JPH0727995B2 - Ceramic wiring board - Google Patents

Ceramic wiring board

Info

Publication number
JPH0727995B2
JPH0727995B2 JP3055579A JP5557991A JPH0727995B2 JP H0727995 B2 JPH0727995 B2 JP H0727995B2 JP 3055579 A JP3055579 A JP 3055579A JP 5557991 A JP5557991 A JP 5557991A JP H0727995 B2 JPH0727995 B2 JP H0727995B2
Authority
JP
Japan
Prior art keywords
silicon nitride
substrate
wiring board
conductor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3055579A
Other languages
Japanese (ja)
Other versions
JPH04212441A (en
Inventor
博明 阪井
学 磯村
信介 矢野
隆雄 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US07/760,145 priority Critical patent/US5294750A/en
Priority to DE1991615408 priority patent/DE69115408T2/en
Priority to EP19910308469 priority patent/EP0476971B1/en
Publication of JPH04212441A publication Critical patent/JPH04212441A/en
Publication of JPH0727995B2 publication Critical patent/JPH0727995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱伝導率の高い窒化珪
素多結晶体を使用した熱放散性に優れたセラミック配線
基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic wiring board excellent in heat dissipation using a silicon nitride polycrystal having a high thermal conductivity.

【0002】[0002]

【従来の技術】半導体チップの高集積化や高速化に伴
い、発生する熱量が増大している。特にバイポーラ系の
回路を有するチップに関してその傾向は顕著で、近年は
これらのチップを搭載する基板として、放熱性の優れた
つまり熱伝導率の良好な材料を使用したセラミック配線
基板が要求されるようになった。
2. Description of the Related Art The amount of heat generated is increasing with the increasing integration and speed of semiconductor chips. This tendency is particularly remarkable for chips having bipolar circuits, and in recent years, a ceramic wiring board using a material having excellent heat dissipation, that is, having good thermal conductivity has been required as a board for mounting these chips. Became.

【0003】例えば、従来このようなチップには、アル
ミナセラミックを材料にしたセラミック配線基板が、樹
脂を使用した基板に比較して信頼性が高く熱放散性が良
好な為に広く使用されていた。しかしながら、アルミナ
基板は実用的な強度が樹脂基板より劣り、また熱放散性
も不充分であった。
For example, conventionally, a ceramic wiring board made of alumina ceramic has been widely used for such a chip because it has higher reliability and better heat dissipation than a board using resin. . However, the alumina substrate was inferior in practical strength to the resin substrate, and the heat dissipation property was insufficient.

【0004】熱放散性を改善するため、最近では熱伝導
性のより優れた窒化アルミニウムセラミックや BeOを少
量添加した炭化珪素セラミックが基板材料として使用さ
れ始めている。
Recently, in order to improve heat dissipation, aluminum nitride ceramics having higher thermal conductivity and silicon carbide ceramics to which a small amount of BeO is added have begun to be used as substrate materials.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、窒化ア
ルミニウムセラミックは耐水性や耐アルカリ性など耐環
境性が悪く、また金属との熱膨張係数の差により生ずる
応力のために、電気的な金属端子であるピンとかリード
との接着部分が破壊され易い等の問題があった。
However, aluminum nitride ceramic has poor environmental resistance such as water resistance and alkali resistance, and is an electric metal terminal because of stress caused by the difference in thermal expansion coefficient from metal. There is a problem that the bonding portion between the pin and the lead is easily broken.

【0006】また、BeO を少量添加した炭化珪素セラミ
ックは、セラミックの粒界しか絶縁性になっていないの
で耐電圧性が悪く、また誘電率が40程度と大きいなどの
電気的特性上の問題があり、ホットプレス焼成でないと
緻密化しないのでプロセスコストが高くなる問題があっ
た。
Further, since silicon carbide ceramics to which a small amount of BeO is added have an insulating property only in the grain boundaries of the ceramics, there are problems in electrical characteristics such as poor withstand voltage and a large dielectric constant of about 40. However, there is a problem that the process cost becomes high because it is not densified unless it is hot-press fired.

【0007】本発明の目的は上述した課題を解消して、
熱放散性がアルミナ基板より大きく、耐環境性、機械的
強度や電気的特性の優れたセラミック配線基板を提供し
ようとするものである。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a ceramic wiring board having a heat dissipation property higher than that of an alumina substrate and having excellent environmental resistance, mechanical strength and electrical characteristics.

【0008】[0008]

【課題を解決するための手段】本発明のセラミック配線
基板は、基板として使用するセラミックが、窒化珪素多
結晶体であって、該多結晶体の結晶粒子が直線距離10μ
m 中に20個以下含まれていることを特徴とするものであ
る。
In the ceramic wiring substrate of the present invention, the ceramic used as the substrate is a silicon nitride polycrystal, and the crystal grains of the polycrystal have a linear distance of 10 μm.
It is characterized by containing 20 or less in m.

【0009】[0009]

【作用】本発明では、窒化珪素多結晶体を基板材料とし
て使用する。良く知られているように、窒化珪素は強度
が非常に強く、耐環境性にも優れている。また、熱膨張
係数もアルミナに比較するとシリコンの熱膨張係数と整
合がとれているので、半導体チップを搭載した場合の信
頼性も高い。しかし、通常の窒化珪素は室温および高温
での機械的強度を追求した組成のものが多く、これらの
熱伝導率は小さくアルミナセラミックと同等であった。
従って、熱放散性の良い基板を得ることはできなかっ
た。
In the present invention, a silicon nitride polycrystal is used as a substrate material. As is well known, silicon nitride has very high strength and excellent environmental resistance. In addition, the coefficient of thermal expansion matches the coefficient of thermal expansion of silicon as compared with that of alumina, so that reliability when mounting a semiconductor chip is also high. However, most of ordinary silicon nitrides have a composition that pursues mechanical strength at room temperature and high temperature, and their thermal conductivity is small, which is equivalent to that of alumina ceramics.
Therefore, it was not possible to obtain a substrate having a good heat dissipation property.

【0010】本発明では、多結晶体の結晶粒子が直線距
離10μm 中に20個以下含まれており、好ましくはアルミ
ナ換算でアルミニウムを0.3 重量%以下含む窒化珪素多
結晶体により絶縁層が構成され、導体としては基板内部
や表面にセラミックと同時焼成されるタングステンやモ
リブデンやジルコニウムのような金属により構成された
り、同じく同時焼成されるジルコニウムやタンタルやバ
ナジウムなど各種金属の窒化物や硼化物により構成され
る。また、セラミック焼成後の後工程により形成される
Ag、Au、Cu系の厚膜導体、スパッタ、蒸着、メッキ法な
どを使用した薄膜導体、金属モリブデンと金属マンガン
を使用するいわゆるモリマン導体等により構成されても
良い。
In the present invention, 20 or less polycrystal grains are contained in a linear distance of 10 μm, and the insulating layer is preferably composed of a silicon nitride polycrystal containing 0.3% by weight or less of aluminum in terms of alumina. , The conductor is made of metal such as tungsten, molybdenum or zirconium which is co-fired with the ceramic inside or on the surface of the substrate, or nitride or boride of various metals such as zirconium, tantalum or vanadium which are also co-fired. To be done. Also, it is formed by a post process after firing the ceramic.
It may be composed of a thick film conductor of Ag, Au or Cu system, a thin film conductor using sputtering, vapor deposition, plating method, so-called Moriman conductor using metallic molybdenum and metallic manganese, or the like.

【0011】タングステンやモリブデン金属を使用し基
板材料と同時焼成することにより導体を得る際、焼成温
度が1800℃を超えるような高温の場合には、タングステ
ンやモリブデンが一部窒化珪素と反応してシリサイトに
なってしまう場合がある。特に導体と基板材料の界面に
おいてその反応が生ずる傾向があるが、シリサイトの抵
抗はタングステンやモリブデン金属と比較しても低いの
で問題ない。
When a conductor is obtained by co-firing a substrate material using tungsten or molybdenum metal, if the firing temperature is high such as over 1800 ° C., tungsten or molybdenum partially reacts with silicon nitride. It may become a sirisite. In particular, the reaction tends to occur at the interface between the conductor and the substrate material, but there is no problem because the resistance of silicite is lower than that of tungsten or molybdenum metal.

【0012】本発明による窒化珪素基板は、窒化珪素の
熱伝導率が 40W/mk以上、代表的には100W/mkとアルミ
ナの 20W/mk程度よりも充分に大きいので熱放散性がよ
く、また強度も非常に強く、耐環境性にも優れ、熱膨張
係数もシリコンの熱膨張係数と整合がとれており、さら
に電気絶縁性が優れ誘電率も6〜8とアルミナの9〜10
よりも小さいなど電気的特性も良好なので、導体と組み
合わせて極めて優れた特性のセラミック配線基板が得ら
れる。
Since the silicon nitride substrate according to the present invention has a thermal conductivity of silicon nitride of 40 W / mk or more, typically 100 W / mk, which is sufficiently higher than about 20 W / mk of alumina, it has a good heat dissipation property. The strength is very strong, the environment resistance is excellent, the coefficient of thermal expansion matches the coefficient of thermal expansion of silicon, and the electric insulation is excellent, and the dielectric constant is 6-8 and that of alumina is 9-10.
Since it has good electrical characteristics such as smaller size, a ceramic wiring board with extremely excellent characteristics can be obtained by combining with a conductor.

【0013】また、他の配線基板材料と組み合わせるこ
とにより、総合的にさらに優れた特性の複合構造の配線
基板を得ることも可能である。
Further, by combining with other wiring board materials, it is possible to obtain a wiring board having a composite structure having more excellent overall characteristics.

【0014】例えば、配線を信号の高速伝播により適す
るようにする場合には、その部分の配線を窒化珪素基板
と異なる配線基板材料内に形成し、窒化珪素配線基板と
の複合構造とすることが望ましい。
For example, in order to make the wiring more suitable for high-speed signal propagation, the wiring at that portion may be formed in a wiring board material different from that of the silicon nitride substrate to form a composite structure with the silicon nitride wiring board. desirable.

【0015】つまり、窒化珪素より誘電率が小さく信号
の高速伝播が可能な基板材料を使用したり、導体材料に
高速伝播に適するAgやCuのような低抵抗導体が使用可能
な基板材料を使用し、窒化珪素配線基板と組み合わせ
る。そして、窒化珪素配線基板の部分を電源回路として
使用する。
That is, a substrate material having a dielectric constant smaller than that of silicon nitride and capable of high-speed signal propagation is used, or a substrate material capable of using a low resistance conductor such as Ag or Cu suitable for high-speed propagation is used as a conductor material. And combined with a silicon nitride wiring board. Then, the portion of the silicon nitride wiring board is used as a power supply circuit.

【0016】このように、用途によって他の基板材料と
組み合わせることは、多結晶体の結晶粒子が直線距離10
μm 中に20個以下含まれており、好ましくはアルミニウ
ムをアルミナ換算で0.3 重量%以下含む窒化珪素配線基
板の優れた放熱性と、他の基板材料の優れた特性の部分
を組み合わせることになり、本発明の効果をさらに有効
にすることができる。
As described above, the combination of the substrate material with other substrate materials is such that the crystal grains of the polycrystalline body have a linear distance of 10 mm.
20m or less contained in μm, preferably 0.3% by weight or less of aluminum in terms of alumina, which combines the excellent heat dissipation of the silicon nitride wiring board with the excellent characteristics of other board materials. The effect of the present invention can be made more effective.

【0017】以下に本発明基板の優れた特徴をさらに詳
細に述べる。
The excellent features of the substrate of the present invention will be described in more detail below.

【0018】 〔高熱放散性〕 使用するセラミックは、多結晶体の結晶粒子が直線距離
10μm 中に20個以下含まれており、好ましくは前述のよ
うにアルミナ換算でアルミニウムを 0.3重量%以下含む
窒化珪素多結晶体が使用される。窒化珪素多結晶体は、
通常焼結助剤として焼成中に液相を形成する成分が添加
される。代表的には、希土類の酸化物、アルカリ土類金
属の酸化物、その他金属酸化物が考えられる。また、半
導体パッケージ材料特有の添加物として、金属モリブデ
ンやタングステンおよびそれらの酸化物や化合物が着色
用に添加される場合がある。
[High Heat Dissipation] In the ceramic used, the crystal grains of the polycrystalline body have a linear distance.
A silicon nitride polycrystal containing 20 or less in 10 μm, and preferably 0.3% by weight or less of aluminum in terms of alumina is used as described above. The silicon nitride polycrystal is
Usually, a component that forms a liquid phase during firing is added as a sintering aid. Typically, rare earth oxides, alkaline earth metal oxides, and other metal oxides are considered. In addition, metallic molybdenum, tungsten, and oxides or compounds thereof may be added for coloring as additives peculiar to semiconductor package materials.

【0019】本発明には、結晶粒子数が限定量以下で、
好ましくはアルミニウムが上記の限定量以下であるなら
ば、基本的にはどのような組成系の窒化珪素多焼結体に
も適用できる。これは窒化珪素多焼結体の熱伝導率がア
ルミニウム量に最も大きく影響されるためであり、上記
の限定量以下であれば40w/mk以上の窒化珪素多焼結体が
得られ、アルミナに比較して優れた熱放散性を有する基
板が得られる。結晶粒子が直線距離10μm 中に20個を超
えて存在する窒化珪素を使用するとセラミックの熱伝導
率が劣化し熱放散性の悪いセラミック配線基板になる。
According to the present invention, the number of crystal particles is not more than a limited amount,
As long as the amount of aluminum is preferably not more than the above-mentioned limited amount, basically, any composition-based silicon nitride multi-sintered body can be applied. This is because the thermal conductivity of the silicon nitride multi-sintered body is most affected by the amount of aluminum, and if the amount is less than the above-mentioned limited amount, a silicon nitride multi-sintered body of 40 w / mk or more can be obtained and By comparison, a substrate having excellent heat dissipation is obtained. The use of silicon nitride, which has more than 20 crystal grains in a linear distance of 10 μm, deteriorates the thermal conductivity of the ceramic and results in a ceramic wiring board with poor heat dissipation.

【0020】 〔高強度〕 本発明の窒化珪素多結晶体からなる基板は、強度が大き
いことも重要な特徴である。従来のアルミナ基板は、坑
折強度こそ30kg/mm2程度あるが、セラミック特有の脆さ
から実用的な強度が、樹脂基板に比較すると劣るとされ
ていた。しかしながら、本発明の窒化珪素セラミック基
板は、坑折強度も30kg/mm2以上あると共に、破壊靱性値
5MPam1/2 と大きいので脆さもアルミナ基板に比較する
と大幅に改善されている。
[High Strength] The substrate made of the silicon nitride polycrystal of the present invention is also important in that it has high strength. The conventional alumina substrate has a bending strength of about 30 kg / mm 2 , but it is said that the practical strength is inferior to the resin substrate due to the brittleness peculiar to ceramics. However, since the silicon nitride ceramic substrate of the present invention has a folding strength of 30 kg / mm 2 or more and a fracture toughness value of 5 MPam 1/2, which is large, its brittleness is greatly improved as compared with the alumina substrate.

【0021】また、窒化アルミニウム基板では金属との
熱膨張係数の差により生ずる応力のために、電気的な金
属端子であるピンとかリードとの接着部分が破壊され易
い等の問題があったが、本発明では使用する窒化珪素セ
ラミック基板の破壊靱性値が大きいのでこのような問題
は生じない。
Further, in the aluminum nitride substrate, there is a problem that the bonding portion between the pin which is an electrical metal terminal and the lead is easily broken due to the stress caused by the difference in thermal expansion coefficient with the metal. In the present invention, such a problem does not occur because the silicon nitride ceramic substrate used has a large fracture toughness value.

【0022】 〔高信頼性〕 耐環境性に良いことも重要な特徴である。すなわち、セ
ラミック基板の大きな特徴は耐水性などの耐環境性が樹
脂基板に比較して優れている結果、信頼性が高いことに
あり、例えばアルミナ基板は、充分高い信頼性を有する
との評価を得ていた。しかしながら、熱放散性の優れた
セラミック基板である窒化アルミニウム基板は、耐水性
や耐アルカリ性等の耐環境性が悪いので、セラミック基
板の大きな特徴である信頼性に問題があった。これに対
し本発明の窒化珪素基板材料は、耐環境性も優れており
窒化アルミニウムで生ずるような問題はない。
[High reliability] Good environmental resistance is also an important feature. In other words, a major characteristic of ceramic substrates is that they are highly reliable as a result of their environmental resistance such as water resistance being superior to that of resin substrates. For example, alumina substrates are evaluated to have sufficiently high reliability. I was getting. However, since an aluminum nitride substrate which is a ceramic substrate having excellent heat dissipation has poor environmental resistance such as water resistance and alkali resistance, there is a problem in reliability, which is a major feature of the ceramic substrate. On the other hand, the silicon nitride substrate material of the present invention has excellent environmental resistance and does not have the problem that aluminum nitride has.

【0023】 〔電気的特性〕 電気絶縁性は、非常に優れており、炭化珪素基板のよう
な耐電圧が低い問題はない。また、本発明に使用される
窒化珪素基板材料の誘電率は6〜8であり、アルミナ基
板の9〜10、窒化アルミニウム基板の8〜9、炭化珪素
基板の40に比較すると小さい。この為、高速信号、高周
波数信号の伝播の際問題となる伝播遅延時間が小さくな
り信号の高速伝播に適する。
[Electrical Characteristics] The electrical insulating property is very excellent, and there is no problem of low withstand voltage as in a silicon carbide substrate. Further, the dielectric constant of the silicon nitride substrate material used in the present invention is 6 to 8, which is smaller than that of the alumina substrate of 9 to 10, the aluminum nitride substrate of 8 to 9 and the silicon carbide substrate of 40. Therefore, the propagation delay time, which is a problem when propagating a high-speed signal or a high-frequency signal, becomes small, which is suitable for high-speed signal propagation.

【0024】以上述べたように、本発明で得られる配線
基板は、従来のアルミナ基板は勿論のこと、窒化アルミ
ニウムや炭化珪素基板と比較しても優れた特性を有して
いる。
As described above, the wiring board obtained by the present invention has excellent characteristics not only in the conventional alumina substrate but also in the aluminum nitride and silicon carbide substrates.

【0025】[0025]

【実施例】以下本発明方法を具体的に説明する。図1〜
図2はそれぞれ本発明で得られる配線基板の断面図であ
る。図1〜図3に示す実施例では、グリーンシートによ
り形成される窒化珪素絶縁体層1とタングステンよりな
る金属導体2が内部配線回路を形成している。外部端子
としては、金属ピン3が基板表面の導体部分にAgろう4
により接続されている。
EXAMPLES The method of the present invention will be specifically described below. Figure 1
FIG. 2 is a sectional view of a wiring board obtained by the present invention. In the embodiment shown in FIGS. 1 to 3, the silicon nitride insulator layer 1 formed of a green sheet and the metal conductor 2 made of tungsten form an internal wiring circuit. As an external terminal, the metal pin 3 is Ag solder 4 on the conductor part on the substrate surface.
Connected by.

【0026】また、図1に示す例ではその他の表面導体
はNiメッキ5およびAuメッキ6がされており、半導体チ
ップ7のダイボンドやワイヤーボンドがボンディングワ
イヤー8により、さらに、図2に示す例では、表面導体
としてCr/Cuスパッタ層9が設けられており、図3に示
す例では、厚膜回路基板としてAg系、Au系またはCu系厚
膜導体10と抵抗体11とが設けられている。さらにまた、
図4に示す例では、窒化珪素絶縁体層21の内部に金属導
体配線を有し、搭載した半導体チップ22と外部回路との
接続端子用に多数の金属ピン23を配列したピングリッド
アレータイプのセラミックパッケージを形成している。
Further, in the example shown in FIG. 1, the other surface conductors are plated with Ni 5 and Au 6, and the die bond and wire bond of the semiconductor chip 7 are bonded by the bonding wire 8, and in the example shown in FIG. A Cr / Cu sputter layer 9 is provided as a surface conductor, and in the example shown in FIG. 3, an Ag-based, Au-based or Cu-based thick film conductor 10 and a resistor 11 are provided as a thick film circuit board. . Furthermore,
In the example shown in FIG. 4, a silicon nitride insulator layer 21 has metal conductor wiring inside, and a large number of metal pins 23 are arranged for connecting terminals of the mounted semiconductor chip 22 and an external circuit. Forming a ceramic package.

【0027】図5および図6はそれぞれ本発明の配線基
板のうち複合型の配線基板の一例を示す断面図である。
図5に示す例では、窒化珪素絶縁体層1とこの中に設け
たタングステンよりなる金属導体2とからなる配線基板
上に、低温焼成基板用のコージェライト系セラミック31
中に銅よりなる金属導体32を配してなる配線基板を設
け、複合構造の配線基板を構成した例を示している。ま
た、半導体チップ7はボンディングワイヤ8を介して金
属導体32と接続し、キャップ33により半導体チップ7を
保護し、さらに金属リード34により外部素子との接続を
行なっている。
5 and 6 are sectional views showing an example of a composite type wiring board among the wiring boards of the present invention.
In the example shown in FIG. 5, a cordierite ceramic 31 for a low temperature firing substrate is formed on a wiring substrate composed of a silicon nitride insulator layer 1 and a metal conductor 2 made of tungsten provided therein.
An example is shown in which a wiring board having a metal conductor 32 made of copper arranged therein is provided to form a wiring board having a composite structure. The semiconductor chip 7 is connected to the metal conductor 32 via the bonding wire 8, the cap 33 protects the semiconductor chip 7, and the metal lead 34 connects to the external element.

【0028】図6に示す例では、図5に示す例と同様窒
化珪素絶縁体層1と金属導体2とからなる配線基板上
に、ポリイミド系樹脂からなる基板41中に金薄膜導体か
らなる金属導体42を配してなる配線基板を設け、複合構
造の配線基板を構成している。
In the example shown in FIG. 6, similar to the example shown in FIG. 5, on the wiring substrate composed of the silicon nitride insulator layer 1 and the metal conductor 2, the metal composed of the gold thin film conductor is formed in the substrate 41 composed of the polyimide resin. A wiring board having conductors 42 is provided to form a wiring board having a composite structure.

【0029】以下その製造方法を述べる。 実施例1 所定量の窒化珪素粉末、酸化イットリウム粉末に加えて
アルミナ 0.2wt%からなる混合粉末、アクリル系有機バ
インダー、可塑剤、トルエンおよびアルコール系の溶剤
を樹脂性ポットおよび窒化珪素ボールで良く混合しスラ
リーとした。さらに、ドクターブレード法により 0.1mm
〜1.0 mm厚みのグリーンテープを作製した。
The manufacturing method will be described below. Example 1 In addition to a predetermined amount of silicon nitride powder and yttrium oxide powder, a mixed powder of 0.2 wt% alumina, an acrylic organic binder, a plasticizer, toluene and an alcohol solvent are well mixed in a resin pot and a silicon nitride ball. Made into a slurry. Furthermore, 0.1mm by doctor blade method
A green tape having a thickness of 1.0 mm was prepared.

【0030】タングステン粉末、アクリル系有機バイン
ダーおよびテルピネオール系の有機溶剤を3本ローラー
により良く混練し印刷用の導体ペーストにした。これら
のペーストを使用して、グリーンテープ上に導体配線パ
ターンやアース層を印刷した。これらの導体パターンが
印刷されたグリーンテープを、所定の順番で重ねた後、
100℃、100 kg/cm2 の条件で積層一体化した。各導体
層の接続は、グリーンテープにパンチング等により形成
したスルーホールに導体ペーストを充填して実現した。
Tungsten powder, an acrylic organic binder, and a terpineol-based organic solvent were well kneaded with a three-roller to obtain a conductor paste for printing. Using these pastes, a conductor wiring pattern and a ground layer were printed on the green tape. After stacking the green tapes on which these conductor patterns are printed in a predetermined order,
The layers were integrated under the conditions of 100 ° C and 100 kg / cm 2 . The connection of each conductor layer was realized by filling a through hole formed in a green tape by punching or the like with a conductor paste.

【0031】窒素雰囲気9.5 気圧で1850℃を4時間保持
して焼成した。その後、表面導体にニッケルメッキを行
い、さらにAgろうを使用して金属ピンを接着した。最後
に表面導体および金属ピンに金メッキを行った。この結
果、図1に示すような配線基板が実現できた。
Firing was carried out by holding at 1850 ° C. for 4 hours in a nitrogen atmosphere of 9.5 atm. After that, the surface conductor was plated with nickel, and the metal pins were adhered using Ag solder. Finally, the surface conductor and the metal pin were plated with gold. As a result, a wiring board as shown in FIG. 1 was realized.

【0032】 実施例2 実施例1と同様の方法により焼成基板を得た。ただし、
金属端子との接続部分を除いて表面の導体パターンは形
成しなかった。表面導体にニッケルメッキを行い。さら
にAgろうを使用して金属ピンを接着した。その後、金属
ピンがある面と反対側の面を研磨加工した。この研磨面
にCr/Cu薄膜をスパッタにより形成し、フォトリソグラ
フィーの技術によりパターンに形成した。ピンおよび薄
膜パターンにNiおよび金メッキを行った。この結果、図
2に示すような配線基板が実現できた。
Example 2 A fired substrate was obtained by the same method as in Example 1. However,
The conductor pattern on the surface was not formed except for the connection portion with the metal terminal. Nickel plating is applied to the surface conductor. In addition, Ag brazing was used to bond the metal pins. Then, the surface opposite to the surface having the metal pin was polished. A Cr / Cu thin film was formed on this polished surface by sputtering, and a pattern was formed by a photolithography technique. The pins and thin film pattern were plated with Ni and gold. As a result, a wiring board as shown in FIG. 2 was realized.

【0033】 実施例3 実施例1と同様のグリーンテープを使用して、積層し所
定の厚みに成るようにした。同様に焼成してセラミック
基板を得た。両面を研磨後、Ag系、Au系、Cu系の厚膜導
体ペーストを通常のスクリーン印刷法によりパターン印
刷した。それぞれの焼成雰囲気、焼成温度で焼成した。
この結果、図3に示すような配線基板が実現できた。
Example 3 The same green tape as in Example 1 was used and laminated so as to have a predetermined thickness. It was similarly fired to obtain a ceramic substrate. After polishing both surfaces, a thick film conductor paste of Ag series, Au series, or Cu series was pattern-printed by a usual screen printing method. Firing was performed in each firing atmosphere and firing temperature.
As a result, a wiring board as shown in FIG. 3 was realized.

【0034】 実施例4 実施例1と同様の方法で図4に示した 120ピンのピング
リッドアレー(PGA) タイプのパッケージを作成した。焼
結助剤、及び焼成条件は表1に示す通りである。尚、雰
囲気は9.5 気圧の窒素雰囲気である。作成されたパッケ
ージ中の窒化珪素粒子の数を直線距離10μm あたりに存
在する窒化珪素粒子の数から求めた。粒子の個数は以下
のようにして測定した。まず、走査型電子顕微鏡にて、
窒化珪素体の任意断面における微構造をSi3N4 粒子を個
々に識別できる倍率で写真に撮った。次に、写真に直線
を描き、直線が横切る粒子の個数を計測した。粒子の数
が1000個を越えるまで視野を変えて直線を引き、1000個
の粒子を計測するのに要した直線の総距離L(μm)から
(1000/L)×10により10μm 当りの個数に換算した。
例えば、1000個の粒子を計測するのに直線 500μm を要
したとすれば、10μm 当りの個数は20個となる。窒化珪
素は No.6を除いてβ相のみであった。 No.6には若干
のα相が検出された。Al2O3 量は螢光X線分析法により
測定した。これらの測定値を表1に示す。表1中には同
一の条件で焼結された窒化珪素多結晶体について、熱伝
導率をレーザーフラッシュ法により測定した結果も示し
てある。また、熱膨脹係数はどの焼結体においても3〜
4ppm /℃であった。このパッケージに実際に半導体ラ
ップを実装して発熱させ風速4m/s で冷却し熱抵抗を
測定し、表1に示すパッケージ熱抵抗を得た。
Example 4 In the same manner as in Example 1, a 120-pin pin grid array (PGA) type package shown in FIG. 4 was prepared. The sintering aid and firing conditions are as shown in Table 1. The atmosphere is a nitrogen atmosphere of 9.5 atm. The number of silicon nitride particles in the formed package was calculated from the number of silicon nitride particles present per linear distance of 10 μm. The number of particles was measured as follows. First, with a scanning electron microscope,
The microstructure of an arbitrary cross section of the silicon nitride body was photographed at a magnification that allows individual identification of the Si 3 N 4 particles. Next, a straight line was drawn on the photograph, and the number of particles crossing the straight line was counted. Change the field of view until the number of particles exceeds 1000 and draw a straight line. From the total distance L (μm) of the straight line required to measure 1000 particles
It was converted to the number per 10 μm by (1000 / L) × 10.
For example, if a straight line of 500 μm was required to measure 1000 particles, the number of particles per 10 μm would be 20. Except for No. 6, silicon nitride was only β phase. In No. 6, some α phase was detected. The amount of Al 2 O 3 was measured by a fluorescent X-ray analysis method. Table 1 shows these measured values. Table 1 also shows the results of measuring the thermal conductivity of the silicon nitride polycrystals sintered under the same conditions by the laser flash method. Moreover, the coefficient of thermal expansion is 3 to 3 for any sintered body.
It was 4 ppm / ° C. A semiconductor wrap was actually mounted on this package to generate heat and cooled at a wind speed of 4 m / s, and the thermal resistance was measured to obtain the package thermal resistance shown in Table 1.

【0035】比較のため、アルミナを放熱基板として同
様の方法で測定した熱抵抗は22℃/w であった。
For comparison, the thermal resistance measured by the same method using alumina as a heat dissipation substrate was 22 ° C./w.

【0036】[0036]

【表1】 [Table 1]

【0037】表1から、窒化珪素の放熱基板はアルミナ
と比較して放熱特性が優れるのがわかる。また、窒化珪
素においても、直線距離10μm あたりに存在する窒化珪
素粒子の数が20個以下で、好ましくは含有するAl2O3
が 0.3wt%以下であればさらに優れるのがわかる。この
理由は、直線距離10μm あたりに存在する窒化珪素粒子
の数が20個以上であると、粒界での熱の散乱が大きくな
って熱伝導度が低くなるためと考えられ、 Al2O3量が
0.3wt%以上であると、窒化珪素粒子内に固溶し、窒化
珪素粒子の熱伝導度を低下させる場合があるためと考え
られる。
From Table 1, it can be seen that the heat dissipation substrate made of silicon nitride is superior in heat dissipation characteristics to alumina. Further, in the case of silicon nitride as well, it is understood that the number of silicon nitride particles present per linear distance of 10 μm is 20 or less, and preferably the amount of Al 2 O 3 contained is 0.3 wt% or less, which is further excellent. The reason is that when the number of silicon nitride particles present per linear distance 10μm is 20 or more, the thermal conductivity increases the heat scattering at the grain boundaries is considered to be due to lower, Al 2 O 3 Quantity
It is considered that when it is 0.3 wt% or more, it may be solid-dissolved in the silicon nitride particles to reduce the thermal conductivity of the silicon nitride particles.

【0038】 実施例5 コージェライト系組成のガラス粉末90重量%とアルミナ
粉末10重量%からなる低温焼成基板用のセラミックス組
成混合粉末、アクリル系バインダー、可塑剤、トルエン
およびアルコール系の溶剤をアルミナポットおよびアル
ミナボールで良く混合しスラリーとした。さらに、ドク
ターブレート法により0.3 mm厚みのグリーンテープを作
製した。
Example 5 A ceramic composition mixed powder for a low temperature fired substrate consisting of 90% by weight of glass powder having a cordierite composition and 10% by weight of alumina powder, an acrylic binder, a plasticizer, toluene and an alcohol solvent were added to an alumina pot. And well mixed with alumina balls to make a slurry. Further, a green tape having a thickness of 0.3 mm was prepared by the doctor blade method.

【0039】次に、Cu系粉末、アクリル系有機バインダ
ー、およびテルピネオール系の有機溶剤を3本ローラー
により良く混練し印刷用の導体ペーストにした。このペ
ーストを使用し、グリーンテープ上に導体配線パターン
を印刷した。これらの導体パターンが印刷されたグリー
ンテープを、所定の順番で重ねた後、実施例1と同様の
方法で作製した窒化珪素配線基板上に置き、100 ℃、10
0kg/cm2 の条件で圧力をかけ積層一体化した。各導体層
の接続は、グリーンテープにパンチング等により形成し
たスルーホールに導体ペーストを充填して実現した。そ
の後、全体を窒素雰囲気、950 ℃で焼成した。
Next, Cu-based powder, acrylic organic binder, and terpineol-based organic solvent were well kneaded by a three-roller to obtain a conductive paste for printing. Using this paste, a conductor wiring pattern was printed on the green tape. The green tapes on which these conductor patterns were printed were superposed in a predetermined order and then placed on a silicon nitride wiring board manufactured by the same method as in Example 1, and the temperature was kept at 100 ° C. for 10 minutes.
Pressure was applied under the condition of 0 kg / cm 2 to laminate and integrate. The connection of each conductor layer was realized by filling a through hole formed in a green tape by punching or the like with a conductor paste. Then, the whole was baked at 950 ° C. in a nitrogen atmosphere.

【0040】その結果、図5に示したように、窒化珪素
基板上に低温焼成配線基板が接合した複合構造のパッケ
ージを得ることができた。なお、金属リードはAu-Sn 合
金ろうにより接合した。
As a result, as shown in FIG. 5, it was possible to obtain a package having a composite structure in which a low temperature firing wiring substrate was bonded onto a silicon nitride substrate. The metal leads were joined with Au-Sn alloy solder.

【0041】 実施例6 実施例2と同様の方法で得た窒化珪素配線基板上に、感
光性ポリイミド系樹脂とAuスパッタ薄膜を使用し、フォ
トリソグラフィーにより導体パターンと層間導体パター
ンを接続するビアホールを形成し多層配線回路を得た。
Example 6 A via hole for connecting a conductor pattern and an interlayer conductor pattern was formed by photolithography using a photosensitive polyimide resin and an Au sputtered thin film on a silicon nitride wiring substrate obtained by the same method as in Example 2. A multi-layered wiring circuit was obtained.

【0042】その結果、図6に示したように、窒化珪素
基板上にポリイミドからなる基板接合した複合構造のパ
ッケージを得ることができた。
As a result, as shown in FIG. 6, a package having a composite structure in which a substrate made of polyimide was bonded onto a silicon nitride substrate could be obtained.

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
によれば、多結晶体の結晶粒子を直線距離10μm 中に20
個以下とし、好ましくは基板として使用する窒化珪素に
含まれるアルミニウム量をアルミナ換算で 0.3wt%以下
とすることにより、熱放散性が高く、耐環境性が良いこ
とから信頼性に優れ、また強度、靱性の高い従来にない
優れたセラミック配線基板を得ることができる。
As is apparent from the above description, according to the present invention, the crystal grains of the polycrystal are formed in a linear distance of 10 μm in an amount of 20
The number of aluminum is less than or equal to, preferably 0.3 wt% or less of aluminum contained in silicon nitride used as the substrate in terms of alumina, so that the heat dissipation is high and the environment resistance is good, so the reliability is excellent and the strength is high. Thus, it is possible to obtain an excellent ceramic wiring board having high toughness, which has never been obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で得られる配線基板の一例の断面図であ
る。
FIG. 1 is a cross-sectional view of an example of a wiring board obtained by the present invention.

【図2】本発明で得られる配線基板の他の例の断面図で
ある。
FIG. 2 is a cross-sectional view of another example of a wiring board obtained by the present invention.

【図3】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 3 is a cross-sectional view of still another example of the wiring board obtained by the present invention.

【図4】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 4 is a cross-sectional view of still another example of the wiring board obtained by the present invention.

【図5】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 5 is a cross-sectional view of still another example of the wiring board obtained by the present invention.

【図6】本発明で得られる配線基板のさらに他の例の断
面図である。
FIG. 6 is a cross-sectional view of still another example of the wiring board obtained by the present invention.

【符号の説明】[Explanation of symbols]

1 窒化珪素絶縁体層2 金属導体 3 金属ピン 4 Agろう 5 Niメッキ 6 Auメッキ 7 半導体チップ 8 ボンディングワイヤー 9 Cr/Cuスパッタ層 10 厚膜導体 11 抵抗体 21 窒化珪素絶縁体層 22 半導体チップ 23 外部端子用ピン 31 コージェライト系セラミック 32 金属導体 33 キャップ 34 金属リード 41 ポリイミド系樹脂からなる基板 42 金属導体 1 Silicon Nitride Insulation Layer 2 Metal Conductor 3 Metal Pin 4 Ag Solder 5 Ni Plating 6 Au Plating 7 Semiconductor Chip 8 Bonding Wire 9 Cr / Cu Sputtering Layer 10 Thick Film Conductor 11 Resistor 21 Silicon Nitride Insulating Layer 22 Semiconductor Chip 23 External terminal pin 31 Cordierite ceramic 32 Metal conductor 33 Cap 34 Metal lead 41 Substrate made of polyimide resin 42 Metal conductor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/58 102 B (72)発明者 相馬 隆雄 愛知県西加茂郡三好町大字福谷字吉良戸36 番地の1 (56)参考文献 特開 平4−125952(JP,A) 特開 昭60−161641(JP,A) 特開 昭62−73800(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C04B 35/58 102 B (72) Inventor Takao Soma 36 Yoshira, Fukutani, Yoshiyoshi, Nishikamo-gun, Aichi Prefecture Address 1 (56) Reference JP-A-4-125952 (JP, A) JP-A-60-161641 (JP, A) JP-A-62-73800 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板として使用するセラミックが、窒化
珪素多結晶体であって、該多結晶体の結晶粒子が直線距
離10μm 中に20個以下含まれていることを特徴とするセ
ラミック配線基板。
1. A ceramic wiring substrate, wherein the ceramic used as the substrate is a silicon nitride polycrystal, and 20 or less crystal grains of the polycrystal are contained in a linear distance of 10 μm.
【請求項2】 前記セラミック配線基板が、アルミナ換
算でアルミニウムを0.3重量%以下含む請求項1記載の
セラミック配線基板。
2. The ceramic wiring board according to claim 1, wherein the ceramic wiring board contains 0.3% by weight or less of aluminum in terms of alumina.
【請求項3】 前記窒化珪素多結晶体からなる基板が、
さらに前記窒化珪素多結晶体とは異なる材料からなる配
線基板を有する複合構造からなる請求項1または2記載
のセラミック配線基板。
3. A substrate made of the silicon nitride polycrystal,
The ceramic wiring board according to claim 1 or 2, further comprising a composite structure having a wiring board made of a material different from that of the silicon nitride polycrystal.
JP3055579A 1990-09-18 1991-02-28 Ceramic wiring board Expired - Lifetime JPH0727995B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/760,145 US5294750A (en) 1990-09-18 1991-09-16 Ceramic packages and ceramic wiring board
DE1991615408 DE69115408T2 (en) 1990-09-18 1991-09-17 Ceramic packings and ceramic circuit boards
EP19910308469 EP0476971B1 (en) 1990-09-18 1991-09-17 Ceramic packages and ceramic wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24602290 1990-09-18
JP2-246022 1990-09-18

Publications (2)

Publication Number Publication Date
JPH04212441A JPH04212441A (en) 1992-08-04
JPH0727995B2 true JPH0727995B2 (en) 1995-03-29

Family

ID=17142286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055579A Expired - Lifetime JPH0727995B2 (en) 1990-09-18 1991-02-28 Ceramic wiring board

Country Status (1)

Country Link
JP (1) JPH0727995B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677748B2 (en) * 1993-01-19 1997-11-17 株式会社東芝 Ceramics copper circuit board
JP3219545B2 (en) * 1993-06-16 2001-10-15 電気化学工業株式会社 Method for manufacturing aluminum oxide substrate having copper circuit
CN1139117C (en) * 1995-03-20 2004-02-18 株式会社东芝 Silicon nitride circuit substrate
KR100261793B1 (en) * 1995-09-29 2000-07-15 니시무로 타이죠 Circuit board with high strength and high reliability and process for preparing the same
JP3537241B2 (en) * 1995-12-07 2004-06-14 電気化学工業株式会社 Method for producing silicon nitride sintered body
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride-base heat radiating member and its production
JP4571728B2 (en) * 1999-06-23 2010-10-27 日本碍子株式会社 Silicon nitride sintered body and manufacturing method thereof
JP5755170B2 (en) * 2012-03-29 2015-07-29 京セラ株式会社 Silicon nitride sintered body, circuit board and electronic device using the same
JP6724481B2 (en) * 2016-03-30 2020-07-15 日立金属株式会社 Ceramic substrate and manufacturing method thereof
WO2018179538A1 (en) * 2017-03-29 2018-10-04 株式会社村田製作所 Power module and method for manufacturing power module

Also Published As

Publication number Publication date
JPH04212441A (en) 1992-08-04

Similar Documents

Publication Publication Date Title
US5294750A (en) Ceramic packages and ceramic wiring board
JP5665657B2 (en) Low-temperature fired ceramic sintered body, method for producing the same, and wiring board
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP3121990B2 (en) Glass-ceramic substrate
JP5057620B2 (en) Low-temperature fired ceramic sintered body and wiring board
JPH0727995B2 (en) Ceramic wiring board
JP3517062B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JP4422453B2 (en) Wiring board
JP3493310B2 (en) Multilayer wiring board
JP2002134885A (en) Circuit board, manufacturing method thereof, electronic device mounting body, and green sheet
JP3366479B2 (en) Metallized composition and method for producing wiring board
JPH0810735B2 (en) Ceramic package
JP3420424B2 (en) Wiring board
JP3301914B2 (en) Wiring board
JP4575614B2 (en) Composite ceramic substrate
JP2580439B2 (en) High dielectric constant alumina sintered body and method for producing the same
JP3241945B2 (en) Glass ceramic multilayer circuit board and method of manufacturing the same
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JP3450111B2 (en) Metallized composition and wiring board using the same
JP2661259B2 (en) Manufacturing method of aluminum nitride substrate
JPH0555718A (en) Circuit board
JPH1117344A (en) Multilayer wiring board
JPH0633206B2 (en) Metallized composition
WO2018234458A1 (en) Logic power module with a thick-film paste mediated substrate bonded with metal or metal hybrid foils
JPH09255457A (en) Metallizing composition and wiring substrate using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 16

EXPY Cancellation because of completion of term