JP2000072552A - Silicon nitride heat radiation member and its production - Google Patents

Silicon nitride heat radiation member and its production

Info

Publication number
JP2000072552A
JP2000072552A JP10244249A JP24424998A JP2000072552A JP 2000072552 A JP2000072552 A JP 2000072552A JP 10244249 A JP10244249 A JP 10244249A JP 24424998 A JP24424998 A JP 24424998A JP 2000072552 A JP2000072552 A JP 2000072552A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
thickness
particle size
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10244249A
Other languages
Japanese (ja)
Inventor
Tomohide Hasegawa
智英 長谷川
Tomohiro Iwaida
智広 岩井田
Akihisa Makino
晃久 牧野
Hiroshi Okayama
浩 岡山
Yasuhiko Yoshihara
安彦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10244249A priority Critical patent/JP2000072552A/en
Publication of JP2000072552A publication Critical patent/JP2000072552A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon nitride heat radiation member having excellent sheet moldability, capable of excellently producing a member having a thin thickness such as a multilayered wiring board, etc., having a high heat conductivity. SOLUTION: Mixed powder comprising silicon nitride powder having 0.4-0.7 μm average particle diameter and 60-80% accumulation of particles having <=1 μm particle diameter and 90% accumulation with 2-5 μm particle size distribution and a sintering auxiliary is mixed with an organic solvent and a binder to prepare a slurry, which is used and formed by a sheet forming method into a sheetlike state so as to make the thickness after sintering 0.03-1.0 mm. The formed sheets are properly laminated, baked in a nonoxidizing atmosphere at <=1,800 deg.C under normal pressure, densified into >=95% relative density to give the objective silicon nitride heat radiation member having 1-3 μm average diameter of major axis particle diameter of silicon nitride crystal in the section of sintered compact, 50-70% particle size distribution of the accumulation of crystal particles of <=1 μm particle diameter and >=50 W/m.K coefficient of thermal conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子収納用
パッケージなどの各種絶縁基板材料やヒートシンク材料
等に適用される窒化珪素質焼結体からなる窒化珪素質放
熱部材とその製造方法に関し、詳細には厚さが0.03
〜1.0mmの焼結体を基本とする薄型で且つ高熱伝導
性を有する放熱部材を作製するための改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride heat radiating member made of a silicon nitride sintered material which is applied to various insulating substrate materials such as a package for accommodating a semiconductor element, a heat sink material and the like, and a method of manufacturing the same. Has a thickness of 0.03
The present invention relates to an improvement for producing a thin heat radiating member having high thermal conductivity based on a sintered body of about 1.0 mm.

【0002】[0002]

【従来の技術】近年、半導体素子の高集積化に伴い、半
導体装置から発生する熱も増加しており、該半導体装置
の誤動作をなくす為には、このような熱を装置外に速や
かに放出する基板が必要となっている。
2. Description of the Related Art In recent years, heat generated from a semiconductor device has been increasing along with high integration of a semiconductor element. In order to eliminate malfunction of the semiconductor device, such heat is quickly released to the outside of the device. Substrate is required.

【0003】しかしながら、 従来から用いられてきた各
種絶縁基板や半導体素子収納用パッケージ等のアルミナ
材料は、熱伝導率が約20W/m・Kと低い事からそれ
に代わるものとして高い熱伝導率を有する窒化アルミニ
ウムが注目され始めた。しかし、窒化アルミニウムは強
度や破壊靭性値が低く高応力のかかる部品や高信頼性の
要求される分野には適用できない事が分かってきてい
る。そこで高熱伝導率と高強度、高信頼性の要求に応え
る材料として、最近、窒化珪素質焼結体が注目されてき
ている。
However, alumina materials used in the past, such as various insulating substrates and packages for housing semiconductor elements, have a low thermal conductivity of about 20 W / m · K, and therefore have a high thermal conductivity as an alternative. Aluminum nitride has begun to attract attention. However, it has been found that aluminum nitride cannot be applied to parts that have low strength and fracture toughness and are subject to high stress and fields that require high reliability. Accordingly, silicon nitride sintered bodies have recently been receiving attention as a material that meets demands for high thermal conductivity, high strength, and high reliability.

【0004】従来、窒化珪素質焼結体は、ガスタービン
などの高温構造材料として盛んに研究され、一部実用化
されている。このような窒化珪素質焼結体は、室温から
高温までの強度特性を高めるために希土類元素酸化物を
添加し、1800〜2000℃という非常に高い温度で
焼成する必要があり、また、その場合、窒化珪素の高温
での分解反応を抑えるために数十〜100気圧の窒素雰
囲気中で焼成することが必要である。
Hitherto, silicon nitride sintered bodies have been actively studied as high-temperature structural materials for gas turbines and the like, and some of them have been put to practical use. Such a silicon nitride sintered body needs to be added with a rare earth element oxide in order to enhance the strength characteristics from room temperature to a high temperature and fired at a very high temperature of 1800 to 2000 ° C. In order to suppress the decomposition reaction of silicon nitride at a high temperature, it is necessary to perform firing in a nitrogen atmosphere at several tens to 100 atm.

【0005】一方、高温での特性を必要としない場合
は、焼結助剤としてアルミナやマグネシアを添加するこ
とにより1700〜1800℃の比較的低温で焼成する
ことにより作製されている。
On the other hand, when characteristics at high temperatures are not required, they are manufactured by adding alumina or magnesia as a sintering aid and firing at a relatively low temperature of 1700 to 1800 ° C.

【0006】[0006]

【発明が解決しようとする課題】しかし、窒化珪素はそ
の構成元素や結晶構造から高熱伝導性を有すると予測さ
れながら、構造用材料としての研究に比べ放熱用部材と
しての研究はあまりなされていなかった。最近になっ
て、高温構造材料としての窒化珪素質焼結体の熱伝導率
がかなり高いことが見出され、この焼結体の放熱部材へ
の検討が始まっている。
However, while silicon nitride is predicted to have high thermal conductivity due to its constituent elements and crystal structure, much less research has been done on a heat dissipating member than on a structural material. Was. Recently, it has been found that a silicon nitride sintered body as a high-temperature structural material has a considerably high thermal conductivity, and studies on a heat dissipating member of this sintered body have begun.

【0007】このような経緯から放熱部材としての研究
も高温での焼結を前提としたものがほとんどである。例
えば、特開平6−135771号、特開平7−1495
88号では、助剤として主に希土類元素酸化物を含み1
800〜2000℃にて窒素加圧雰囲気中で焼成するこ
とにより60W/m・K以上の熱伝導率を有する窒化珪
素焼結体が得られるとしている。また、特開平4−21
9731号には90重量%以上の窒化珪素を含み、A
l,Oをともに3.5重量%以下とし、密度3.15g
/cm3 とする事により、熱伝導率40W/m・K以上
の窒化珪素焼結体を得ることが記載されている。
[0007] Due to such circumstances, most of the research on the heat dissipating member is based on the premise of sintering at a high temperature. For example, Japanese Patent Application Laid-Open Nos.
No. 88 mainly contains a rare earth element oxide as an auxiliary agent,
By firing at 800 to 2000 ° C. in a nitrogen pressurized atmosphere, a silicon nitride sintered body having a thermal conductivity of 60 W / m · K or more can be obtained. Further, Japanese Patent Application Laid-Open No.
No. 9731 contains 90% by weight or more of silicon nitride.
Both l and O are not more than 3.5% by weight, and the density is 3.15 g.
/ Cm 3 to obtain a silicon nitride sintered body having a thermal conductivity of 40 W / m · K or more.

【0008】ところが、1800℃以上の高温では窒化
珪素が分解することから、窒化珪素の分解を抑制しなが
ら緻密化するために、加圧した窒素ガス雰囲気中で焼成
するという特殊な焼成方法を採用する必要があるために
焼成コストの増加を招いていた。また、上記焼成方法に
おいても、窒化珪素自身の分解を完全に抑制することは
難しく、製品の焼き肌面が荒れやすいために、製品化に
あたっては焼結体表面を研磨などの表面処理が必要とな
ってくるため、手間がかかり、コスト上昇の一因となっ
ていた。
However, since silicon nitride is decomposed at a high temperature of 1800 ° C. or higher, a special firing method of firing in a pressurized nitrogen gas atmosphere is employed to increase the density while suppressing the decomposition of silicon nitride. Therefore, the firing cost has been increased. Also, in the above firing method, it is difficult to completely suppress the decomposition of silicon nitride itself, and the burnt surface of the product is easily roughened. This has taken time and effort, which has contributed to an increase in cost.

【0009】さらに最近では、特開平8−319187
号、特開平9−30866号などには、120W/m・
K以上という窒化アルミニウム並みの高熱伝導率を有す
る窒化珪素質焼結体も提案されている。しかしながら、
これらはいずれも1800℃を超える高温にて焼成し、
あるいは比較的低温で緻密化した後の熱処理により、窒
化珪素焼結体中の結晶粒子径を大きく粒成長させること
により、高熱伝導化を図るものである。ところが、この
ように大きな結晶粒子を存在させると、その粗大粒子が
破壊源となり、焼結体としての強度を極端に低下させて
しまうという問題があった。
More recently, Japanese Patent Application Laid-Open No. 8-319187
120 W / m.
A silicon nitride sintered body having a high thermal conductivity equal to or higher than that of aluminum nitride of K or more has also been proposed. However,
These are all fired at a high temperature exceeding 1800 ° C.
Alternatively, heat treatment after densification at a relatively low temperature causes a large crystal grain size in the silicon nitride sintered body to grow, thereby achieving high thermal conductivity. However, when such large crystal particles are present, there is a problem that the coarse particles serve as a destruction source and extremely reduce the strength as a sintered body.

【0010】これに対して、窒化珪素の焼成を1800
℃以下の比較的低温にて行う場合には、常圧(大気圧)
の非酸化性雰囲気中にて焼成できるために、微細な組織
からなり焼き肌面の荒れが少ない製品を得ることができ
る。しかしながら、これまでの1800℃以下の低温焼
成によって作製された窒化珪素質焼結体は、熱伝導率が
20〜30W/m・Kと極端に低下するという問題があ
った。これは主に低温での焼結性を高めるために、希土
類酸化物(RE2 3 )−Al2 3 系の複合助剤を用
いて行われているため、窒化珪素結晶粒子中へのAl原
子の固溶およびサイアロンの形成によって窒化珪素結晶
自体の熱伝導率が低下するためであると考えられる。
On the other hand, firing of silicon nitride is performed for 1800 hours.
Normal pressure (atmospheric pressure) when performed at relatively low temperature below ℃
Can be fired in a non-oxidizing atmosphere, so that a product having a fine structure and having less roughened surface can be obtained. However, the conventional silicon nitride sintered body produced by firing at a low temperature of 1800 ° C. or lower has a problem that the thermal conductivity is extremely reduced to 20 to 30 W / m · K. This is mainly performed by using a rare earth oxide (RE 2 O 3 ) -Al 2 O 3 -based composite auxiliary agent in order to enhance the sinterability at a low temperature. It is considered that this is because the thermal conductivity of the silicon nitride crystal itself decreases due to the solid solution of Al atoms and the formation of sialon.

【0011】また、低温での焼結性を達成する上で、焼
結助剤の添加は不可欠であり、そのために、窒化アルミ
ニウムセラミックスと同等の熱伝導性を達成することが
難しい。このような場合、製品化にあたっては、放熱部
材の厚さを薄くすることにより、窒化アルミニウム(1
50W/m・Kレベル品)とほぼ同等の熱抵抗を有する
放熱部材を提供することができる。
Further, addition of a sintering aid is indispensable for achieving low-temperature sinterability, and therefore, it is difficult to achieve the same thermal conductivity as aluminum nitride ceramics. In such a case, when the product is commercialized, the thickness of the heat dissipating member is reduced to reduce the thickness of the aluminum nitride (1).
A heat dissipating member having a thermal resistance substantially equal to that of a 50 W / mK level product can be provided.

【0012】ところが、窒化珪素質放熱部材を作製する
場合には、通常、一軸プレス成形法や鋳込み成形法など
によって成形し焼成することが行われているが、このよ
うな成形法では、厚みを薄くするにも限界があることか
ら、厚さの薄い焼結体は、そのような厚さの大きい焼結
体から切り出し加工するか、あるいは研磨加工によって
得るしかなく、コスト高を招いていた。
However, when a silicon nitride heat radiation member is manufactured, it is usually molded and baked by a uniaxial press molding method, a casting molding method or the like. However, in such a molding method, the thickness is reduced. Since there is a limit in reducing the thickness, a sintered body having a small thickness has to be cut out from such a sintered body having a large thickness or obtained by polishing, resulting in an increase in cost.

【0013】また、窒化珪素質放熱部材の用途の1つと
して、表面あるいは内部にメタライズ配線層を形成した
多層配線基板が挙げられるが、このような多層配線基板
の作製にあたっては、原料粉末を含有するスラリーをド
クターブレード法等によって非常に薄い成形体を作製
し、これに適宜メタライズペーストを印刷塗布した後、
積層し、焼成することにより得られるが、これまで、窒
化珪素のグリーンシートの作製については具体的に検討
されておらず、成形性が悪く、1mm以下の厚さのグリ
ーンシートを作製することが難しく、同時に熱伝導化を
両立させることは非常に難しいものであった。
One of the uses of the silicon nitride heat radiation member is a multilayer wiring board having a metallized wiring layer formed on the surface or inside thereof. In manufacturing such a multilayer wiring board, a raw material powder is contained. The slurry to be made is made into a very thin molded body by the doctor blade method, etc.
Although it is obtained by laminating and firing, the production of a silicon nitride green sheet has not been specifically studied so far, and the moldability is poor, and a green sheet having a thickness of 1 mm or less may be produced. It was difficult and at the same time it was very difficult to achieve both thermal conductivity.

【0014】従って、本発明は、前記課題を解消するた
めになされたもので、1mm以下の薄い焼結体を基本と
してなる構造体においても高い熱伝導性を有する窒化珪
素質放熱部材を提供することを目的とするものである。
Accordingly, the present invention has been made to solve the above-mentioned problems, and provides a silicon nitride heat radiation member having high thermal conductivity even in a structure based on a thin sintered body of 1 mm or less. The purpose is to do so.

【0015】また、本発明は、優れたシート成形性と低
温焼結性を有するとともに、多層配線基板などの多層構
造体の作製に対して優れた高熱伝導性を有する窒化珪素
質放熱部材の製造方法を提供することを目的とするもの
である。
The present invention is also directed to the production of a silicon nitride heat radiating member having excellent sheet formability and low-temperature sinterability, and having excellent high thermal conductivity for producing a multilayer structure such as a multilayer wiring board. It is intended to provide a method.

【0016】[0016]

【課題を解決するための手段】本発明者らは、前記課題
に対して鋭意検討を重ねた結果、特定の粒度分布を有す
る窒化珪素原料粉末を用いることによりシート成形性を
向上させることができるとともに、それに伴い焼結体中
の窒化珪素結晶の粒度分布を特定範囲に制御することよ
り、切り出し加工や研磨加工を行うことなく、薄型の単
一層、あるいは積層構造体からなる放熱部材を作製でき
ることを見いだし、本発明に至った。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present inventors can improve the sheet formability by using a silicon nitride raw material powder having a specific particle size distribution. In addition, by controlling the particle size distribution of the silicon nitride crystal in the sintered body to a specific range, it is possible to produce a thin heat-dissipating member composed of a single layer or a laminated structure without performing cutting or polishing. And have led to the present invention.

【0017】即ち、本発明の窒化珪素質放熱部材は、窒
化珪素柱状結晶を主体としてなる相対密度95%以上の
焼結体からなるものであって、該焼結体の切断面におけ
る窒化珪素結晶の長軸粒子径の平均径が1〜3μmであ
り、粒径1μm以下の結晶粒子が累積で50〜70%の
粒度分布からなり、かつ熱伝導率が50W/m・K以上
であることを特徴とするものである。
That is, the silicon nitride heat dissipation member of the present invention is made of a sintered body having a relative density of 95% or more mainly composed of a silicon nitride columnar crystal, and a silicon nitride crystal on a cut surface of the sintered body. The average particle diameter of the major axis is 1 to 3 μm, the crystal particles having a particle diameter of 1 μm or less are cumulatively 50 to 70% in particle size distribution, and the thermal conductivity is 50 W / m · K or more. It is a feature.

【0018】なお、この放熱部材は、厚さが0.03〜
1.0mmの単一焼結体、または単層厚さが0.03〜
1.0mmの焼結体による全体厚さが0.1〜10mm
の積層焼結体からなること、さらには、この焼結体の室
温における3点曲げ強度が700MPa以上であること
も大きな特徴である。
The heat radiation member has a thickness of 0.03 to 0.03.
1.0mm single sintered body or single layer thickness 0.03 ~
The total thickness of the sintered body of 1.0 mm is 0.1 to 10 mm
It is also a great feature that the sintered body of the present invention has a three-point bending strength of 700 MPa or more at room temperature.

【0019】また、本発明の窒化珪素質放熱部材の製造
方法は、平均粒子径が0.4〜0.7μm、1μm以下
の粒子の累積で60〜80%であり、且つ累積90%が
2〜5μmの粒度分布を有する窒化珪素粉末と焼結助剤
からなる混合粉末に、有機溶媒およびバインダーを添加
混合して調製したスラリーを用いてシート成形法によっ
て焼成後の厚みが0.03〜1.0mmとなるようにシ
ート状に成形した後、該成形体を適宜積層し、1800
℃以下の非酸化性雰囲気中で3〜6時間常圧焼成し、相
対密度95%以上に緻密化することを特徴とするもので
あり、特に厚みが0.1〜10mmの焼結体を得ること
を特徴とするものである。
Further, according to the method for manufacturing a silicon nitride heat dissipation member of the present invention, the average particle diameter is 0.4 to 0.7 μm, the cumulative number of particles of 1 μm or less is 60 to 80%, and the cumulative 90% is 2%. An organic solvent and a binder are added to and mixed with a mixed powder composed of a silicon nitride powder having a particle size distribution of 55 μm and a sintering aid, and the thickness after sintering is 0.03 to 1 by a sheet forming method using a slurry prepared. After being formed into a sheet so as to have a thickness of 0.08 mm, the formed body is appropriately laminated, and
It is characterized by firing under normal pressure for 3 to 6 hours in a non-oxidizing atmosphere at a temperature of not more than ℃ to densify to a relative density of 95% or more, and particularly to obtain a sintered body having a thickness of 0.1 to 10 mm. It is characterized by the following.

【0020】なお、上記焼結体あるいは混合粉末中に
は、希土類元素(RE)およびMgを酸化物換算による
合量で4〜30モル%、前記希土類元素(RE)と前記
Mgの酸化物換算のモル比(RE2 3 /MgO)が
0.1〜15となる比率で含有することが望ましい。
In the sintered body or the mixed powder, the rare earth element (RE) and Mg are contained in an amount of 4 to 30 mol% in terms of oxide, and the rare earth element (RE) and Mg are converted into oxide. Is preferably contained at a molar ratio (RE 2 O 3 / MgO) of 0.1 to 15.

【0021】本発明によれば、平均粒子径が0.4〜
0.7μm、1μm以下の粒子の累積で60〜80%で
あり、且つ累積90%が2〜5μmの粒度分布を有する
窒化珪素粉末と焼結助剤からなる混合粉末に、有機溶媒
およびバインダーを添加混合して調製したスラリーを用
いてシート成形することにより、厚さが0.03〜1.
0mmの薄いシート状成形体を作製することができる。
According to the present invention, the average particle size is from 0.4 to
An organic solvent and a binder are added to a mixed powder of a silicon nitride powder and a sintering aid having a particle size distribution of 0.7 μm, 1 μm or less in a cumulative particle size of 60 to 80%, and a cumulative 90% of 2 to 5 μm. By forming a sheet using the slurry prepared by adding and mixing, a thickness of 0.03 to 1.
A thin sheet-shaped molded product of 0 mm can be produced.

【0022】そして、この成形体を適宜積層後、180
0℃以下の温度にて焼成し緻密化することにより、焼結
粒子の粒成長が抑制され、最終的に、焼結体の切断面に
おける窒化珪素結晶の長軸粒子径の平均径が1〜3μm
であり、粒径1μm以下の結晶粒子が累積で50〜70
%の粒度分布からなる組織に制御することにより、異常
粒成長による強度低下を防ぐとともに高い熱伝導性をも
発揮することができる。
Then, after appropriately laminating the molded body, 180
By firing and densifying at a temperature of 0 ° C. or less, the grain growth of the sintered particles is suppressed, and finally, the average diameter of the long axis particle diameter of the silicon nitride crystal on the cut surface of the sintered body is 1 to 1. 3 μm
And crystal particles having a particle size of 1 μm or less accumulate in an amount of 50 to 70
By controlling the structure to have a grain size distribution of%, strength reduction due to abnormal grain growth can be prevented and high thermal conductivity can be exhibited.

【0023】[0023]

【発明の実施の形態】以下、本発明の放熱部材およびそ
の製造方法について、詳細に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a heat radiating member of the present invention and a method of manufacturing the same will be described in detail.

【0024】本発明の窒化珪素質放熱部材は、β型の窒
化珪素柱状結晶を主体とするものであり、相対密度が9
5%以上、特に97%以上の緻密質の焼結体からなるも
のであり、かかる緻密性は、高熱伝導化及び高強度を図
る上で重要であり、相対密度が95%よりも低いと50
W/m・K以上の熱伝導化を達成することが難しくなる
とともに強度も劣化する。
The silicon nitride heat radiation member of the present invention is mainly composed of β-type silicon nitride columnar crystals, and has a relative density of 9%.
It is made of a dense sintered body of 5% or more, particularly 97% or more. Such denseness is important for achieving high thermal conductivity and high strength. If the relative density is lower than 95%, it is 50%.
It becomes difficult to achieve a thermal conductivity of W / m · K or more, and the strength also deteriorates.

【0025】また、この焼結体は、切断面における窒化
珪素結晶粒子の窒化珪素結晶の長軸粒子径の平均径が1
〜3μm、望ましくは1.5〜2.5μmであることが
重要である。これは、この平均径が3μmよりも大きい
と、焼結体中の粗大粒子が破壊源となり焼結体の強度を
低下させてしまい、平均径が1μmよりも小さいと熱伝
導率が極端に低下してしまうためである。なお窒化珪素
柱状結晶の平均アスペクト比は1.2〜4、特に1.5
〜3.5であることが焼結体の高強度と高熱伝導化を同
時に高める上で望ましい。
In the sintered body, the average diameter of the major axis of silicon nitride crystal grains of the silicon nitride crystal grains at the cut surface is 1%.
It is important that it is 3 μm, preferably 1.5-2.5 μm. This is because if the average diameter is larger than 3 μm, coarse particles in the sintered body become a source of fracture and reduce the strength of the sintered body, and if the average diameter is smaller than 1 μm, the thermal conductivity is extremely reduced. This is because The average aspect ratio of the columnar silicon nitride crystal is 1.2 to 4, especially 1.5.
It is desirable to be 3.5 to simultaneously increase the high strength and high thermal conductivity of the sintered body.

【0026】また、本発明における窒化珪素焼結体は、
断面における窒化珪素結晶の粒径1μm以下の結晶粒子
が累積で50〜70%であることが重要である。この比
率が50%よりも小さいと強度が劣化し、70%よりも
大きいと熱伝導率が低くなるためである。望ましくは5
5〜65%がよい。
Further, the silicon nitride sintered body of the present invention comprises:
It is important that the cumulative number of silicon nitride crystal grains having a grain size of 1 μm or less in the cross section is 50 to 70%. If the ratio is smaller than 50%, the strength is deteriorated, and if it is larger than 70%, the thermal conductivity is reduced. Preferably 5
5-65% is good.

【0027】また、本発明の窒化珪素放熱部材用焼結体
中には、焼結助剤などの副成分を含有する。特に焼結助
剤としては、希土類元素、及びMgを含有することが望
ましい。希土類元素としては、Y、La、Ce、Pr、
Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、E
r、Tm、Yb、Luの何れの元素でも好適に用いるこ
とができるが、これらの中でもY、Ce、Sm、Dy、
Er、Yb、Lu、とりわけY、Erが特性およびコス
トの面で望ましい。
Further, the sintered body for a silicon nitride heat dissipation member of the present invention contains an auxiliary component such as a sintering aid. In particular, it is desirable that the sintering aid contains a rare earth element and Mg. As rare earth elements, Y, La, Ce, Pr,
Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
Any of r, Tm, Yb, and Lu can be suitably used. Among them, Y, Ce, Sm, Dy,
Er, Yb, Lu, especially Y, Er are desirable in terms of characteristics and cost.

【0028】また前記希土類元素とMgは酸化物換算に
よる合量で4〜30モル%に特定され、より望ましくは
5〜20モル%の範囲で含有されることが望ましい。ま
た、希土類元素とMgは酸化物換算のモル比(RE2
3 /MgO)が0.1〜15の範囲となるようにする必
要があり、より望ましくは0.5〜13の範囲となるよ
うに含有されることが望ましい。
The rare earth element and Mg are specified in a total amount of 4 to 30 mol% in terms of oxide, and more preferably 5 to 20 mol%. Further, the molar ratio of the rare earth element and Mg in terms of oxide (RE 2 O
(3 / MgO) must be in the range of 0.1 to 15, more preferably in the range of 0.5 to 13.

【0029】これは、前記合量が4モル%より少量では
焼結性が不足しやすく、30モル%を越えると、焼結体
中での窒化珪素の占める割合が少なくなり熱伝導率が低
下するためである。また、前記RE2 3 /MgOのモ
ル比率が15を越えたり、0.1より小さいと1800
℃以下の温度での緻密化は不十分となりやすく、熱伝導
率も低下しやすい。
If the total amount is less than 4 mol%, the sinterability tends to be insufficient, and if the total amount exceeds 30 mol%, the proportion of silicon nitride in the sintered body decreases and the thermal conductivity decreases. To do that. If the molar ratio of RE 2 O 3 / MgO exceeds 15 or is smaller than 0.1, 1800
Densification at a temperature of not more than ° C. tends to be insufficient, and the thermal conductivity tends to decrease.

【0030】また、Al2 3 等のAl化合物の配合は
焼結性の向上に寄与するが、Si34 結晶中に固溶し
てフォノンの拡散を阻害する結果、焼結体の熱伝導率が
著しく低下するため、高熱伝導率化の為には存在しない
ことが最も望ましく、具体的には、酸化物換算で1.0
モル%以下、望ましくは0.5モル%以下、より望まし
くは0.1モル%以下、更には0.05モル%以下にす
ることが望ましい。
Although the compounding of an Al compound such as Al 2 O 3 contributes to the improvement of the sinterability, it dissolves in the Si 3 N 4 crystal and inhibits the diffusion of phonons. Since the conductivity is remarkably reduced, it is most preferable that the compound does not exist for the purpose of increasing the thermal conductivity.
It is desirably at most 0.5 mol%, preferably at most 0.5 mol%, more preferably at most 0.1 mol%, furthermore preferably at most 0.05 mol%.

【0031】なお、この焼結体中には機械的特性や電気
的特性の改善あるいは着色化を目的としてTi,V,N
b,W,Moなど周期律表第4a、5a、6a属金属の
うち少なくとも1種を酸化物換算で0.05〜1重量%
の割合で含んでもよい。
The sintered body contains Ti, V, N for the purpose of improving mechanical properties and electrical properties or coloring.
at least one of metals belonging to Groups 4a, 5a and 6a of the Periodic Table such as b, W and Mo is 0.05 to 1% by weight in terms of oxide.
May be included.

【0032】本発明の窒化珪素質放熱部材を製造するに
は、平均粒子径が0.4〜0.7μm、1μm以下の粒
子が累積で60〜80%であり、且つ累積90%が2〜
5μmの粒度分布を有する窒化珪素粉末を用いることが
重要である。これは、1μm以下の粒子が累積で60%
未満、あるいは平均粒子径が0.7μmよりも大きい、
あるいは累積90%が5μmを越えると、1800℃以
下の焼成で相対密度95%以上に緻密化することが難し
く、1μm以下の粒子が累積で80%を越える、あるい
は平均粒子径が0.4μmより小さい、あるいは累積9
0%が2μmよりも小さいと、シート成形が困難にな
り、仮にシート化してもクラックが発生し、成形体が得
られない。
In order to produce the silicon nitride heat radiation member of the present invention, the average particle diameter is 0.4 to 0.7 μm, the particles having a particle diameter of 1 μm or less are 60 to 80% in total and 90% in total are 2 to 2%.
It is important to use a silicon nitride powder having a particle size distribution of 5 μm. This means that particles of 1 μm or less are 60% cumulative
Less, or the average particle size is greater than 0.7 μm,
Alternatively, if the cumulative 90% exceeds 5 μm, it is difficult to densify to a relative density of 95% or more by firing at 1800 ° C. or less, and the particles of 1 μm or less cumulatively exceed 80%, or the average particle diameter exceeds 0.4 μm. Small or cumulative 9
If 0% is smaller than 2 μm, sheet molding becomes difficult, and even if the sheet is formed, cracks occur, and a molded article cannot be obtained.

【0033】特に、望ましい範囲は、平均粒子径が0.
45〜0.6μm、1μm以下の粒子が累積で65〜7
5%であり、且つ累積90%が2.5〜4.0μmの粒
度分布を有する窒化珪素粉末を用いることがよい。
In particular, a desirable range is that the average particle diameter is 0.1.
45 to 0.6 μm, particles of 1 μm or less are cumulatively 65 to 7
It is preferable to use a silicon nitride powder having a particle size distribution of 5% and a cumulative 90% of 2.5 to 4.0 μm.

【0034】また、上記窒化珪素粉末中の不純物酸素量
が0.5〜3.0重量%のものが好ましい。これは不純
物酸素量が3.0重量%よりも多いと焼結体表面が荒れ
強度劣化を招く恐れがあり、0.5重量%より少ないと
焼結性が悪くなるためである。また、α率が90%以
上、特に95%以上であることが焼結性を高める上で望
ましい。
Preferably, the silicon nitride powder has an impurity oxygen content of 0.5 to 3.0% by weight. This is because if the amount of impurity oxygen is more than 3.0% by weight, the surface of the sintered body may be roughened and the strength may be deteriorated. Further, it is desirable that the α ratio is 90% or more, particularly 95% or more, in order to enhance sinterability.

【0035】上記窒化珪素粉末に対して、焼結助剤とし
て、希土類元素化合物、Mg化合物、場合によってはA
l化合物を用いて成形体組成が、前述したように希土類
元素とMgは酸化物換算による合量で4〜30モル%、
特に5〜20モル%であり、希土類元素とMgの酸化物
換算のモル比(RE2 3 /MgO)が0.1〜15、
特に0.5〜13の範囲となるように含有され、また、
Al量が酸化物換算で1.0モル%以下、特に0.5モ
ル%以下、より望ましくは0.1モル%以下、更には
0.05モル%以下に調製されることが望ましい。
Rare earth element compounds, Mg compounds, and sometimes A
As described above, the composition of the compact using the compound 1 is such that the rare earth element and Mg are 4 to 30 mol% in total in terms of oxide,
In particular, it is 5 to 20 mol%, and the molar ratio (RE 2 O 3 / MgO) of the rare earth element and Mg in terms of oxide is 0.1 to 15,
In particular, it is contained so as to be in the range of 0.5 to 13, and
The Al content is preferably adjusted to 1.0 mol% or less, particularly 0.5 mol% or less, more preferably 0.1 mol% or less, further preferably 0.05 mol% or less in terms of oxide.

【0036】これら焼結助剤となる希土類元素およびM
gは、いずれも平均粒径が1μm以下、純度99%以上
の酸化物粉末の他に、炭酸塩、酢酸塩など焼成によって
酸化物を形成しうる化合物として添加される。
The rare earth element and M
g is added as an oxide powder having an average particle diameter of 1 μm or less and a purity of 99% or more, as well as a compound capable of forming an oxide by firing, such as carbonate and acetate.

【0037】上記のように配合された窒化珪素粉末およ
び焼結助剤粉末からなる混合粉末に対して有機バインダ
ーと溶媒とを添加して調製してスラリーを調製した後、
このスラリーを用いて、ドクターブレード法、圧延法な
どのシート状成形法に従い、焼成後の厚みが0.03m
m以上、特に0.1mm以上、さらには0.3mm以上
となるようにシート状に成形する。なお、シート状成形
体の厚みは、焼成による収縮率(一般には75〜85
%)を考慮して適宜定めることができる。
After a slurry is prepared by adding an organic binder and a solvent to the mixed powder composed of the silicon nitride powder and the sintering aid powder blended as described above,
Using this slurry, according to a sheet-shaped forming method such as a doctor blade method or a rolling method, the thickness after firing is 0.03 m.
m or more, particularly 0.1 mm or more, and more preferably 0.3 mm or more. In addition, the thickness of the sheet-like molded body is determined by the shrinkage ratio due to firing (generally 75 to 85).
%) Can be determined as appropriate.

【0038】この時、焼成後の厚みが0.03mmより
小さいシート状成形体を作製することは難しいためであ
る。しかし、本発明によれば、上記特定の粒度分布を有
する窒化珪素粉末を用いることにより、焼成後の厚みが
1.0mm以下、特に0.7mm以下、さらには0.5
mm以下のシート状成形体を作製することが可能であ
る。
At this time, it is difficult to produce a sheet-like molded body having a thickness of less than 0.03 mm after firing. However, according to the present invention, by using the silicon nitride powder having the above specific particle size distribution, the thickness after firing is 1.0 mm or less, particularly 0.7 mm or less, and more preferably 0.5 mm or less.
It is possible to produce a sheet-shaped molded product having a thickness of not more than mm.

【0039】この時、用いるスラリーは、セラミック固
形成分100重量部に対して、アクリル系樹脂、ポリビ
ニルブチラール樹脂などの有機バインダーを10〜30
重量部、トルエン、イソプロピルアルコールなどの有機
溶媒を30〜60重量部の割合で混合し、粘度が10〜
50ポイズであることが望ましい。
At this time, the slurry used is such that an organic binder such as an acrylic resin or a polyvinyl butyral resin is added in an amount of 10 to 30 parts by weight with respect to 100 parts by weight of the ceramic solid component.
Parts by weight, an organic solvent such as toluene or isopropyl alcohol is mixed at a ratio of 30 to 60 parts by weight, and the viscosity is 10 to 10 parts by weight.
Desirably, it is 50 poise.

【0040】次に、上記のようにして得られた成形体を
弱酸化性雰囲気中で脱バインダー処理した後、窒素を含
有する非酸化性雰囲気中、1800℃以下、特に150
0〜1800℃、さらに1600〜1780℃の温度で
3〜6時間焼成して相対密度95%以上の焼結体を作製
することができる。この時の焼成時間が3時間よりも短
いと相対密度95%以上に緻密化することが難しく、6
時間を越えると焼結体中の粒成長が促進され、窒化珪素
結晶の長軸粒子径の平均粒径が3μmを越えたり、1μ
m以下の粒子の累積が50%よりも小さくなり、強度が
劣化する。
Next, the molded body obtained as described above is subjected to a binder removal treatment in a weakly oxidizing atmosphere, and then, in a nitrogen-containing non-oxidizing atmosphere, at a temperature of 1800 ° C. or less, particularly 150 ° C.
The sintered body having a relative density of 95% or more can be produced by firing at a temperature of 0 to 1800 ° C., and further at 1600 to 1780 ° C. for 3 to 6 hours. If the baking time at this time is shorter than 3 hours, it is difficult to densify to a relative density of 95% or more.
If the time is exceeded, the grain growth in the sintered body is promoted, and the average long-axis particle diameter of the silicon nitride crystal exceeds 3 μm or 1 μm.
The accumulation of particles below m is less than 50% and the strength is reduced.

【0041】なお、本発明の窒化珪素質放熱部材は、上
記のような製造方法に従い、焼成後の厚みが1mm以下
の薄い焼結体を基本とし、例えば、肉厚の製品に対して
は、上記のシート状成形体を適当に積層圧着して厚みを
調整して、一括して焼成して、積層焼結体により構成す
ることであらゆる厚さの製品に適用することができる。
但し、本発明の窒化珪素質放熱部材の厚さが10mmを
越える場合には、部材自体の熱抵抗が大きくなるため
に、窒化アルミニウムと同等の高い熱放散特性が期待で
きず、焼結体全体の厚さは、10mm以下、特に5mm
以下、特に1mm以下であることが望ましい。
The silicon nitride radiating member of the present invention is based on a thin sintered body having a thickness of 1 mm or less after firing according to the above-described manufacturing method. The above-mentioned sheet-like molded body is appropriately laminated and pressed to adjust its thickness, fired at a time, and constituted by a laminated sintered body, so that it can be applied to products of all thicknesses.
However, when the thickness of the silicon nitride heat radiating member of the present invention exceeds 10 mm, the heat resistance of the member itself increases, so that high heat dissipation characteristics equivalent to that of aluminum nitride cannot be expected. Is 10 mm or less, especially 5 mm
Below, it is particularly desirable that it is 1 mm or less.

【0042】本発明の放熱部材の具体的な用途として、
例えば、半導体素子用のヒートシンク部材に用いること
ができる他、半導体素子を搭載するパッケージにおける
配線基板などの多層配線基板の絶縁基板などに適用する
ことができる。
As a specific application of the heat radiation member of the present invention,
For example, it can be used as a heat sink member for a semiconductor element, and can be applied to an insulating substrate of a multilayer wiring board such as a wiring board in a package on which a semiconductor element is mounted.

【0043】特に、絶縁基板表面や内部に配線層が形成
される配線基板を作製する場合には、焼結された絶縁基
板の表面に、Cu、W、Mo−Mn、Mo、Pd−Ag
などを焼き付け処理するか、あるいは上記焼結後の厚み
が0.03〜1.0mmのグリーンシートの表面にタン
グステン、モリブデンなどの高融点金属を含有する導体
ペーストを回路パターン状にスクリーン印刷したり、グ
リーンシートにマイクロドリルやレーザーによってスル
ーホールを形成し、ホール内に上記導体ペーストを充填
した後、前記と同様な条件で同時焼成することにより作
製することができる。
In particular, when manufacturing a wiring substrate having a wiring layer formed on or in the insulating substrate, Cu, W, Mo-Mn, Mo, Pd-Ag is added to the surface of the sintered insulating substrate.
Or a conductor paste containing a high melting point metal such as tungsten or molybdenum is screen-printed on the surface of the green sheet having a thickness of 0.03 to 1.0 mm after sintering in the form of a circuit pattern. Alternatively, a through hole may be formed in a green sheet using a microdrill or a laser, and the hole may be filled with the conductive paste, followed by simultaneous firing under the same conditions as described above.

【0044】[0044]

【実施例】酸素量が1.0重量%、α型含有量が93
%、粒度分布が表1、2に示すような種々の直接窒化法
により製造された窒化珪素原料粉末に対して、Er2
3 を5モル%、MgOを8モル%、Al2 3 が0.2
重量%以下、MoO3 0.5重量%となる量でそれぞれ
添加し、その混合粉末100重量部に対して、成形用バ
インダーとしてアクリル樹脂を20重量部、トルエンを
50重量部の割合で添加して混合して粘度が30ポイズ
のスラリーを調製した。
The oxygen content was 1.0% by weight and the α-form content was 93%.
%, Silicon nitride raw material powders manufactured by various direct nitriding methods having particle size distributions as shown in Tables 1 and 2 , and Er 2 O
3 is 5 mol%, MgO is 8 mol%, Al 2 O 3 is 0.2
% Of MoO 3 and 0.5% by weight of MoO 3. To 100 parts by weight of the mixed powder, 20 parts by weight of an acrylic resin and 50 parts by weight of toluene were added as a molding binder. To obtain a slurry having a viscosity of 30 poise.

【0045】このスラリーを用いてドクターブレード法
によって、焼結後の厚みが0.6mmとなるような厚み
のグリーンシートを作製した。作製したグリーンシート
に対して、外観検査を行い、クラックなどの有無を調べ
た。そして、このグリーンシートを積層圧着して、切断
することにより、直径12mm、厚さ5mmの円板状の
積層成形体を作製した。また強度測定用に、60×6×
4mmの直方体状の積層成形体を作製した。
Using this slurry, a green sheet having a thickness of 0.6 mm after sintering was produced by a doctor blade method. The prepared green sheets were subjected to an appearance inspection to check for cracks and the like. Then, the green sheets were laminated and pressure-bonded and cut to produce a disk-shaped laminated molded body having a diameter of 12 mm and a thickness of 5 mm. Also, for strength measurement, 60 × 6 ×
A 4 mm rectangular parallelepiped laminated molded body was produced.

【0046】かくして得られた成形体を弱酸化性雰囲気
中、所定温度で脱バインダーした後、常圧の窒素雰囲気
中で表1、2に示す焼成条件で焼成して窒化珪素質焼結
体を作製し、評価用の試料とした。
After debinding the thus obtained molded body in a weakly oxidizing atmosphere at a predetermined temperature, it is fired in a nitrogen atmosphere at normal pressure under the firing conditions shown in Tables 1 and 2 to obtain a silicon nitride sintered body. It was prepared and used as a sample for evaluation.

【0047】前記評価試料を用いて、まずアルキメデス
法により窒化珪素質焼結体の密度を測定し、理論密度に
対する比率(相対密度)を算出した。ついでレーザーフ
ラッシュ法により熱伝導率(試料厚み3mm)を測定し
た。さらにJISR1601に従い焼肌面の室温におけ
る3点曲げ強度を測定した。
Using the evaluation sample, the density of the silicon nitride sintered body was first measured by the Archimedes method, and the ratio (relative density) to the theoretical density was calculated. Then, the thermal conductivity (sample thickness 3 mm) was measured by a laser flash method. Further, the three-point bending strength of the burnt skin surface at room temperature was measured according to JISR1601.

【0048】また、窒化珪素結晶粒子の粒度分布は、得
られた焼結体の任意の切断面を鏡面出し、HF+HNO
3 の混酸中で粒界相をエッチングした後、SEM写真を
撮影して、ルーゼックスによる画像解析処理により求め
た。結果は表1、2に示した。
The particle size distribution of the silicon nitride crystal particles was determined by mirroring any cut surface of the obtained sintered body,
After the grain boundary phase was etched in the mixed acid of No. 3 , an SEM photograph was taken and determined by image analysis processing using Luzex. The results are shown in Tables 1 and 2.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】表1、2に示すとおり、本発明の試料は、
いずれも相対密度95%以上にまで緻密化し、熱伝導率
50W/m・K以上、3点曲げ強度700MPa以上の
優れた特性を有するものであった。
As shown in Tables 1 and 2, the sample of the present invention
Each of them was densified to a relative density of 95% or more, and had excellent properties of a thermal conductivity of 50 W / m · K or more and a three-point bending strength of 700 MPa or more.

【0052】これに対して、窒化珪素粉末の1μm以下
の粒子の累積が60%未満の試料No.1では、焼結体の
1μm以下の累積比率が50%未満となるとともに、1
750℃で十分に緻密化できず、熱伝導率、強度ともに
低いものであった。
On the other hand, in Sample No. 1 in which the accumulation of particles of 1 μm or less of the silicon nitride powder is less than 60%, the accumulation ratio of the sintered body of 1 μm or less is less than 50% and 1%.
At 750 ° C., it could not be sufficiently densified, and both thermal conductivity and strength were low.

【0053】また、粉末における上記累積が80%を越
える試料No.5、平均粒径が0.4μmよりも小さい試
料No.6、および累積90%粒径が2μmよりも小さい
試料No.10ではいずれもグリーンシートにおいて微細
なクラックの発生が認められた。
Sample No. 5 in which the above-mentioned accumulation in the powder exceeds 80%, Sample No. 6 in which the average particle size is smaller than 0.4 μm, and Sample No. 10 in which the 90% -accumulation particle size is smaller than 2 μm. In each case, generation of fine cracks was observed in the green sheet.

【0054】また、粉末の累積90%粒径が5μmより
も大きい試料No.13では、焼結体における長軸平均径
が1μmよりも小さくなるとともに緻密化が不十分とな
り、熱伝導率、強度が低下した。また、焼成時間が3時
間よりも短い試料No.14、15では、焼結不足のた
め、相対密度、熱伝導率ともに低く、6時間よりも長い
試料No.18、19では、異常粒成長のため強度が劣化
した。さらに、焼成温度が1800℃を越える試料No.
23では、窒化珪素の分解が激しく特性評価ができなか
った。
Further, in Sample No. 13 in which the 90% cumulative particle diameter of the powder is larger than 5 μm, the long axis average diameter of the sintered body becomes smaller than 1 μm, the densification becomes insufficient, and the thermal conductivity and strength are reduced. Decreased. In samples Nos. 14 and 15 having a firing time shorter than 3 hours, the relative density and thermal conductivity were low due to insufficient sintering. In samples 18 and 19 having a firing time longer than 6 hours, abnormal grain growth was observed. Therefore, the strength deteriorated. Further, the sample No. having a firing temperature exceeding 1800 ° C.
In No. 23, the silicon nitride was severely decomposed, and the characteristics could not be evaluated.

【0055】[0055]

【発明の効果】以上、詳述したとおり、本発明によれ
ば、特定の粒度分布を有する窒化珪素粉末と焼結助剤か
らなる混合粉末に、有機溶媒およびバインダーを添加混
合して調製したスラリーを用いてシート成形することに
より、厚さが0.03〜1.0mmの薄いシート状成形
体を作製することができる。そして、この成形体を適宜
積層後、1800℃以下の温度にて焼成し緻密化するこ
とにより、焼結粒子の粒成長が抑制され、最終的に、焼
結体の切断面における窒化珪素結晶の長軸粒子径の平均
径が1〜3μmであり、粒径1μm以下の結晶粒子が累
積で50〜70%の粒度分布からなる組織に制御するこ
とにより、異常粒成長による強度低下を防ぐとともに高
い熱伝導性を有する放熱部材を作製することができる。
As described above in detail, according to the present invention, a slurry prepared by adding and mixing an organic solvent and a binder to a mixed powder comprising a silicon nitride powder having a specific particle size distribution and a sintering aid. By forming a sheet using the above, a thin sheet-shaped formed body having a thickness of 0.03 to 1.0 mm can be produced. Then, after appropriately laminating the compact, the compact is fired at a temperature of 1800 ° C. or less and densified, thereby suppressing the grain growth of the sintered particles, and finally, the silicon nitride crystal on the cut surface of the sintered body. The average diameter of the long axis particle diameter is 1 to 3 μm, and the crystal grain having a particle diameter of 1 μm or less is controlled to have a structure having a particle size distribution of 50 to 70% in a cumulative manner, thereby preventing a decrease in strength due to abnormal grain growth and increasing the strength. A heat dissipating member having thermal conductivity can be manufactured.

【0056】その結果、熱抵抗を低減した肉厚の薄い焼
結体を切り出し加工や研磨加工を行うことなく容易に作
製することができ、ヒートシンクや半導体素子を搭載し
たパッケージや多層配線基板などの回路基板として適用
することができる。
As a result, a thin sintered body having a reduced thermal resistance can be easily manufactured without cutting or polishing, and a package such as a heat sink or a semiconductor element mounted package or a multilayer wiring board can be easily manufactured. It can be applied as a circuit board.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡山 浩 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 吉原 安彦 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 Fターム(参考) 4G001 BA03 BA06 BA08 BA12 BA32 BA73 BB03 BB06 BB08 BB12 BB32 BC12 BC13 BC56 BD03 BD14 BE03 BE22 BE32 4G052 AB04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Okayama 1-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute (72) Inventor Yasuhiko Yoshihara 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Kyocera 4G001 BA03 BA06 BA08 BA12 BA32 BA73 BB03 BB06 BB08 BB12 BB32 BC12 BC13 BC56 BD03 BD14 BE03 BE22 BE32 4G052 AB04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素柱状結晶を主体としてなる相対密
度95%以上の焼結体からなり、該焼結体の切断面にお
ける窒化珪素結晶の長軸粒子径の平均径が1〜3μmで
あり、粒径1μm以下の結晶粒子が累積で50〜70%
の粒度分布からなり、かつ熱伝導率が50W/m・K以
上であることを特徴とする窒化珪素質放熱部材。
1. A sintered body mainly composed of silicon nitride columnar crystals having a relative density of 95% or more, wherein the average diameter of the major axis of the silicon nitride crystal on the cut surface of the sintered body is 1 to 3 μm. 50 to 70% in total of crystal particles having a particle size of 1 μm or less
A silicon nitride heat dissipation member, characterized by having a particle size distribution of, and having a thermal conductivity of 50 W / m · K or more.
【請求項2】厚さが0.03〜1.0mmの単一焼結
体、または単一層厚さが0.03〜1.0mmの焼結体
による全体厚さが0.1〜10mmの積層焼結体からな
る請求項1記載の窒化珪素質放熱部材。
2. A single sintered body having a thickness of 0.03 to 1.0 mm or a sintered body having a single layer thickness of 0.03 to 1.0 mm having a total thickness of 0.1 to 10 mm. 2. The heat-dissipating silicon nitride member according to claim 1, wherein the heat-dissipating member comprises a laminated sintered body.
【請求項3】前記焼結体の室温における3点曲げ強度が
700MPa以上であることを特徴とする請求項1記載
の窒化珪素質放熱部材。
3. The silicon nitride heat radiation member according to claim 1, wherein the three-point bending strength of the sintered body at room temperature is 700 MPa or more.
【請求項4】前記焼結体が、希土類元素(RE)および
Mgを酸化物換算による合量で4〜30モル%、前記希
土類元素(RE)と前記Mgの酸化物換算のモル比(R
2 3 /MgO)が0.1〜15となる比率で含有す
ることを特徴とする請求項1記載の窒化珪素質放熱部
材。
4. The sintered body has a rare earth element (RE) and Mg in a total amount of 4 to 30 mol% in terms of oxide, and a molar ratio (R) of the rare earth element (RE) and Mg in terms of oxide.
E 2 O 3 / MgO) is silicon nitride radiator member according to claim 1, characterized in that it contains a proportion to be 0.1-15.
【請求項5】平均粒子径が0.4〜0.7μm、1μm
以下の粒子の累積で60〜80%であり、且つ累積90
%が2〜5μmの粒度分布を有する窒化珪素粉末と焼結
助剤からなる混合粉末に、有機溶媒およびバインダーを
添加混合して調製したスラリーを用いてシート成形法に
よって焼成後の厚みが0.03〜1.0mmとなるよう
にシート状に成形した後、該成形体を適宜積層し、18
00℃以下の非酸化性雰囲気中で常圧焼成して3〜6時
間焼成して相対密度95%以上に緻密化することを特徴
とする窒化珪素質放熱部材の製造方法。
5. An average particle diameter of 0.4 to 0.7 μm, 1 μm
The following particles have a cumulative value of 60 to 80% and a cumulative value of 90:
% After sintering by a sheet forming method using a slurry prepared by adding an organic solvent and a binder to a mixed powder comprising a silicon nitride powder having a particle size distribution of 2 to 5 μm and a sintering aid. After being formed into a sheet so as to have a thickness of 03 to 1.0 mm, the formed body is appropriately laminated, and
A method for producing a silicon nitride-based heat radiation member, characterized in that the member is baked at normal pressure in a non-oxidizing atmosphere at a temperature of not more than 00C and baked for 3 to 6 hours to densify it to a relative density of 95% or more.
【請求項6】厚みが0.1〜10mmの焼結体を得るこ
とを特徴とする請求項5記載の窒化珪素質放熱部材の製
造方法。
6. The method according to claim 5, wherein a sintered body having a thickness of 0.1 to 10 mm is obtained.
【請求項7】前記混合粉末中に、希土類元素(RE)お
よびMgを酸化物換算による合量で4〜30モル%、前
記希土類元素(RE)と前記Mgの酸化物換算のモル比
(RE2 3 /MgO)が0.1〜15となる比率で含
有することを特徴とする請求項5記載の窒化珪素質放熱
部材の製造方法。
7. The mixed powder contains a rare earth element (RE) and Mg in a total amount of 4 to 30 mol% in terms of oxides, and a molar ratio (RE) of the rare earth element (RE) and Mg in terms of oxides. 2 O 3 / MgO) is the method according to claim 5, wherein the silicon nitride radiator member, characterized in that it contains a proportion to be 0.1-15.
JP10244249A 1998-08-31 1998-08-31 Silicon nitride heat radiation member and its production Pending JP2000072552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10244249A JP2000072552A (en) 1998-08-31 1998-08-31 Silicon nitride heat radiation member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10244249A JP2000072552A (en) 1998-08-31 1998-08-31 Silicon nitride heat radiation member and its production

Publications (1)

Publication Number Publication Date
JP2000072552A true JP2000072552A (en) 2000-03-07

Family

ID=17115957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10244249A Pending JP2000072552A (en) 1998-08-31 1998-08-31 Silicon nitride heat radiation member and its production

Country Status (1)

Country Link
JP (1) JP2000072552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112912356A (en) * 2018-11-01 2021-06-04 宇部兴产株式会社 Method for manufacturing silicon nitride substrate and silicon nitride substrate
WO2023071897A1 (en) * 2021-10-26 2023-05-04 中材高新氮化物陶瓷有限公司 High-precision silicon nitride ceramic microsphere, and preparation method therefor and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH09157054A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Circuit board
JPH09165265A (en) * 1995-12-14 1997-06-24 Agency Of Ind Science & Technol Silicon nitride ceramic having high heat conduction and its production
JPH09328365A (en) * 1996-05-31 1997-12-22 Denki Kagaku Kogyo Kk Silicon nitride powder, sintered silicon nitride and circuit board made thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH09157054A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Circuit board
JPH09165265A (en) * 1995-12-14 1997-06-24 Agency Of Ind Science & Technol Silicon nitride ceramic having high heat conduction and its production
JPH09328365A (en) * 1996-05-31 1997-12-22 Denki Kagaku Kogyo Kk Silicon nitride powder, sintered silicon nitride and circuit board made thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112912356A (en) * 2018-11-01 2021-06-04 宇部兴产株式会社 Method for manufacturing silicon nitride substrate and silicon nitride substrate
CN112912356B (en) * 2018-11-01 2023-05-02 Ube 株式会社 Method for manufacturing silicon nitride substrate and silicon nitride substrate
WO2023071897A1 (en) * 2021-10-26 2023-05-04 中材高新氮化物陶瓷有限公司 High-precision silicon nitride ceramic microsphere, and preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
JP4346151B2 (en) High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
JP6591455B2 (en) High thermal conductivity silicon nitride sintered body, silicon nitride substrate, silicon nitride circuit substrate and semiconductor device using the same
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
CN108863395B (en) High-thermal-conductivity and high-strength silicon nitride ceramic material and preparation method thereof
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP3481778B2 (en) Aluminum nitride sintered body and method for producing the same
JP3561145B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2000072552A (en) Silicon nitride heat radiation member and its production
JPH11236270A (en) Silicon nitride substrate and its manufacture
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP2000244121A (en) Silicon nitride wiring board and manufacture thereof
JP2002029849A (en) Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2807430B2 (en) Aluminum nitride sintered body and method for producing the same
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JPS6217076A (en) Aluminum nitride powder composition
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP4535575B2 (en) Silicon nitride multilayer wiring board
JP2000178072A (en) Aluminum nitride matter sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711