JPH04212441A - Ceramic wiring board - Google Patents

Ceramic wiring board

Info

Publication number
JPH04212441A
JPH04212441A JP3055579A JP5557991A JPH04212441A JP H04212441 A JPH04212441 A JP H04212441A JP 3055579 A JP3055579 A JP 3055579A JP 5557991 A JP5557991 A JP 5557991A JP H04212441 A JPH04212441 A JP H04212441A
Authority
JP
Japan
Prior art keywords
silicon nitride
wiring board
ceramic
substrate
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3055579A
Other languages
Japanese (ja)
Other versions
JPH0727995B2 (en
Inventor
Hiroaki Sakai
博明 阪井
Manabu Isomura
学 磯村
Shinsuke Yano
信介 矢野
Takao Soma
隆雄 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US07/760,145 priority Critical patent/US5294750A/en
Priority to EP19910308469 priority patent/EP0476971B1/en
Priority to DE69115408T priority patent/DE69115408T2/en
Publication of JPH04212441A publication Critical patent/JPH04212441A/en
Publication of JPH0727995B2 publication Critical patent/JPH0727995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a ceramic wiring board excellent in environmental resistance, mechanical characteristics, and electric characteristics, whose heat dissipation is larger than an alumina board, by using, as a board, a silicon nitride sintered body wherein the density of crystal grains of polycrystal is restrained to be a specified value, and a specified amount of aluminum is contained. CONSTITUTION:Ceramic used as a board is silicon nitride polycrystal, and crystal grains of the polycrystal are contained less than 20 in a linear distance of 10mum. An insulative layer 1 is constituted of the silicon nitride polycrystal wherein aluminum less than or equal to 0.3wt.% is preferably contained by alumina reduction. Conductor 2 is constituted of metal like tungsten, molybdenum and zirconium which are baked in the substrate or on the surface at the same time as the ceramic, or constituted of nitride or boride of metal like zirconium, tantalum and vanadium which are similarly baked at the same time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、熱伝導率の高い窒化珪
素多結晶体を使用した熱放散性に優れたセラミック配線
基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic wiring board with excellent heat dissipation properties using polycrystalline silicon nitride having high thermal conductivity.

【0002】0002

【従来の技術】半導体チップの高集積化や高速化に伴い
、発生する熱量が増大している。特にバイポーラ系の回
路を有するチップに関してその傾向は顕著で、近年はこ
れらのチップを搭載する基板として、放熱性の優れたつ
まり熱伝導率の良好な材料を使用したセラミック配線基
板が要求されるようになった。
2. Description of the Related Art As semiconductor chips become more highly integrated and operate faster, the amount of heat generated is increasing. This tendency is particularly noticeable for chips with bipolar circuits, and in recent years, ceramic wiring boards using materials with excellent heat dissipation, that is, good thermal conductivity, have been required as substrates on which these chips are mounted. Became.

【0003】例えば、従来このようなチップには、アル
ミナセラミックを材料にしたセラミック配線基板が、樹
脂を使用した基板に比較して信頼性が高く熱放散性が良
好な為に広く使用されていた。しかしながら、アルミナ
基板は実用的な強度が樹脂基板より劣り、また熱放散性
も不充分であった。
[0003] For example, conventionally, ceramic wiring boards made of alumina ceramic have been widely used for such chips because they are more reliable and have better heat dissipation than boards made of resin. . However, the practical strength of the alumina substrate is inferior to that of the resin substrate, and the heat dissipation property is also insufficient.

【0004】熱放散性を改善するため、最近では熱伝導
性のより優れた窒化アルミニウムセラミックや BeO
を少量添加した炭化珪素セラミックが基板材料として使
用され始めている。
In order to improve heat dissipation, aluminum nitride ceramics and BeO
Silicon carbide ceramics to which small amounts of are added are beginning to be used as substrate materials.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、窒化ア
ルミニウムセラミックは耐水性や耐アルカリ性など耐環
境性が悪く、また金属との熱膨張係数の差により生ずる
応力のために、電気的な金属端子であるピンとかリード
との接着部分が破壊され易い等の問題があった。
[Problems to be Solved by the Invention] However, aluminum nitride ceramic has poor environmental resistance such as water resistance and alkali resistance, and is difficult to use as an electrical metal terminal due to stress caused by the difference in thermal expansion coefficient with metal. There were problems such as the bonding part between the pin and the lead being easily broken.

【0006】また、BeO を少量添加した炭化珪素セ
ラミックは、セラミックの粒界しか絶縁性になっていな
いので耐電圧性が悪く、また誘電率が40程度と大きい
などの電気的特性上の問題があり、ホットプレス焼成で
ないと緻密化しないのでプロセスコストが高くなる問題
があった。
[0006] Furthermore, silicon carbide ceramics to which a small amount of BeO 2 has been added have problems with electrical properties, such as poor voltage resistance because only the grain boundaries of the ceramic are insulating, and the dielectric constant is as high as about 40. However, since it cannot be densified unless it is hot press fired, there is a problem that the process cost increases.

【0007】本発明の目的は上述した課題を解消して、
熱放散性がアルミナ基板より大きく、耐環境性、機械的
強度や電気的特性の優れたセラミック配線基板を提供し
ようとするものである。
[0007] The purpose of the present invention is to solve the above-mentioned problems,
The present invention aims to provide a ceramic wiring board that has greater heat dissipation than an alumina substrate, and has excellent environmental resistance, mechanical strength, and electrical properties.

【0008】[0008]

【課題を解決するための手段】本発明のセラミック配線
基板は、基板として使用するセラミックが、窒化珪素多
結晶体であって、該多結晶体の結晶粒子が直線距離10
μm 中に20個以下含まれていることを特徴とするも
のである。
Means for Solving the Problems In the ceramic wiring board of the present invention, the ceramic used as the substrate is a polycrystalline silicon nitride, and the crystal grains of the polycrystalline are separated by a straight line distance of 10
It is characterized by containing 20 or less particles per μm.

【0009】[0009]

【作用】本発明では、窒化珪素多結晶体を基板材料とし
て使用する。良く知られているように、窒化珪素は強度
が非常に強く、耐環境性にも優れている。また、熱膨張
係数もアルミナに比較するとシリコンの熱膨張係数と整
合がとれているので、半導体チップを搭載した場合の信
頼性も高い。しかし、通常の窒化珪素は室温および高温
での機械的強度を追求した組成のものが多く、これらの
熱伝導率は小さくアルミナセラミックと同等であった。 従って、熱放散性の良い基板を得ることはできなかった
[Operation] In the present invention, polycrystalline silicon nitride is used as the substrate material. As is well known, silicon nitride has extremely high strength and excellent environmental resistance. In addition, the coefficient of thermal expansion is more consistent with that of silicon than that of alumina, so it is highly reliable when mounted with semiconductor chips. However, many ordinary silicon nitrides have compositions that pursue mechanical strength at room and high temperatures, and their thermal conductivity is low and comparable to that of alumina ceramics. Therefore, it was not possible to obtain a substrate with good heat dissipation properties.

【0010】本発明では、多結晶体の結晶粒子が直線距
離10μm 中に20個以下含まれており、好ましくは
アルミナ換算でアルミニウムを0.3 重量%以下含む
窒化珪素多結晶体により絶縁層が構成され、導体として
は基板内部や表面にセラミックと同時焼成されるタング
ステンやモリブデンやジルコニウムのような金属により
構成されたり、同じく同時焼成されるジルコニウムやタ
ンタルやバナジウムなど各種金属の窒化物や硼化物によ
り構成される。また、セラミック焼成後の後工程により
形成されるAg、Au、Cu系の厚膜導体、スパッタ、
蒸着、メッキ法などを使用した薄膜導体、金属モリブデ
ンと金属マンガンを使用するいわゆるモリマン導体等に
より構成されても良い。
In the present invention, the insulating layer is made of polycrystalline silicon nitride, which contains 20 or less polycrystalline crystal particles within a linear distance of 10 μm, and preferably contains 0.3% by weight or less of aluminum in terms of alumina. The conductor is made of metals such as tungsten, molybdenum, and zirconium that are co-fired with the ceramic inside or on the surface of the substrate, or nitrides and borides of various metals such as zirconium, tantalum, and vanadium that are also co-fired. Consisted of. In addition, Ag, Au, and Cu-based thick film conductors formed in post-processes after ceramic firing, sputtering,
It may be constructed of a thin film conductor using a vapor deposition or plating method, a so-called Moriman conductor using metal molybdenum and metal manganese, or the like.

【0011】タングステンやモリブデン金属を使用し基
板材料と同時焼成することにより導体を得る際、焼成温
度が1800℃を超えるような高温の場合には、タング
ステンやモリブデンが一部窒化珪素と反応してシリサイ
トになってしまう場合がある。特に導体と基板材料の界
面においてその反応が生ずる傾向があるが、シリサイト
の抵抗はタングステンやモリブデン金属と比較しても低
いので問題ない。
[0011] When obtaining a conductor by co-firing tungsten or molybdenum metal with the substrate material, if the firing temperature is high enough to exceed 1800°C, some of the tungsten or molybdenum may react with silicon nitride. You may end up with Sirisite. This reaction tends to occur particularly at the interface between the conductor and the substrate material, but this is not a problem because the resistance of silicite is lower than that of tungsten or molybdenum metals.

【0012】本発明による窒化珪素基板は、窒化珪素の
熱伝導率が 40W/mk以上、代表的には100W/
mkとアルミナの 20W/mk程度よりも充分に大き
いので熱放散性がよく、また強度も非常に強く、耐環境
性にも優れ、熱膨張係数もシリコンの熱膨張係数と整合
がとれており、さらに電気絶縁性が優れ誘電率も6〜8
とアルミナの9〜10よりも小さいなど電気的特性も良
好なので、導体と組み合わせて極めて優れた特性のセラ
ミック配線基板が得られる。
[0012] In the silicon nitride substrate according to the present invention, the thermal conductivity of silicon nitride is 40 W/mk or more, typically 100 W/mk or more.
It has good heat dissipation as it is sufficiently larger than the 20W/mk of mk and alumina, and is also very strong and has excellent environmental resistance, and its coefficient of thermal expansion matches that of silicon. Furthermore, it has excellent electrical insulation properties and a dielectric constant of 6 to 8.
It also has good electrical properties, with a value smaller than 9 to 10 of alumina, so in combination with a conductor, a ceramic wiring board with extremely excellent properties can be obtained.

【0013】また、他の配線基板材料と組み合わせるこ
とにより、総合的にさらに優れた特性の複合構造の配線
基板を得ることも可能である。
[0013] Furthermore, by combining it with other wiring board materials, it is possible to obtain a wiring board with a composite structure that has even better overall characteristics.

【0014】例えば、配線を信号の高速伝播により適す
るようにする場合には、その部分の配線を窒化珪素基板
と異なる配線基板材料内に形成し、窒化珪素配線基板と
の複合構造とすることが望ましい。
For example, in order to make the wiring more suitable for high-speed signal propagation, it is possible to form the wiring in that part in a wiring board material different from the silicon nitride substrate, and to create a composite structure with the silicon nitride wiring board. desirable.

【0015】つまり、窒化珪素より誘電率が小さく信号
の高速伝播が可能な基板材料を使用したり、導体材料に
高速伝播に適するAgやCuのような低抵抗導体が使用
可能な基板材料を使用し、窒化珪素配線基板と組み合わ
せる。そして、窒化珪素配線基板の部分を電源回路とし
て使用する。
In other words, use a substrate material that has a dielectric constant lower than silicon nitride and allows high-speed signal propagation, or use a substrate material that allows the use of low-resistance conductors such as Ag or Cu, which are suitable for high-speed propagation, as the conductor material. and combined with a silicon nitride wiring board. Then, a portion of the silicon nitride wiring board is used as a power supply circuit.

【0016】このように、用途によって他の基板材料と
組み合わせることは、多結晶体の結晶粒子が直線距離1
0μm 中に20個以下含まれており、好ましくはアル
ミニウムをアルミナ換算で0.3 重量%以下含む窒化
珪素配線基板の優れた放熱性と、他の基板材料の優れた
特性の部分を組み合わせることになり、本発明の効果を
さらに有効にすることができる。
[0016] In this way, depending on the application, the crystal grains of the polycrystalline body can be combined with other substrate materials with a straight line distance of 1.
By combining the excellent heat dissipation properties of a silicon nitride wiring board, which contains 20 or less pieces per 0 μm and preferably contains 0.3% by weight or less of aluminum in terms of alumina, with the excellent properties of other board materials. Therefore, the effects of the present invention can be made even more effective.

【0017】以下に本発明基板の優れた特徴をさらに詳
細に述べる。
The excellent features of the substrate of the present invention will be described in more detail below.

【0018】 〔高熱放散性〕 使用するセラミックは、多結晶体の結晶粒子が直線距離
10μm 中に20個以下含まれており、好ましくは前
述のようにアルミナ換算でアルミニウムを 0.3重量
%以下含む窒化珪素多結晶体が使用される。窒化珪素多
結晶体は、通常焼結助剤として焼成中に液相を形成する
成分が添加される。代表的には、希土類の酸化物、アル
カリ土類金属の酸化物、その他金属酸化物が考えられる
。また、半導体パッケージ材料特有の添加物として、金
属モリブデンやタングステンおよびそれらの酸化物や化
合物が着色用に添加される場合がある。
[High heat dissipation] The ceramic used contains 20 or less polycrystalline crystal particles in a linear distance of 10 μm, and preferably contains 0.3% by weight or less of aluminum in terms of alumina, as described above. A silicon nitride polycrystalline body containing nitride is used. A component that forms a liquid phase during firing is usually added to the polycrystalline silicon nitride as a sintering aid. Typically, rare earth oxides, alkaline earth metal oxides, and other metal oxides are considered. Further, as additives specific to semiconductor package materials, metal molybdenum, tungsten, and their oxides and compounds may be added for coloring.

【0019】本発明には、結晶粒子数が限定量以下で、
好ましくはアルミニウムが上記の限定量以下であるなら
ば、基本的にはどのような組成系の窒化珪素多焼結体に
も適用できる。これは窒化珪素多焼結体の熱伝導率がア
ルミニウム量に最も大きく影響されるためであり、上記
の限定量以下であれば40w/mk以上の窒化珪素多焼
結体が得られ、アルミナに比較して優れた熱放散性を有
する基板が得られる。結晶粒子が直線距離10μm 中
に20個を超えて存在する窒化珪素を使用するとセラミ
ックの熱伝導率が劣化し熱放散性の悪いセラミック配線
基板になる。
In the present invention, the number of crystal particles is below a limited amount,
Basically, it can be applied to silicon nitride multi-sintered bodies of any composition as long as the amount of aluminum is preferably below the above-mentioned limit. This is because the thermal conductivity of the silicon nitride multi-sintered body is most influenced by the amount of aluminum, and if the amount is below the above limit, a silicon nitride multi-sintered body with a performance of 40w/mk or more can be obtained, and alumina A substrate having comparatively excellent heat dissipation properties can be obtained. If silicon nitride is used in which more than 20 crystal grains are present within a linear distance of 10 μm, the thermal conductivity of the ceramic will deteriorate, resulting in a ceramic wiring board with poor heat dissipation.

【0020】 〔高強度〕 本発明の窒化珪素多結晶体からなる基板は、強度が大き
いことも重要な特徴である。従来のアルミナ基板は、坑
折強度こそ30kg/mm2程度あるが、セラミック特
有の脆さから実用的な強度が、樹脂基板に比較すると劣
るとされていた。しかしながら、本発明の窒化珪素セラ
ミック基板は、坑折強度も30kg/mm2以上あると
共に、破壊靱性値5MPam1/2 と大きいので脆さ
もアルミナ基板に比較すると大幅に改善されている。
[High Strength] Another important feature of the substrate made of polycrystalline silicon nitride of the present invention is that it has high strength. Conventional alumina substrates have a mechanical strength of about 30 kg/mm2, but due to the brittleness characteristic of ceramics, their practical strength was considered to be inferior to that of resin substrates. However, the silicon nitride ceramic substrate of the present invention has a fracture strength of 30 kg/mm2 or more and a high fracture toughness value of 5 MPam1/2, so the brittleness is greatly improved compared to the alumina substrate.

【0021】また、窒化アルミニウム基板では金属との
熱膨張係数の差により生ずる応力のために、電気的な金
属端子であるピンとかリードとの接着部分が破壊され易
い等の問題があったが、本発明では使用する窒化珪素セ
ラミック基板の破壊靱性値が大きいのでこのような問題
は生じない。
[0021]Also, aluminum nitride substrates have problems such as the bonding parts with pins and leads, which are electrical metal terminals, being easily broken due to stress caused by the difference in thermal expansion coefficient with metal. In the present invention, such a problem does not occur because the silicon nitride ceramic substrate used has a high fracture toughness value.

【0022】 〔高信頼性〕 耐環境性に良いことも重要な特徴である。すなわち、セ
ラミック基板の大きな特徴は耐水性などの耐環境性が樹
脂基板に比較して優れている結果、信頼性が高いことに
あり、例えばアルミナ基板は、充分高い信頼性を有する
との評価を得ていた。しかしながら、熱放散性の優れた
セラミック基板である窒化アルミニウム基板は、耐水性
や耐アルカリ性等の耐環境性が悪いので、セラミック基
板の大きな特徴である信頼性に問題があった。これに対
し本発明の窒化珪素基板材料は、耐環境性も優れており
窒化アルミニウムで生ずるような問題はない。
[High Reliability] Good environmental resistance is also an important feature. In other words, a major feature of ceramic substrates is that they have superior environmental resistance such as water resistance compared to resin substrates, resulting in high reliability.For example, alumina substrates have been evaluated as having sufficiently high reliability. I was getting it. However, aluminum nitride substrates, which are ceramic substrates with excellent heat dissipation properties, have poor environmental resistance such as water resistance and alkali resistance, so there has been a problem with reliability, which is a major feature of ceramic substrates. On the other hand, the silicon nitride substrate material of the present invention has excellent environmental resistance and does not have the problems that occur with aluminum nitride.

【0023】 〔電気的特性〕 電気絶縁性は、非常に優れており、炭化珪素基板のよう
な耐電圧が低い問題はない。また、本発明に使用される
窒化珪素基板材料の誘電率は6〜8であり、アルミナ基
板の9〜10、窒化アルミニウム基板の8〜9、炭化珪
素基板の40に比較すると小さい。この為、高速信号、
高周波数信号の伝播の際問題となる伝播遅延時間が小さ
くなり信号の高速伝播に適する。
[Electrical Properties] The electrical insulation properties are very excellent, and there is no problem of low withstand voltage as with silicon carbide substrates. Further, the dielectric constant of the silicon nitride substrate material used in the present invention is 6 to 8, which is smaller than 9 to 10 for an alumina substrate, 8 to 9 for an aluminum nitride substrate, and 40 for a silicon carbide substrate. For this reason, high-speed signals,
The propagation delay time, which is a problem when propagating high-frequency signals, is reduced, making it suitable for high-speed signal propagation.

【0024】以上述べたように、本発明で得られる配線
基板は、従来のアルミナ基板は勿論のこと、窒化アルミ
ニウムや炭化珪素基板と比較しても優れた特性を有して
いる。
As described above, the wiring board obtained by the present invention has superior characteristics not only to conventional alumina substrates but also to aluminum nitride and silicon carbide substrates.

【0025】[0025]

【実施例】以下本発明方法を具体的に説明する。図1〜
図2はそれぞれ本発明で得られる配線基板の断面図であ
る。図1〜図3に示す実施例では、グリーンシートによ
り形成される窒化珪素絶縁体層1とタングステンよりな
る金属導体2が内部配線回路を形成している。外部端子
としては、金属ピン3が基板表面の導体部分にAgろう
4により接続されている。
EXAMPLES The method of the present invention will be explained in detail below. Figure 1~
FIG. 2 is a cross-sectional view of a wiring board obtained by the present invention. In the embodiment shown in FIGS. 1 to 3, a silicon nitride insulating layer 1 made of a green sheet and a metal conductor 2 made of tungsten form an internal wiring circuit. As an external terminal, a metal pin 3 is connected to a conductor portion on the surface of the substrate by an Ag solder 4.

【0026】また、図1に示す例ではその他の表面導体
はNiメッキ5およびAuメッキ6がされており、半導
体チップ7のダイボンドやワイヤーボンドがボンディン
グワイヤー8により、さらに、図2に示す例では、表面
導体としてCr/Cuスパッタ層9が設けられており、
図3に示す例では、厚膜回路基板としてAg系、Au系
またはCu系厚膜導体10と抵抗体11とが設けられて
いる。さらにまた、図4に示す例では、窒化珪素絶縁体
層21の内部に金属導体配線を有し、搭載した半導体チ
ップ22と外部回路との接続端子用に多数の金属ピン2
3を配列したピングリッドアレータイプのセラミックパ
ッケージを形成している。
Further, in the example shown in FIG. 1, the other surface conductors are plated with Ni 5 and Au 6, and the die bond and wire bond of the semiconductor chip 7 are bonded by the bonding wire 8, and further, in the example shown in FIG. , a Cr/Cu sputtered layer 9 is provided as a surface conductor,
In the example shown in FIG. 3, an Ag-based, Au-based, or Cu-based thick film conductor 10 and a resistor 11 are provided as a thick film circuit board. Furthermore, in the example shown in FIG. 4, a metal conductor wiring is provided inside the silicon nitride insulating layer 21, and a large number of metal pins 2 are provided for connection terminals between the mounted semiconductor chip 22 and an external circuit.
3 is arranged in a pin grid array type ceramic package.

【0027】図5および図6はそれぞれ本発明の配線基
板のうち複合型の配線基板の一例を示す断面図である。 図5に示す例では、窒化珪素絶縁体層1とこの中に設け
たタングステンよりなる金属導体2とからなる配線基板
上に、低温焼成基板用のコージェライト系セラミック3
1中に銅よりなる金属導体32を配してなる配線基板を
設け、複合構造の配線基板を構成した例を示している。 また、半導体チップ7はボンディングワイヤ8を介して
金属導体32と接続し、キャップ33により半導体チッ
プ7を保護し、さらに金属リード34により外部素子と
の接続を行なっている。
FIGS. 5 and 6 are cross-sectional views showing an example of a composite type wiring board among the wiring boards of the present invention. In the example shown in FIG. 5, a cordierite ceramic 3 for a low-temperature firing board is placed on a wiring board consisting of a silicon nitride insulator layer 1 and a metal conductor 2 made of tungsten provided therein.
This figure shows an example in which a wiring board with a metal conductor 32 made of copper arranged inside the wiring board 1 is provided to constitute a wiring board with a composite structure. Further, the semiconductor chip 7 is connected to a metal conductor 32 via a bonding wire 8, is protected by a cap 33, and is further connected to an external element by a metal lead 34.

【0028】図6に示す例では、図5に示す例と同様窒
化珪素絶縁体層1と金属導体2とからなる配線基板上に
、ポリイミド系樹脂からなる基板41中に金薄膜導体か
らなる金属導体42を配してなる配線基板を設け、複合
構造の配線基板を構成している。
In the example shown in FIG. 6, similar to the example shown in FIG. 5, a metal layer made of a gold thin film conductor is placed on a wiring board made of a silicon nitride insulating layer 1 and a metal conductor 2 in a substrate 41 made of a polyimide resin. A wiring board having a conductor 42 arranged thereon is provided to constitute a wiring board with a composite structure.

【0029】以下その製造方法を述べる。 実施例1 所定量の窒化珪素粉末、酸化イットリウム粉末に加えて
アルミナ 0.2wt%からなる混合粉末、アクリル系
有機バインダー、可塑剤、トルエンおよびアルコール系
の溶剤を樹脂性ポットおよび窒化珪素ボールで良く混合
しスラリーとした。さらに、ドクターブレード法により
 0.1mm〜1.0 mm厚みのグリーンテープを作
製した。
The manufacturing method will be described below. Example 1 A mixed powder consisting of predetermined amounts of silicon nitride powder, yttrium oxide powder, and 0.2 wt% alumina, an acrylic organic binder, a plasticizer, toluene, and an alcohol solvent were mixed in a resin pot and a silicon nitride ball. The mixture was mixed to form a slurry. Furthermore, a green tape with a thickness of 0.1 mm to 1.0 mm was produced by a doctor blade method.

【0030】タングステン粉末、アクリル系有機バイン
ダーおよびテルピネオール系の有機溶剤を3本ローラー
により良く混練し印刷用の導体ペーストにした。これら
のペーストを使用して、グリーンテープ上に導体配線パ
ターンやアース層を印刷した。これらの導体パターンが
印刷されたグリーンテープを、所定の順番で重ねた後、
 100℃、100 kg/cm2 の条件で積層一体
化した。各導体層の接続は、グリーンテープにパンチン
グ等により形成したスルーホールに導体ペーストを充填
して実現した。
Tungsten powder, an acrylic organic binder, and a terpineol organic solvent were thoroughly kneaded using three rollers to form a conductive paste for printing. These pastes were used to print conductor wiring patterns and ground layers on green tape. After stacking the green tapes printed with these conductor patterns in a predetermined order,
They were laminated and integrated under the conditions of 100°C and 100 kg/cm2. Connections between each conductor layer were realized by filling conductor paste into through holes formed in the green tape by punching or the like.

【0031】窒素雰囲気9.5 気圧で1850℃を4
時間保持して焼成した。その後、表面導体にニッケルメ
ッキを行い、さらにAgろうを使用して金属ピンを接着
した。最後に表面導体および金属ピンに金メッキを行っ
た。この結果、図1に示すような配線基板が実現できた
[0031] Nitrogen atmosphere 9.5 atmospheres at 1850°C
It was held for a while and fired. Thereafter, the surface conductor was plated with nickel, and a metal pin was further bonded using Ag solder. Finally, the surface conductor and metal pins were plated with gold. As a result, a wiring board as shown in FIG. 1 was realized.

【0032】 実施例2 実施例1と同様の方法により焼成基板を得た。ただし、
金属端子との接続部分を除いて表面の導体パターンは形
成しなかった。表面導体にニッケルメッキを行い。さら
にAgろうを使用して金属ピンを接着した。その後、金
属ピンがある面と反対側の面を研磨加工した。この研磨
面にCr/Cu薄膜をスパッタにより形成し、フォトリ
ソグラフィーの技術によりパターンに形成した。ピンお
よび薄膜パターンにNiおよび金メッキを行った。この
結果、図2に示すような配線基板が実現できた。
Example 2 A fired substrate was obtained in the same manner as in Example 1. however,
No conductor pattern was formed on the surface except for the connection portion with the metal terminal. Nickel plating is applied to the surface conductor. Furthermore, metal pins were bonded using Ag solder. After that, the surface opposite to the surface with the metal pin was polished. A Cr/Cu thin film was formed on this polished surface by sputtering and formed into a pattern by photolithography. The pins and thin film pattern were plated with Ni and gold. As a result, a wiring board as shown in FIG. 2 was realized.

【0033】 実施例3 実施例1と同様のグリーンテープを使用して、積層し所
定の厚みに成るようにした。同様に焼成してセラミック
基板を得た。両面を研磨後、Ag系、Au系、Cu系の
厚膜導体ペーストを通常のスクリーン印刷法によりパタ
ーン印刷した。それぞれの焼成雰囲気、焼成温度で焼成
した。 この結果、図3に示すような配線基板が実現できた。
Example 3 The same green tape as in Example 1 was used and laminated to a predetermined thickness. A ceramic substrate was obtained by firing in the same manner. After both surfaces were polished, patterns were printed using Ag-based, Au-based, and Cu-based thick-film conductor pastes using a conventional screen printing method. Firing was performed in each firing atmosphere and firing temperature. As a result, a wiring board as shown in FIG. 3 was realized.

【0034】 実施例4 実施例1と同様の方法で図4に示した 120ピンのピ
ングリッドアレー(PGA) タイプのパッケージを作
成した。焼結助剤、及び焼成条件は表1に示す通りであ
る。尚、雰囲気は9.5 気圧の窒素雰囲気である。作
成されたパッケージ中の窒化珪素粒子の数を直線距離1
0μm あたりに存在する窒化珪素粒子の数から求めた
。粒子の個数は以下のようにして測定した。まず、走査
型電子顕微鏡にて、窒化珪素体の任意断面における微構
造をSi3N4 粒子を個々に識別できる倍率で写真に
撮った。次に、写真に直線を描き、直線が横切る粒子の
個数を計測した。粒子の数が1000個を越えるまで視
野を変えて直線を引き、1000個の粒子を計測するの
に要した直線の総距離L(μm)から (1000/L
)×10により10μm 当りの個数に換算した。 例えば、1000個の粒子を計測するのに直線 500
μm を要したとすれば、10μm 当りの個数は20
個となる。窒化珪素は No.6を除いてβ相のみであ
った。 No.6には若干のα相が検出された。Al2
O3 量は螢光X線分析法により測定した。これらの測
定値を表1に示す。表1中には同一の条件で焼結された
窒化珪素多結晶体について、熱伝導率をレーザーフラッ
シュ法により測定した結果も示してある。また、熱膨脹
係数はどの焼結体においても3〜4ppm /℃であっ
た。このパッケージに実際に半導体ラップを実装して発
熱させ風速4m/s で冷却し熱抵抗を測定し、表1に
示すパッケージ熱抵抗を得た。
Example 4 A 120-pin pin grid array (PGA) type package shown in FIG. 4 was produced in the same manner as in Example 1. The sintering aid and firing conditions are as shown in Table 1. The atmosphere was a nitrogen atmosphere at 9.5 atmospheres. The number of silicon nitride particles in the created package is determined by the linear distance 1
It was determined from the number of silicon nitride particles present around 0 μm. The number of particles was measured as follows. First, a photograph of the microstructure in an arbitrary cross section of the silicon nitride body was taken using a scanning electron microscope at a magnification that allowed individual Si3N4 particles to be identified. Next, a straight line was drawn on the photograph and the number of particles crossed by the straight line was counted. Change the field of view and draw a straight line until the number of particles exceeds 1000, and from the total distance L (μm) of the straight line required to measure 1000 particles, (1000/L)
)×10 to calculate the number of particles per 10 μm. For example, to measure 1000 particles, a straight line of 500
If μm is required, the number of pieces per 10μm is 20
become individual. Silicon nitride is No. Except for No. 6, there was only β phase. No. 6, some α phase was detected. Al2
The amount of O3 was measured by fluorescent X-ray analysis. These measured values are shown in Table 1. Table 1 also shows the results of measuring thermal conductivity using a laser flash method for silicon nitride polycrystals sintered under the same conditions. Further, the coefficient of thermal expansion was 3 to 4 ppm/°C in all the sintered bodies. A semiconductor wrap was actually mounted on this package to generate heat and then cooled at a wind speed of 4 m/s to measure the thermal resistance, and the package thermal resistance shown in Table 1 was obtained.

【0035】比較のため、アルミナを放熱基板として同
様の方法で測定した熱抵抗は22℃/w であった。
For comparison, the thermal resistance measured in the same manner using alumina as a heat dissipation substrate was 22° C./w.

【0036】[0036]

【表1】[Table 1]

【0037】表1から、窒化珪素の放熱基板はアルミナ
と比較して放熱特性が優れるのがわかる。また、窒化珪
素においても、直線距離10μm あたりに存在する窒
化珪素粒子の数が20個以下で、好ましくは含有するA
l2O3 量が 0.3wt%以下であればさらに優れ
るのがわかる。この理由は、直線距離10μm あたり
に存在する窒化珪素粒子の数が20個以上であると、粒
界での熱の散乱が大きくなって熱伝導度が低くなるため
と考えられ、 Al2O3量が 0.3wt%以上であ
ると、窒化珪素粒子内に固溶し、窒化珪素粒子の熱伝導
度を低下させる場合があるためと考えられる。
From Table 1, it can be seen that the silicon nitride heat dissipation substrate has superior heat dissipation characteristics compared to alumina. Also, in silicon nitride, the number of silicon nitride particles present per 10 μm of straight line distance is 20 or less, and preferably the contained A
It can be seen that it is even better if the l2O3 amount is 0.3 wt% or less. The reason for this is thought to be that when the number of silicon nitride particles existing per 10 μm of linear distance is 20 or more, the scattering of heat at the grain boundaries increases and the thermal conductivity decreases. This is considered to be because if the amount is .3 wt % or more, it may form a solid solution within the silicon nitride particles and reduce the thermal conductivity of the silicon nitride particles.

【0038】 実施例5 コージェライト系組成のガラス粉末90重量%とアルミ
ナ粉末10重量%からなる低温焼成基板用のセラミック
ス組成混合粉末、アクリル系バインダー、可塑剤、トル
エンおよびアルコール系の溶剤をアルミナポットおよび
アルミナボールで良く混合しスラリーとした。さらに、
ドクターブレート法により0.3 mm厚みのグリーン
テープを作製した。
Example 5 A mixed powder with a ceramic composition for a low-temperature firing substrate consisting of 90% by weight of cordierite-based glass powder and 10% by weight of alumina powder, an acrylic binder, a plasticizer, toluene, and an alcohol-based solvent were placed in an alumina pot. The mixture was mixed well with an alumina ball to form a slurry. moreover,
A green tape with a thickness of 0.3 mm was produced by the doctor plate method.

【0039】次に、Cu系粉末、アクリル系有機バイン
ダー、およびテルピネオール系の有機溶剤を3本ローラ
ーにより良く混練し印刷用の導体ペーストにした。この
ペーストを使用し、グリーンテープ上に導体配線パター
ンを印刷した。これらの導体パターンが印刷されたグリ
ーンテープを、所定の順番で重ねた後、実施例1と同様
の方法で作製した窒化珪素配線基板上に置き、100 
℃、100kg/cm2 の条件で圧力をかけ積層一体
化した。各導体層の接続は、グリーンテープにパンチン
グ等により形成したスルーホールに導体ペーストを充填
して実現した。その後、全体を窒素雰囲気、950 ℃
で焼成した。
Next, Cu-based powder, acrylic-based organic binder, and terpineol-based organic solvent were thoroughly kneaded using three rollers to form a conductive paste for printing. Using this paste, a conductor wiring pattern was printed on the green tape. The green tapes with these conductor patterns printed on them were stacked in a predetermined order and then placed on a silicon nitride wiring board prepared in the same manner as in Example 1.
They were laminated and integrated by applying pressure at 100 kg/cm2 at 100°C. Connections between each conductor layer were realized by filling conductor paste into through holes formed in the green tape by punching or the like. After that, the whole was heated in a nitrogen atmosphere at 950°C.
It was fired in

【0040】その結果、図5に示したように、窒化珪素
基板上に低温焼成配線基板が接合した複合構造のパッケ
ージを得ることができた。なお、金属リードはAu−S
n 合金ろうにより接合した。
As a result, as shown in FIG. 5, it was possible to obtain a package with a composite structure in which a low temperature fired wiring board was bonded to a silicon nitride substrate. Note that the metal lead is Au-S.
n Joined using alloy solder.

【0041】 実施例6 実施例2と同様の方法で得た窒化珪素配線基板上に、感
光性ポリイミド系樹脂とAuスパッタ薄膜を使用し、フ
ォトリソグラフィーにより導体パターンと層間導体パタ
ーンを接続するビアホールを形成し多層配線回路を得た
Example 6 Via holes for connecting conductor patterns and interlayer conductor patterns were formed by photolithography on a silicon nitride wiring board obtained in the same manner as in Example 2 using a photosensitive polyimide resin and an Au sputtered thin film. A multilayer wiring circuit was obtained.

【0042】その結果、図6に示したように、窒化珪素
基板上にポリイミドからなる基板接合した複合構造のパ
ッケージを得ることができた。
As a result, as shown in FIG. 6, it was possible to obtain a package with a composite structure in which a substrate made of polyimide was bonded to a silicon nitride substrate.

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
によれば、多結晶体の結晶粒子を直線距離10μm 中
に20個以下とし、好ましくは基板として使用する窒化
珪素に含まれるアルミニウム量をアルミナ換算で 0.
3wt%以下とすることにより、熱放散性が高く、耐環
境性が良いことから信頼性に優れ、また強度、靱性の高
い従来にない優れたセラミック配線基板を得ることがで
きる。
As is clear from the above description, according to the present invention, the number of polycrystalline crystal grains is set to 20 or less within a linear distance of 10 μm, and the amount of aluminum contained in silicon nitride used as a substrate is preferably reduced. 0. in terms of alumina.
By setting the content to 3 wt% or less, it is possible to obtain an excellent ceramic wiring board that has high heat dissipation, good environmental resistance, excellent reliability, and has high strength and toughness.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明で得られる配線基板の一例の断面図であ
る。
FIG. 1 is a cross-sectional view of an example of a wiring board obtained by the present invention.

【図2】本発明で得られる配線基板の他の例の断面図で
ある。
FIG. 2 is a sectional view of another example of a wiring board obtained by the present invention.

【図3】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 3 is a cross-sectional view of still another example of a wiring board obtained by the present invention.

【図4】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 4 is a sectional view of still another example of a wiring board obtained by the present invention.

【図5】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 5 is a sectional view of still another example of a wiring board obtained by the present invention.

【図6】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 6 is a sectional view of still another example of a wiring board obtained by the present invention.

【符号の説明】[Explanation of symbols]

1  窒化珪素絶縁体層2  金属導体3  金属ピン 4  Agろう 5  Niメッキ 6  Auメッキ 7  半導体チップ 8  ボンディングワイヤー 9  Cr/Cuスパッタ層 10  厚膜導体 11  抵抗体 21  窒化珪素絶縁体層 22  半導体チップ 23  外部端子用ピン 31  コージェライト系セラミック 32  金属導体 33  キャップ 34  金属リード 41  ポリイミド系樹脂からなる基板42  金属導
1 Silicon nitride insulator layer 2 Metal conductor 3 Metal pin 4 Ag solder 5 Ni plating 6 Au plating 7 Semiconductor chip 8 Bonding wire 9 Cr/Cu sputtered layer 10 Thick film conductor 11 Resistor 21 Silicon nitride insulator layer 22 Semiconductor chip 23 External terminal pin 31 Cordierite ceramic 32 Metal conductor 33 Cap 34 Metal lead 41 Substrate 42 made of polyimide resin Metal conductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  基板として使用するセラミックが、窒
化珪素多結晶体であって、該多結晶体の結晶粒子が直線
距離10μm 中に20個以下含まれていることを特徴
とするセラミック配線基板。
1. A ceramic wiring board, wherein the ceramic used as the substrate is a polycrystalline silicon nitride, and 20 or less crystal grains of the polycrystalline material are included in a linear distance of 10 μm.
【請求項2】  前記セラミック配線基板が、アルミナ
換算でアルミニウムを0.3重量%以下含む請求項1記
載のセラミック配線基板。
2. The ceramic wiring board according to claim 1, wherein the ceramic wiring board contains 0.3% by weight or less of aluminum in terms of alumina.
【請求項3】  前記窒化珪素多結晶体からなる基板が
、さらに前記窒化珪素多結晶体とは異なる材料からなる
配線基板を有する複合構造からなる請求項1または2記
載のセラミック配線基板。
3. The ceramic wiring board according to claim 1, wherein the substrate made of polycrystalline silicon nitride has a composite structure further including a wiring board made of a material different from the polycrystalline silicon nitride.
JP3055579A 1990-09-18 1991-02-28 Ceramic wiring board Expired - Lifetime JPH0727995B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/760,145 US5294750A (en) 1990-09-18 1991-09-16 Ceramic packages and ceramic wiring board
EP19910308469 EP0476971B1 (en) 1990-09-18 1991-09-17 Ceramic packages and ceramic wiring board
DE69115408T DE69115408T2 (en) 1990-09-18 1991-09-17 Ceramic packings and ceramic circuit boards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-246022 1990-09-18
JP24602290 1990-09-18

Publications (2)

Publication Number Publication Date
JPH04212441A true JPH04212441A (en) 1992-08-04
JPH0727995B2 JPH0727995B2 (en) 1995-03-29

Family

ID=17142286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055579A Expired - Lifetime JPH0727995B2 (en) 1990-09-18 1991-02-28 Ceramic wiring board

Country Status (1)

Country Link
JP (1) JPH0727995B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216481A (en) * 1993-01-19 1994-08-05 Toshiba Corp Ceramic-copper circuit
JPH0714945A (en) * 1993-06-16 1995-01-17 Denki Kagaku Kogyo Kk Oxide ceramics substrate and its application
WO1996029736A1 (en) * 1995-03-20 1996-09-26 Kabushiki Kaisha Toshiba Silicon nitride circuit substrate
JPH09157030A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Production of silicon nitride sintered compact
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride-base heat radiating member and its production
KR100261793B1 (en) * 1995-09-29 2000-07-15 니시무로 타이죠 Circuit board with high strength and high reliability and process for preparing the same
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2013203633A (en) * 2012-03-29 2013-10-07 Kyocera Corp Silicon nitride sintered compact, and circuit board and electronic device using the same
WO2017169664A1 (en) * 2016-03-30 2017-10-05 日立金属株式会社 Ceramic substrate and production method for same
WO2018179538A1 (en) * 2017-03-29 2018-10-04 株式会社村田製作所 Power module and method for manufacturing power module

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216481A (en) * 1993-01-19 1994-08-05 Toshiba Corp Ceramic-copper circuit
JPH0714945A (en) * 1993-06-16 1995-01-17 Denki Kagaku Kogyo Kk Oxide ceramics substrate and its application
EP0999589A3 (en) * 1995-03-20 2000-06-14 Kabushiki Kaisha Toshiba Silicon nitride circuit board
WO1996029736A1 (en) * 1995-03-20 1996-09-26 Kabushiki Kaisha Toshiba Silicon nitride circuit substrate
KR100261793B1 (en) * 1995-09-29 2000-07-15 니시무로 타이죠 Circuit board with high strength and high reliability and process for preparing the same
JPH09157030A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Production of silicon nitride sintered compact
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride-base heat radiating member and its production
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2013203633A (en) * 2012-03-29 2013-10-07 Kyocera Corp Silicon nitride sintered compact, and circuit board and electronic device using the same
WO2017169664A1 (en) * 2016-03-30 2017-10-05 日立金属株式会社 Ceramic substrate and production method for same
EP3439442A4 (en) * 2016-03-30 2019-11-20 Hitachi Metals, Ltd. Ceramic substrate and production method for same
US11420905B2 (en) 2016-03-30 2022-08-23 Hitachi Metals, Ltd. Ceramic substrate and production method for same
WO2018179538A1 (en) * 2017-03-29 2018-10-04 株式会社村田製作所 Power module and method for manufacturing power module
US11114355B2 (en) 2017-03-29 2021-09-07 Murata Manufacturing Co., Ltd. Power module and method for manufacturing power module

Also Published As

Publication number Publication date
JPH0727995B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US5294750A (en) Ceramic packages and ceramic wiring board
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
US6329065B1 (en) Wire board and method of producing the same
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JPH04212441A (en) Ceramic wiring board
JP3517062B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JP3566569B2 (en) Wiring board and method of manufacturing the same
JP2007273914A (en) Wiring board and method of manufacturing same
JP3538549B2 (en) Wiring board and method of manufacturing the same
JPH0576795B2 (en)
JP3493310B2 (en) Multilayer wiring board
JP4557382B2 (en) Wiring board and manufacturing method thereof
JPH11284296A (en) Wiring board
JPH11186727A (en) Wiring board and manufacture thereof
JP4646362B2 (en) Conductor composition and wiring board using the same
JP4575614B2 (en) Composite ceramic substrate
JPH0997862A (en) High-strength circuit board and its manufacturing method
JP3827447B2 (en) Multilayer wiring board and manufacturing method thereof
JPH09260544A (en) Ceramic circuit board and manufacture therefor
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JPH0810735B2 (en) Ceramic package
JP2752301B2 (en) Composition for ceramic substrate and ceramic wiring substrate
JP3688919B2 (en) Ceramic multilayer wiring board
JP3709062B2 (en) Aluminum nitride wiring board and manufacturing method thereof
JP3898400B2 (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 16

EXPY Cancellation because of completion of term