and its use
US09/217,087 US6294244B1 (en) 1997-12-22 1998-12-21 Wiring board having excellent heat-radiating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9352949A JPH11180774A (en) 1997-12-22 1997-12-22 Silicon nitride-base heat radiating member and its production

Publications (1)

Publication Number Publication Date
JPH11180774A true JPH11180774A (en) 1999-07-06

Family

ID=18427564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9352949A Pending JPH11180774A (en) 1997-12-22 1997-12-22 Silicon nitride-base heat radiating member and its production

Country Status (1)

Country Link
JP (1) JPH11180774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310464A (en) * 1998-04-27 1999-11-09 Kyocera Corp Heat dissipating component made of silicon nitride and its production
JP2010150123A (en) * 2008-11-21 2010-07-08 Ngk Spark Plug Co Ltd Silicon nitride-melilite composite sintered body and device utilizing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218975A (en) * 1990-01-23 1991-09-26 Ngk Insulators Ltd Silicon nitride body and production thereof
JPH04175268A (en) * 1990-11-07 1992-06-23 Sumitomo Electric Ind Ltd Silicon nitride sintered compact
JPH04212441A (en) * 1990-09-18 1992-08-04 Ngk Insulators Ltd Ceramic wiring board
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH09157054A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Circuit board
JPH09328365A (en) * 1996-05-31 1997-12-22 Denki Kagaku Kogyo Kk Silicon nitride powder, sintered silicon nitride and circuit board made thereof
JPH11310464A (en) * 1998-04-27 1999-11-09 Kyocera Corp Heat dissipating component made of silicon nitride and its production
JP2000044351A (en) * 1998-07-30 2000-02-15 Kyocera Corp Silicon nitride-based heat radiating member and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218975A (en) * 1990-01-23 1991-09-26 Ngk Insulators Ltd Silicon nitride body and production thereof
JPH04212441A (en) * 1990-09-18 1992-08-04 Ngk Insulators Ltd Ceramic wiring board
JPH04175268A (en) * 1990-11-07 1992-06-23 Sumitomo Electric Ind Ltd Silicon nitride sintered compact
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH09157054A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Circuit board
JPH09328365A (en) * 1996-05-31 1997-12-22 Denki Kagaku Kogyo Kk Silicon nitride powder, sintered silicon nitride and circuit board made thereof
JPH11310464A (en) * 1998-04-27 1999-11-09 Kyocera Corp Heat dissipating component made of silicon nitride and its production
JP2000044351A (en) * 1998-07-30 2000-02-15 Kyocera Corp Silicon nitride-based heat radiating member and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310464A (en) * 1998-04-27 1999-11-09 Kyocera Corp Heat dissipating component made of silicon nitride and its production
JP2010150123A (en) * 2008-11-21 2010-07-08 Ngk Spark Plug Co Ltd Silicon nitride-melilite composite sintered body and device utilizing the same

Similar Documents

Publication Publication Date Title
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JP3100871B2 (en) Aluminum nitride sintered body
JP2007197226A (en) High-thermal conductive silicon nitride ceramic having high reliability and method of manufacturing the same
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP3481778B2 (en) Aluminum nitride sintered body and method for producing the same
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP3561145B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2000128643A (en) Highly heat conductive silicon nitride-based sintered compact and its production
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3145519B2 (en) Aluminum nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP2000072552A (en) Silicon nitride heat radiation member and its production
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2541150B2 (en) Aluminum nitride sintered body
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2000178072A (en) Aluminum nitride matter sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040726