JP5057620B2 - Low-temperature fired ceramic sintered body and wiring board - Google Patents
Low-temperature fired ceramic sintered body and wiring board Download PDFInfo
- Publication number
- JP5057620B2 JP5057620B2 JP2001257775A JP2001257775A JP5057620B2 JP 5057620 B2 JP5057620 B2 JP 5057620B2 JP 2001257775 A JP2001257775 A JP 2001257775A JP 2001257775 A JP2001257775 A JP 2001257775A JP 5057620 B2 JP5057620 B2 JP 5057620B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- low
- ceramic sintered
- temperature fired
- fired ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Inorganic Insulating Materials (AREA)
- Ceramic Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体素子収納用パッケージ、多層配線基板等に使用される絶縁基板に最適な低温焼成セラミック焼結体およびその製造方法、ならびに配線基板に関する。
【0002】
【従来技術】
近年における情報通信技術の急速な発展は、半導体素子等の高速化、大型化をもたらし、これに伴って、このような素子を備えた配線基板では、信号の伝送損失を低減するために、配線層の低抵抗化が求められている。そこで、1000℃以下での焼成によって緻密化でき、銀、銅または金等の低抵抗金属を主成分とする配線層との同時焼成が可能な低温焼成セラミックスを絶縁基板とする配線基板が提案されている。
【0003】
例えば、特開平2−141458号公報には、SiO2、Al2O3、CaO、MgOおよびB2O3を含有するガラス粉末に対して、Al2O3粉末とセルシアン(BaAl2Si2O8)粉末を添加したガラスセラミックスが開示されており、このようなガラスセラミックスを絶縁基板材料として使用すれば、銅を配線層として非酸化性雰囲気中で焼成する場合でも、脱バインダ性を損なうことなく炭素残量の少ない配線基板が得られることが記載されている。
【0004】
また、特開平6−305770号公報には、SiO2、B2O3、CaO、BaO、Al2O3、アルカリ金属(Li、Na、K)酸化物、MgO、ZnO、TiO2およびZrO2を含有するガラス粉末に対して、Al2O3粉末とセルシアン粉末およびアノーサイト粉末を添加したガラスセラミックスが開示されており、このようなガラスセラミックスは、非酸化性雰囲気中でも焼成でき、このガラスセラミックスを用いることにより、絶縁基板の低誘電率化が可能となり、且つその強度を2700kg/cm2まで高めることができることが記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述したような従来のガラスセラミックから得られる焼結体は、アルミナ質焼結体等の従来の絶縁基板材料に比べて、機械的強度の点で未だ不満足であり、例えば2700kg/cm2よりも高い強度の絶縁基板を得ることができない。また、熱伝導率が低いという欠点も有している。即ち、半導体素子の大型化や高速化は、半導体素子から発生する発熱量の増大をもたらし、この結果、熱伝導率の低いガラスセラミック焼結体を絶縁基板とする配線基板では、熱抵抗が増大したり、機械的信頼性が低下するという問題を生じる。
【0006】
更に、従来のガラスセラミック焼結体はヤング率が低く、例えば、該焼結体を絶縁基板とする半導体素子収納用パッケージでは、金属製のヒートシンクやヒートスプレッダーなどの放熱板、蓋体を用いての気密封止のために必要なリッド、シールリング等の封止用金具、あるいは、ポッティング剤やアンダーフィル剤などの封止樹脂等を、絶縁基板表面に接着すると、絶縁基板自体が変形してしまい、半導体素子(チップ)の実装(一次実装)部分に歪が発生したり、最悪の場合には、実装部の破壊やチップの破壊を引き起こす恐れがあった。また、このような絶縁基板を備えた配線基板をプリント基板等に実装(二次実装)した場合、絶縁基板とプリント基板との熱膨張差に起因し、かつ絶縁基板のヤング率が低いことによって、絶縁基板に大きな反りが発生し、端子部にクラックや剥離が生じて電気的な接続信頼性が低下するという問題があった。
【0007】
従って、本発明は、銀、銅、金等の低抵抗金属との同時焼成が可能であり、高い強度及び高いヤング率を有する低温焼成セラミック焼結体およびその製造方法、並びにかかる焼結体を用いた配線基板を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の低温焼成セラミック焼結体は、結晶相として、(a)ガーナイト結晶相および/またはスピネル結晶相、(b)アスペクト比が3以上の針状晶を含むセルシアン結晶相、(c)AlN、Si3N4、SiC、Al2O3、ZrO2、3Al2O3・2SiO2及びMg2SiO4の群から選ばれる少なくとも1種の結晶相、及び(d)YAlO 3 、Y 4 Al 2 O 9 、BaY 2 O 4 、Ba 4 Y 2 O 7 ,Y 4 Zr 3 O 12 、Y 6 ZrO 11 の群から選ばれる少なくとも1種であるY(イットリウム)含有結晶相を含有しており、且つ開気孔率が0.3%以下であることを特徴とするものであり、かかる結晶相を存在せしめることによって、銀、銅、金等の低抵抗金属との同時焼成が可能であり、高い強度、ヤング率、靱性を有する焼結体となる。
【0009】
かかる焼結体は、ガラス粉末とセラミック粉末との混合粉末から成る成形体を焼成することにより結晶相の制御を容易に行うことができ、特に前記結晶相(a)および(b)が、前記ガラス粉末から析出したものであることが望ましい。
【0010】
また、この焼結体は、PbO含有量およびA2O(A:アルカリ金属)含有量は、耐環境性、耐薬品性、吸湿性等の点で、それぞれ1重量%以下に抑制されていることが望ましい。
【0011】
さらに、この焼結体は、上記の構成に伴い、2W/mK以上の熱伝導率、280MPa以上の抗折強度、100GPa以上のヤング率、1.5MPa・m1/2以上の破壊靭性を有することができる。
【0012】
また、前記(b)セルシアン結晶相は、六方晶を含み且つX線回折測定において、Ihex/Imon(式中、Ihexは、六方晶のメインピーク強度を示し、Imonは、単斜晶のメインピーク強度を示す。)で表されるメインピーク強度比が3以上であるX線回折パターンを示すことによって、針状晶である六方晶を多く析出させて、強度、靱性を向上させることができる。
【0013】
さらに、この焼結体中には、(d)Y(イットリウム)含有結晶相を含むことによって、さらに強度、ヤング率を向上させることができる。(d)Y(イットリウム)含有結晶相としては、YAlO3、Y4Al2O9、BaY2O4、Ba4Y2O7、Y4Zr3O12、Y6ZrO11の群から選ばれる少なくとも1種が好適であり、このY(イットリウム)含有結晶相が、ガラスから析出したものであることが望ましい。
【0014】
さらに、この焼結体中の非晶質相が50重量%以下、特に非晶質相を実質上含有していないことが望ましい。なお、非晶質相を含む場合、非晶質相中にはY(イットリウム)を含有することによって非晶質相のヤング率を向上させ焼結体の強度、ヤング率を向上させることができる。
【0020】
また、本発明の配線基板は、上記の低温焼成セラミック焼結体を絶縁基板とし、その表面および/または内部にCu、Ag、Au、Alの群から選ばれる少なくとも1種を含有する導体層を形成してなることを特徴とするものであり、前記導体層は、前記混合粉末から成る成形体との同時焼成によって形成することができる。また、この配線基板には薄膜形成法によって前記セラミック焼結体表面に導体層を形成することもできる。
【0021】
【発明の実施の形態】
本発明の低温焼成セラミック焼結体は、図1に示すように、少なくとも3種の結晶相(a)、(b)及び(c)を有するものであり、これら結晶相の粒界に、通常、ガラス粉末に由来する非晶質相(残留ガラス相)Gを有する。
結晶相(a):
結晶相(a)は、ガーナイト結晶相および/またはスピネル結晶相であり、理想的には、ZnAl2O4、MgAl2O4で表される化学組成を有する。このような結晶相(a)は、単結晶としてのヤング率が200GPa以上を示す。従って、このような結晶相を析出させることにより、焼結体のヤング率を高めることができる。
【0022】
また、この結晶相(a)は粒状結晶であり、特にその平均粒径は1μm以下であることが好ましい。このような微結晶を焼結体中に分散させることにより、焼結体のヤング率を向上させるとともに、抗折強度を高めることができる。
【0023】
本発明において、上述した結晶相(a)は、焼成によって原料ガラス粉末から析出することが好ましく、これにより、ガラスの結晶化度が高められ、後述する非晶質相(残留ガラス相)Gの含有量が少なくなり、焼結体の開気孔率を低下させ、且つ焼結体のヤング率を高めることができる。
【0024】
また、上記結晶相(a)には、ZnAl2O4とMgAl2O4が固溶し、(Zn,Mg)Al2O4の形態のガーナイト結晶相を形成していてもよい。即ち、原料ガラス粉末中に含まれるMgO及び/又はZnOを結晶相(a)中に固溶させることによっても、ガラスの結晶化度を高めることができ、上記と同様に、焼結体の開気孔率を低下させ、且つ焼結体のヤング率を高めることができ、また上記のスピネル結晶相は、ガーナイト結晶相と同様の特性を有しているため、このようなスピネル結晶相を析出させることによっても、ガーナイト結晶相を析出させた場合と同様の効果が発現する。
結晶相(b):
結晶相(b)は、セルシアン結晶相であり、理想的にはBaAl2Si2O8で表される化学組成を有する。
【0025】
本発明においては、このセルシアン結晶相として、アスペクト比が3以上、好ましくは4以上、さらに好ましくは5以上の針状晶(図1において13aで示す)を含有していることが重要であり、このような針状晶13aを析出させることにより、焼結体の強度および熱伝導率を向上させることができ、また焼結体の誘電率を低下させることができる。尚、針状晶のアスペクト比とは、焼結体の断面SEMおよびEPMA分析によって観察されるセルシアン(BaAl2Si2O8)結晶相のうち、アスペクト比(長径/短径比)が大きいものから10個を選択したときの平均値を指し、特に針状晶13aは、長径1〜10μm、短径0.1〜2μm程度であることが望ましく、特に、クラックの進展を抑制して抗折強度を向上する点で、針状晶13aがランダムに分散したものであることが望ましい。また、セルシアン結晶相(b)としては、針状晶13a以外に、粒状晶(図1において13bで示す)を含んでいてもよい。
【0026】
また、本発明においては、セルシアン結晶相(b)としては、X線回折測定において下記式:
Ihex/Imon
式中、Ihexは、六方晶のメインピーク強度を示し、
Imonは、単斜晶のメインピーク強度を示す、
で表されるメインピーク強度比が、3以上、好ましくは5以上、最も好適には7以上のX線回折パターンを示すことが、焼結体の破壊靭性、抗折強度、熱伝導率を向上できる点で望ましい。即ち、六方晶は、上記の針状晶13aを形成し、単斜晶は、上記の粒状晶13bを形成する。従って、メインピーク強度比が上記範囲内であるときは、針状晶13aが多く析出しており、この結果、焼結体の上記特性が向上するわけである。
【0027】
尚、六方晶とは、JCPDSカード28−0124の結晶相を示し、単斜晶とは、同38−1450の結晶相を示す。
【0028】
また、六方晶及び単斜晶のメインピークとは、X線回折図において、これら結晶相の最も強度の高いピークを意味し、六方晶のメインピークは、d値が3.900のピークに対応し、単斜晶のメインピークは、d値が3.355のピークに対応する。従って、上記のピーク強度比は、I(d=3.900)/I(d=3.355)として算出される。
【0029】
更に、上述したセルシアン結晶相(b)も、結晶相(a)と同様、焼成によって原料ガラス粉末から析出することが好ましく、これにより、ガラスの結晶化度が高められ、非晶質相(残留ガラス相)Gの含有量を少なくし、焼結体の開気孔率を低下させ、且つ焼結体のヤング率を高めることができる。
結晶相(c):
また結晶相(c)は、ガラス粉末と混合されるセラミック粉末から析出するセラミック結晶相であり、特に、AlN、Si3N4、SiC、Al2O3、ZrO2、
3Al2O3・2SiO2及びMg2SiO4の群から選ばれる結晶相である。かかるセラミック結晶相(c)は、焼結体のヤング率を向上させると同時に、抗折強度を向上させるための成分である。この結晶相は、通常、粒状晶として存在するが、さらには板状晶であることが好ましく、これによって、さらに焼結体の抗折強度を向上させるとともに、熱伝導率も向上する。
【0030】
尚、かかるセラミック結晶相(c)は、上記の窒化物、炭化物、酸化物或いは複合酸化物の1種或いは2種以上から形成されるものであるが、強度や焼結性等の点で、少なくともAl2O3結晶相を含有していることが好ましい。
【0031】
また、上記のセラミック結晶相(c)は、焼結体中に、10〜80重量%、特に30〜75重量%、さらに40〜70重量%の量で含まれていることが望ましい。
結晶相(d):
本発明の低温焼成セラミック焼結体においては、上述した結晶相(a)〜(c)に加えて、結晶相(d)(図1においては省略されている)として、Y(イットリウム)含有結晶相を含有していることが、焼結体の強度を高める上で好適である。
【0032】
このようなY含有結晶としては、これに限定されるものではないが、YAlO3、Y4Al2O9、BaY2O4、Ba4Y2O7,Y4Zr3O12、Y6ZrO11等を例示することができ、これらは、1種単独で析出していてもよいし、また2種以上が析出していてもよい。更に、前述した結晶相(a)及び(b)と同様、このようなY含有結晶相も焼成によって原料ガラス粉末から析出することが望ましい。
その他の結晶相:
また、本発明の低温焼成セラミック焼結体の優れた特性が損なわれない限り、上述した各種の結晶相以外の他の結晶相、例えば、SiO2、CaAl2Si2O8、SrAl2Si2O8、Ca2MgSi2O7、Sr2MgSi2O7、Ba2MgSi2O7、ZnO、MgSiO3、Zn2SiO4、ZrSiO4、CaMgSi2O6、Zn2Al4Si5O18、CaSiO3、SrSiO3、BaSiO3等が存在していてもよい。例えば、このような他の結晶相は、総量で40重量%以下、好ましくは30重量%以下、最も好ましくは20重量%以下の範囲で焼結体中に含有していてもよい。
非晶質相:
また、本発明の焼結体は、ガラス粉末とセラミック粉末との混合粉末からなる成形体を焼成することにより得られるものである場合、通常、図1に示すように、非晶質相(残存ガラス相)Gを含有している。焼結体のヤング率を向上させるために、非晶質相Gは少ない方が望ましく、例えば、焼結体中のガラス含量は、50重量%以下、特に30重量%以下、さらに20重量%以下、さらには10重量%以下であることが好ましく、非晶質ガラス相Gは、実質上、焼結体中の存在しなくてもよい。なお、焼結体中の各結晶相および非晶質相の含有量は、焼結体のX線回折ピークからリートベルト法によって求められる。
焼結体組成:
本発明の低温焼成セラミック焼結体は、上述した結晶相(a)、(b)及び(c)を必須成分として含有し、必要により結晶相(d)が析出しており、析出した結晶相の種類に応じた化学組成を有している。
【0033】
例えば、Y含有結晶相(d)が析出していない焼結体の好適な化学組成は、以下の通りである。
【0034】
SiO2:2〜31.5重量%、特に4.5〜21重量%
Al2O3:11〜82重量%、特に32.1〜74.5重量%
ZnO+MgO:1.2〜22.5重量%、特に3〜14重量%
B2O3:1〜27重量%、特に3〜17.5重量%
BaO:2〜36重量%、特に6.3〜35重量%
CaOおよびSrOの群から選ばれる少なくとも1種:0〜18重量%、特に0.2〜7重量%
ZrO2、SnO2およびTiO2の群から選ばれる少なくとも1種:0〜9重量%、特に0.2〜3.5重量%
また、Y含有結晶相(d)が析出している焼結体の好適な化学組成は、以下の通りである。
【0035】
SiO2:2〜38重量%、特に4.5〜25.5重量%
Al2O3:6〜86重量%、特に17.6〜77.5重量%
BaO:2〜38重量%、特に6〜29.8重量%
Y2O3:0.2〜19重量%、特に0.9〜12.8重量%
ZnO+MgO:1.2〜23.8重量%、特に2.4〜12.8重量%
B2O3:0〜28.5重量%、特に0〜12.3重量%
CaOおよびSrOの群から選ばれる少なくとも1種:0〜19重量%、特に0〜12.8重量%
ZrO2、SnO2およびTiO2の群から選ばれる少なくとも1種:0〜9.5重量%、特に0〜5.1重量%
また、焼結体中には、ガラス粉末やセラミック粉末中に含まれる不純物成分に関連して、PbOやA2O(A:Li、Na、K、Rbのアルカリ金属)などの金属酸化物が含まれるが、耐環境性、耐薬品性、吸湿性等の点で、PbO及びA2Oの含有量は、それぞれ1重量%以下、特に0.1重量%以下に抑制されていることが好ましい。このような成分の含有量の調整は、用いるガラス粉末やセラミック粉末から不純物成分を除去することにより行なうことができる。
【0036】
上述した本発明の低温焼成セラミック焼結体は、結晶相(a)〜(c)が析出していることに関連して、開気孔率が0.3%以下、特に0.25%以下、更には0.2%以下と低く、極めて緻密であり、また熱伝導率が2W/mK以上、特に2.5W/mK以上、更には3W/mK以上と極めて高く、抗折強度は、280MPa以上、特に300MPa以上、更には320MPa以上であり、破壊靭性は、1.5MPa・m1/2以上、特に1.8MPa・m1/2以上、更には2.0MPa・m1/2以上であり、ヤング率は、100GPa以上、特に120GPa以上、さらには140GPa以上である。
低温焼成セラミック焼結体の製造方法
上述した本発明の低温焼成セラミック焼結体は、ガラス粉末とセラミック粉末とを混合して混合粉末を調製し、この混合粉末を適当なバインダを用いて所定形状に成形し、脱バインダの後に焼成することにより製造される。
ガラス粉末:
ガラス粉末としては、目的とする低温焼成セラミック焼結体の結晶構造に応じて、Y(イットリウム)成分を含有しないもの、或いはY成分を含有するものが使用される。
【0037】
Y(イットリウム)成分を含有しないガラス粉末は、前述したY含有結晶相(d)が析出していない低温焼成セラミック焼結体を製造するために使用されるものであり、その好適な組成は、以下の通りである。
【0038】
SiO2;10〜35重量%、特に15〜30重量%
Al2O3;1〜20重量%、特に3〜15重量%
MgO及び/又はZnO;6〜25重量%、特に10〜20重量%
B2O3;5〜30重量%、特に10〜25重量%
BaO;10〜40重量%、特に10〜25重量%
CaOおよびSrOの群から選ばれる少なくとも1種:0〜20重量%、特に1〜10重量%
ZrO2、SnO2およびTiO2の群から選ばれる少なくとも1種:0〜10重量%、特に1〜5重量%
即ち、Y(イットリウム)成分を含有しないガラス粉末において、SiO2、Al2O3、MgOおよび/またはZnO、BaO、B2O3の含有量が上記範囲を逸脱すると、焼結体の開気孔率が0.3%を越え、または上述した特定の結晶相を析出させることが困難となり、焼結体のヤング率が低下すると同時に、強度や熱伝導率も低下する傾向がある。上記各成分のうち、SiO2およびAl2O3の含有量が上記範囲よりも少ないと、ガラスの軟化点が低下して焼成時の脱バインダ性が悪くなり、逆に上記範囲よりも多いと、後述する1000℃以下の焼成にて焼結体の開気孔率が大きくなる傾向にある。また、MgOおよび/またはZnO、BaOおよびB2O3の含有量が上記範囲よりも少ないと、1000℃以下の焼成にて焼結体の開気孔率が大きくなり、また、後述するセラミック粉末(フィラー成分)の添加可能な量が減じて強度および熱伝導率が低下する。逆に多いと、ガラスの軟化点が低下して焼成時の脱バインダ性が悪くなるとともに、開気孔率が大きくなる傾向にある。
【0039】
また、ガラス原料中に任意成分として含まれるCaOやSrOは、ガラスの軟化挙動を制御する作用を有しており、しかも、CaAl2Si2O8結晶相、SrAl2Si2O8結晶相(特に針状晶)、Ca2MgSi2O7結晶相、Sr2MgSi2O7結晶相等の他の結晶相を、特に針状晶として、ガラス中から析出させる作用をも有している。したがって、このような成分を含有するガラス粉末を用いることは、焼結体の抗折強度や誘電率を制御する上で有利である。さらに、ZrO2、SnO2およびTiO2の群から選ばれる少なくとも1種は、上述した特定の結晶相(a)や(b)の析出を促進する効果がある。
【0040】
また、Y(イットリウム)成分を含有するガラス粉末は、前述したY含有結晶相(d)が析出している低温焼成セラミック焼結体を製造するために使用されるものであり、その好適な組成は、以下の通りである。
【0041】
SiO2;10〜40重量%、特に15〜30重量%
Al2O3;1〜30重量%、特に3〜25重量%
MgO及び/又はZnO;6〜25重量%、特に9〜20重量%
BaO;10〜40重量%、特に15〜37重量%
Y2O3;1〜20重量%、特に3〜15重量%
CaOおよびSrOの群から選ばれる少なくとも1種:0〜20重量%、特に0〜15重量%
ZrO2、SnO2およびTiO2の群から選ばれる少なくとも1種:0〜10重量%、特に0〜5重量%
即ち、Y(イットリウム)成分含有ガラス粉末において、SiO2、Al2O3、MgO、ZnO、BaOの含有量が上記範囲を逸脱すると、焼結体の開気孔率が0.3%を越え、または上述した特定の結晶相(a)及び(b)を析出させることが困難となり、焼結体のヤング率が低下し、強度や熱伝導率も低下する傾向がある。また、Y成分を含有していないガラス粉末と同様、SiO2およびAl2O3の含有量が上記範囲よりも少ないと、ガラスの軟化点低下により焼成時の脱バインダ性が悪くなり、上記範囲よりも多いと、1000℃以下の焼成にて焼結体の開気孔率が大きくなるおそれがある。また、MgOおよび/またはZnO、BaOの含有量が上記範囲よりも少ないと、1000℃以下の焼成にて焼結体の開気孔率が大きくなり、さらにセラミック粉末(フィラー成分)の添加可能な量が減じ、強度および熱伝導率が低下する。逆に多いと、ガラスの軟化点が低下して焼成時の脱バインダ性が悪くなるとともに、開気孔率が大きくなるおそれがある。
【0042】
さらに、このガラス粉末中に含まれるY2O3は、前述したY含有結晶相(d)をガラス中から析出させ、焼結体の抗折強度を高める効果を有している。また、このY2O3は、ガラスの軟化点を上昇させる働きとガラス粉末に由来する非晶質相(残留ガラス相)Gのヤング率を向上させる働きを有している。例えば、本発明の低温焼成セラミック焼結体を、耐マイグレーション性に優れた銅を配線層として備えた配線基板の絶縁基板として用いる場合、非酸化性雰囲気中での脱バインダを可能とするために、ガラス粉末のガラス転移点(Tg)を550℃以上、特に600〜850℃に高める必要がある。
【0043】
ところが、ガラス転移点がこのような高温側にシフトされたガラス粉末を用いると、フィラー成分であるセラミック結晶相、特にAl2O3結晶相の含有量が不足し、絶縁基板(低温焼成セラミック焼結体)の抗折強度が低下する傾向がある。しかるに、Y2O3を含有するガラス粉末を用いることにより、残留ガラス相Gのヤング率が向上するため、抗折強度の低下を有効に防止することができる。
【0044】
また、Y2O3は、結晶化剤としての機能をも有しており、Y2O3を含有するガラスでは、前述したガーナイトおよび/またはスピネル結晶相(a)やセルシアン結晶相(b)のガラス中からの析出を促進させ、これら結晶相の含有量を増大させることができる。即ち、ガラス粉末中のY2O3含量の調整により、焼結体中に析出する結晶相(a)及び結晶相(b)の量を調整することができる。本発明において、かかるガラス粉末中のY2O3含量が前述した範囲よりも少ないと、上述した高強度化効果が不十分となり、また前述した範囲よりも多いと、焼結体の開気孔率が0.3%を超えてしまう。
【0045】
上述したY成分含有ガラス粉末において、他の成分、即ち、CaOおよび/またはSrO、或いはZrO2、SnO2およびTiO2の群から選ばれる少なくとも1種の成分は、Y成分を含有していないガラス粉末に関して述べたのと同様の機能を有している。
【0046】
本発明において、上述したY成分を含有していないガラス粉末は500〜850℃のガラス転移点(Tg)を有していることが好ましく、Y成分含有ガラス粉末は、550〜850℃のガラス転移点(Tg)を有していることが好ましい。このようなガラス転移点(Tg)を有するガラス粉末は、配線基板(特に銅配線層を備えたもの)中の絶縁基板の製造に有利である。即ち、銅配線層を備えた配線基板を製造するには、先にも述べた通り、熱処理を非酸化性雰囲気中で行なう必要があり、例えば脱バインダのための熱処理も非酸化性雰囲気で行なわれる。この場合、ガラス転移点が上記範囲よりも低いと、焼結体の収縮開始温度が低くなりすぎてしまい、この結果、脱バインダを有効に行なうことが困難となってしまう。一方、ガラス粉末のガラス転移点が850℃よりも高いと、1000℃以下の温度での焼成によっては、緻密な焼結体を得ることが困難となり、その開気孔率は0.3%よりも高くなってしまう。
【0047】
また、上述したガラス粉末中のPbO含有量及びA2O含有量(A:アルカリ金属)は、既に述べた通り、耐環境性、耐薬品性、吸湿性等の点で、それぞれ1重量%以下、特に0.1重量%以下に抑制されていることが好ましい。
セラミック粉末:
本発明においては、上述したガラス粉末に混合するセラミック粉末(フィラー成分)としては、AlN、Si3N4、SiC、Al2O3、ZrO2、3Al2O3・2SiO2及びMg2SiO4の群から選ばれる少なくとも1種が使用される。即ち、これらのセラミック粉末は、前述した結晶相(c)を焼結体中に存在せしめるために使用される。本発明において、これらのセラミック粉末としては、前述したガラス粉末との濡れ性がよく、1000℃以下の低温での焼結性が良好であるという点で、Al2O3粉末が好適である。特に前述したガラス粉末としてY成分含有ガラス粉末を用いる場合には、セラミック粉末として、Al2O3粉末を用いることが最適である。
【0048】
また、焼結体中のボイド量を低減し、ヤング率、抗折強度、熱伝導率を高めるために、上記セラミック粉末の真密度に対する加圧嵩密度の比(加圧嵩密度/真密度)の比が、0.5以上、特に0.52以上、最適には0.54以上であることが望ましい。これによって、例えば焼結体の開気孔率を0.3%以下とすることができる。
【0049】
ここで、セラミック粉末の加圧嵩密度とは、セラミック粉末2gを、圧力98MPa×30secの条件で直径20mmφの円柱形状に一軸成形して得られる成形体の密度を意味する。セラミック粉末の加圧嵩密度比を上記範囲内に設定するためには、粒度分布を制御したり、凝集の少ないセラミック粉末を用いたり、粒径のピーク値が2つ以上存在するように、平均粒径の異なる2種以上のセラミックの粉末を用いることにより、セラミック粉末の加圧嵩密度を高めることが効果的である。
混合粉末の調製:
本発明においては、前述したガラス粉末とセラミック粉末とを混合し、所望により適当な溶媒を加えて粉砕し、両者が均一に分散した混合粉末を調製する。
【0050】
このような混合粉末の調製においては、ガラス粉末としてY成分を含有していないガラス粉末を用いる場合には、該ガラス粉末とセラミック粉末とを、20:80乃至90:10、好ましくは25:75乃至80:20、最も好適には、30:70乃至70:30の重量比で用いるのがよく、またガラス粉末としてY成分含有ガラス粉末を用いる場合には、該ガラス粉末とセラミック粉末(特にAl2O3)とを、20:80乃至90:10、好ましくは25:75乃至90:10、最も好適には、30:70乃至85:15の重量比で用いるのがよい。即ち、セラミック粉末(或いはAl2O3粉末)の添加量が上記範囲よりも少ないと、焼結体のヤング率、強度、熱伝導率が低下し、その添加量が上記範囲よりも多いと、1000℃以下の焼成によっては焼結体の開気孔率を、例えば0.3%以下に低減することができず、緻密な焼結体を得ることが困難となる。
【0051】
また、上記のようなガラス粉末とセラミック粉末との混合粉末についても加圧嵩密度/真密度の比が0.45以上、特に0.5以上、最適には0.54以上であることが望ましい。
【0052】
さらに、本発明においては、ガラス粉末と特定のセラミック粉末との混合比が上述した量比を満足しており、且つ焼結体のヤング率、強度、熱伝導率等の特性が損なわれない限りにおいて、上記以外の他のセラミック粉末、例えばSiO2、CaAl2Si2O8、SrAl2Si2O8、Ca2MgSi2O7、Sr2MgSi2O7、Ba2MgSi2O7、ZnO、MgSiO3、Zn2SiO4、ZrSiO4、CaMgSi2O6、Zn2Al4Si5O18、CaSiO3、SrSiO3、BaSiO3等を混合することもできる。これらは、前述した他の結晶相として、存在するものである。
成形:
上記のようにして調製された混合粉末に、所望により、有機バインダ、可塑剤、溶媒を添加、混合してスラリー(成形用スラリー)を調製し、それ自体公知の成形法、例えば、ドクターブレード法、カレンダーロール法、圧延法、プレス成形、押出形成、射出成形、鋳込み成形、テープ成形等によって所定形状の成形体を作成する。
焼成:
上記で得られた成形体を、450〜750℃で脱バインダ処理した後、酸化性雰囲気あるいは非酸化雰囲気中、1000℃以下、好ましくは700〜1000℃、さらに好ましくは800〜950℃の温度で焼成することにより、本発明の低温焼成セラミック焼結体が得られる。
【0053】
なお、焼結体中に上述した特定の結晶相(a)、(b)を析出させるため、また、焼結体の開気孔率を低減するためには、脱バインダ処理後の昇温速度を20℃/時間以上とすることが望ましく、また、焼成温度での保持時間を0.2〜10時間、特に0.5〜2時間とすることが望ましい。
配線基板:
上述した低温焼成セラミック焼結体は、各種配線基板中の絶縁基板として極めて有用である。図2には、このような配線基板として代表的な半導体素子収納用パッケージを例にとって、その概略断面図を示した。
【0054】
図2において、このパッケージAは、複数の絶縁層1a〜1dからなる絶縁基板1を備えており、この絶縁基板1の表面及び内部には、銀、銅、金等の低抵抗金属から成る配線層2、2が形成されている。また、上記の配線層2、2を電気的に接続するためのビアホール導体3が、絶縁層1a〜1dを貫通するように形成されている。このビアホール導体3は、銀、銅、金等の低抵抗金属を含有している。さらに、パッケージAの下面には複数の接続用電極4が配列されており、この接続用電極4は、プリント基板等の外部回路基板Bの接続用電極4Bと接続されている。
【0055】
絶縁基板1の上面中央部には、半導体素子等のデバイス5がガラス、アンダーフィル剤等の接着剤(図示せず)を介して接着固定され、このデバイス5の表面はポッティング剤等からなる封止樹脂7により封止されている。デバイス5は配線層2とワイヤボンディング6等を介して電気的に接続され、従って、デバイス5と、絶縁基板1の下面に形成された複数の接続用電極4とは、配線層2およびビアホール導体3を介して電気的に接続されている。
【0056】
本発明においては、絶縁基板1を、上述した低温焼成セラミック焼結体から形成することにより、絶縁基板1の強度および熱伝導率を高めることができ、パッケージAの実装信頼性および機械的信頼性を高めることができる。また、デバイス5に発生する熱が効率よく放熱されるため、絶縁基板1の温度上昇が有効に抑制され、デバイス5の誤作動を防止することができる。
【0057】
また、絶縁基板1は、1000℃以下の低温焼成によって作成することができるため、銀、銅または金のうちの少なくとも1種の低抵抗金属を特に主成分とする低抵抗導体を用いての同時焼成により配線層2を形成することができる。従って、配線層2を低抵抗化でき、信号の遅延を小さくできる。
【0058】
なお、図2においては、デバイス5はワイヤボンディング6を介して配線層2と接続されているが、デバイス5を半田等により、絶縁基板1表面の配線層2に直接接続することもできる。更に封止樹脂7を用いず、絶縁基板1の表面にキャビティを形成してデバイス5を収納し、封止金具(図示せず。)等を用い、蓋体によってデバイス5が収納されたキャビティを封止することもできる。
【0059】
本発明によれば、本発明の低温焼成セラミック焼結体から成る絶縁基板1はヤング率が100GPa以上と高い。従って、この絶縁基板1に封止金具、封止樹脂等を接着しても絶縁基板1が大きく反ることなく、半導体素子の実装(一次実装)部分に歪みが発生することなく、また、接続用電極4に応力が集中して接続用電極4、4B(二次実装部分)にクラックや剥離が生じることなく実装信頼性を高めることができる。
【0060】
上記パッケージのような配線基板は、前述した低温焼成セラミック焼結体を製造するのと同様にして製造することができる。即ち、前述したガラス粉末とセラミック粉末とを一定の量比で混合した混合粉末を用いて成形用スラリーを調製し、この成形用スラリーを用いて、例えば厚みが50〜500μmのセラミックグリーンシート(絶縁層1a〜1d用のシート)を成形する。
【0061】
このグリーンシートの所定位置にスルーホールを形成し、このスルーホール内に、銅や銀、金等の低抵抗金属を含有する導体ペーストを充填する。また、表面に配線層2が形成される絶縁層に対応するグリーンシートの表面には、上記の導体ペーストを用いて、スクリーン印刷法、グラビア印刷法などの公知の印刷手法を用いて配線層2の厚みが5〜30μmとなるように、配線パターンを印刷塗布する。
【0062】
そして、上記のようにして作成された複数のグリーンシートを位置合わせして積層圧着し、次いで、酸化性雰囲気中、低酸化性或いは非酸化性雰囲気中にて脱バインダ処理した後、1000℃以下の酸化性雰囲気または非酸化性雰囲気で焼成することにより、配線層2を備えた絶縁基板1が作製される。
【0063】
なお、脱バインダ雰囲気或いは焼成雰囲気は、用いる低抵抗金属の種類に応じて適宜決定され、例えば、銅等の酸化性雰囲気中での焼成によって酸化する金属を用いる場合には非酸化性雰囲気中にて脱バインダ或いは焼成が行なわれる。
【0064】
上記のようにして形成された絶縁基板1の表面に、半導体素子等のデバイス5を搭載し、配線層2と信号の伝達が可能なように接続される。先にも述べた通り、配線層2上にデバイス5を直接搭載させて両者を接続することもできるし、あるいはワイヤボンディング6を用いてデバイス5と絶縁基板1表面の配線層2とを接続させることもできる。また、フリップチップなどにより、両者を接続することも可能である。
【0065】
さらに、デバイス5が搭載された絶縁基板1表面に、封止樹脂7を塗布して硬化させるか、絶縁基板1と同種の絶縁材料や、その他の絶縁材料、あるいは放熱性が良好な金属等からなる蓋体をガラス、樹脂、ロウ材等の接着剤により接合することにより、デバイス5を気密に封止することができ、これによりパッケージAを作製することができる。
【0066】
このように、本発明の低温焼成セラミック焼結体は、1000℃以下の低温での焼成により製造することができるため、かかる焼結体を絶縁基板材料として用いることにより、Cu、Ag、Au及びAl等の低抵抗導体との同時焼成により、これら低抵抗導体から成る配線層と絶縁基板とを一挙に製造することができ、各種配線基板の生産効率を高めることができる。
【0067】
また、図2の例では、低抵抗導体を含むペーストを絶縁層形成用のセラミックグリーンシートに塗布しての同時焼成により絶縁基板1及び配線層2が形成された例を示したが、絶縁基板1が本発明の低温焼成セラミック焼結体により形成されている場合には、特に絶縁基板1の表面に、所謂薄膜形成法を利用して、微細な配線層(例えば、配線層幅が75μm以下、配線層間隔が75μm以下、配線層厚みが1〜10μm)を、Cu、Ag、Au及びAl等の低抵抗導体により高精度で形成することができる。
【0068】
即ち、図2の絶縁基板1を例にとって説明すると、前述した方法により、内部にビアホール導体3を備えた絶縁基板1を製造する。この絶縁基板1は、1つの絶縁層から形成されていてもよいし、また内部に前述した配線層2が同時焼成により形成されていてもよい。かかる絶縁基板1の表面に、スパッタリング、イオンプレーティング、真空蒸着等の薄膜形成法により、Cu、Ag、Au及びAl等の低抵抗導体から成る薄膜金属層を形成する。次いで、レジスト塗布、所定パターンのマスクを用いての露光、エッチングによる不要部金属層の除去及びレジスト除去により、上記のような微細なパターンの配線層を絶縁基板1の表面に形成することができる。
【0069】
本発明の低温焼成セラミック焼結体は、開気孔率が0.3%以下と低いためボイドが少なく、表面平滑性が良好であるため、かかる焼結体から成る絶縁基板1の表面に、上記のような薄膜形成法を利用して、微細なパターンの配線層を位置ズレ等の不都合を生じることなく、高精度で形成することができる。また、薄膜形成法によって絶縁基板1の表面に薄膜金属層を形成するに先だっては、基板1の表面を、表面粗さRa(JIS B0601)が0.1μm以下、特に0.05μm以下の平滑面にしておくことが望ましいが、本発明の低温焼成セラミック焼結体から成る絶縁基板1は、表面平滑性に優れており、例えばその焼き肌面の表面粗さRaは、1.0μm以下、特に0.5μm以下である。従って、上記の研磨加工を短時間で容易に行なうことができ、この点でも本発明は有利である。
【0070】
また、本発明の低温焼成セラミック焼結体は、強度等の機械的特性にも優れているため、上記のような絶縁基板1の厚みを0.5mm以下、特に0.4mm以下、更には0.2mm以下とすることもでき、薄型で且つ機械的信頼性の高い配線基板の製造にも有用である。
【0071】
【実施例】
参考例1
下記の組成からなる3種のガラス粉末(平均粒径は何れも2μm)のガラス粉末を準備した。
ガラスA:SiO228重量%−Al2O310重量%−ZnO15重量%
−B2O318重量%−BaO28重量%−ZrO21重量%
(ガラス転移点:610℃)
ガラスB:SiO220重量%−Al2O38重量%−ZnO20重量%
−B2O321重量%−BaO−20重量%−SrO9重量%
−ZrO21重量%−TiO21重量%
(ガラス転移点:570℃)
ガラスC:SiO224重量%−Al2O38重量%−ZnO15重量%
−B2O318重量%−BaO−26重量%−SrO1重量%
−CaO5重量%−SnO21重量%−ZrO22重量%
(ガラス転移点:590℃)
一方、平均粒径が1〜2μmの表1に示すセラミック粉末2gを直径20mmφの金型内に充填して98MPaの圧力で30秒間一軸プレス成形を行い、この成形体の密度を加圧嵩密度として算出した。また、He置換法により真密度を測定し、加圧嵩密度/真密度の比を算出し表1に示した。
【0072】
そして、上記ガラス粉末とセラミック粉末を用いて、表1の組成に従い混合し、この混合物に有機バインダ、可塑剤、トルエンを添加し、スラリーを調製した後、このスラリーを用いてドクターブレード法により厚さ300μmのシート状成形体を作製した。さらに、このシート状成形体を所望の厚さになるように複数枚積層し、60℃の温度で10MPaの圧力を加えて熱圧着した。
【0073】
得られた積層体を大気中、500℃で脱バインダ処理した後、200℃/時間で昇温して、大気中で表1の条件にて焼成してセラミック焼結体を得た。
【0074】
次に、得られたセラミック焼結体について、アルキメデス法により開気孔率を測定した。また、超音波パルス法にてヤング率を測定した。さらに、このセラミック焼結体をφ10mm、厚さ1.5mmに加工し、レーザーフラッシュ法にて熱伝導率を測定した。また、このセラミック焼結体を3mm×4mm×50mmに加工し、オートグラフを用いてJIS R−1601に基づく3点曲げ強度を測定した。さらに、このセラミック焼結体を鏡面研磨し、IF法にて破壊靭性を測定した。結果を表2に示した。
【0075】
さらに、セラミック焼結体をφ16mm、厚さ2mmに加工し、両面にIn−Gaペーストを塗布して電極とし、LCRメーターを用いて、測定周波数1MHzにおいて静電容量を測定し、試料寸法から比誘電率を算出した。また、セラミック焼結体中における結晶相をX線回折測定から同定し、ピーク強度の大きさを比較した。
【0076】
また、BaAl2Si2O8結晶相に関しては、六方晶のメインピークをd=3.900とし、単斜晶のメインピークをd=3.355として、強度比I(d=3.900)/I(d=3.355)を算出した。
【0077】
さらに、セラミック焼結体を鏡面研磨し、走査型電子顕微鏡(SEM)写真からBaAl2Si2O8結晶相(針状晶)のアスペクト比を算出した。これらの結果を表2に示した。
【0078】
また、上記多層配線基板の絶縁基板表面に、真空蒸着法によって、Ti層を0.2μmの厚さで形成した後、TiW、TiMo、Ni、Cr、Ta等の種々の金属層を厚み10μmで形成した後、Cu層を3μmの厚みで形成した。なお、TiWおよびTiMoの合金層中のW、Mo含有量は90重量%である。
【0079】
その後、この薄膜金属層に感光性フォトレジストを一面に塗布し、フォトリソグラフィー技術によりエッチングマスクを作成し、薄膜層の一部を酸性エッチング液により不要部の薄膜を除去して、大きさが1×1mmの評価用パッドを形成した。そして、このパッドに対して、Cuからなるピンを半田付けして、−40℃と125℃の各温度に制御した恒温槽に多層配線基板を15分/15分の保持を1サイクルとして100サイクルの熱サイクルを施した後に、このピンを垂直に引き上げ、半田もしくは薄膜金属層が離れた時の強度を薄膜金属層の接着強度として評価し、その結果を表2に示した。
【0080】
一方、比較例として上記ガラスA、B、Cに代わり、以下の組成からなるガラスDおよびガラスEを用いて同様に評価を行った。
【0081】
【表1】
【0082】
【表2】
【0083】
表1、2の結果から明らかなように、前述した結晶相(a)〜(c)に相当する結晶相が析出し、かつセルシアン結晶相(b)(BaAl2Si2O8結晶相)が少なくともアスペクト比が3以上の針状晶を含む試料No.2〜8、10、12〜22では、X線回折測定における六方晶(hex.)と単斜晶(mon.)とのメインピークの強度比I(hex.)/I(mon.)が3以上であり、開気孔率0.3%以下、抗折強度が280MPa以上、熱伝導率が2W/mK以上、ヤング率が100GPa以上、破壊靭性が1.5MPa・m1/2以上となった。また、これらの焼結体について、焼き肌面の表面粗さRaを測定したところ、何れも0.5μm以下であった。また、薄膜金属層を形成した場合においても、22.5MPa以上の高い接着強度を示した。
【0084】
一方、ガラス粉末の量が90重量%よりも多い試料No.1、11では、フィラーが不充分で800℃以上の焼成によって成分の一部の流失が見られ適正な試料の作製が困難であった。また、ガラス粉末の量が20重量%よりも少ない試料No.9では、開気孔率が大きくなり、緻密なセラミック焼結体を得ることができなかった。
【0085】
また、試料No.23、24は、AlN、Si3N4、SiC、Al2O3、ZrO2、3Al2O3・2SiO2、Mg2SiO4の群から選ばれる結晶相(c)を含有しないことから、抗折強度が280MPaよりも低く、また、ヤング率も100GPaより低かった。
【0086】
さらに、ガラス粉末として所定量のZnOやBaOを含まないガラスD、Eを用いた試料No.25、26では、いずれも抗折強度が280MPaよりも低く、熱伝導率が2W/mKより低く、ヤング率が100GPaよりも低く、破壊靭性が1.5MPa・m1/2より低かった。
参考例2
参考例1の試料No.10の試料の原料粉末に対して、アクリル系バインダと可塑剤とトルエンを添加、混合し、ドクターブレード法によって厚み250μmのシート状成形体を作製した。次に、該シート状成形体の所定位置にビアホールを形成し、銀を主成分とする導体ペーストを充填した後、スクリーン印刷法により前記導体ペーストを用いてシート状成形体の表面に配線パターンを形成した。
【0087】
そして、前記配線パターンを形成したシート状成形体を位置合わせしながら4枚積層、熱圧着した。この積層体を大気中、500℃で脱バインダ処理した後、200℃/時間で昇温し、大気中、800℃で1時間焼成して銀を主成分とする配線層を具備する配線基板を作製した。
【0088】
得られた配線基板について、半導体素子を実装した後、封止剤を用いて封止したところ反りや変形等を示さず、また、配線層の導通を確認したところ、断線等がなく、低抵抗で良好な導通特性を示した。
実施例1
下記の組成からなる2種のガラス粉末(平均粒径は何れも2μm)を準備した。
ガラスF:SiO229重量%−Al2O312重量%−ZnO15重量%
−B2O310重量%−BaO30重量%−ZrO21重量%
−Y2O33重量% (ガラス転移点:660℃)
ガラスG:SiO224重量%−Al2O38重量%−ZnO7重量%
−MgO8重量%−B2O310重量%−BaO−26重量%
−SrO1重量%−CaO5重量%−SnO21重量%
−ZrO22重量%−Y2O38重量%
(ガラス転移点:500℃)
そして、これらのガラス粉末に対して、平均粒径が1〜2μmの表3に示す金属酸化物粉末を用いて、表3の組成に従い混合した。
【0089】
そして、この混合物を用い、参考例1と同様にして、低温焼成セラミック焼結体を得た(焼成温度は表3に示す)。
【0090】
得られた焼結体について、参考例1と同様に、開気孔率、熱伝導率、3点曲げ強度を測定し、更に、焼結体中における結晶相をX線回折測定から同定し、これらの結果表3に示した。尚、同定された結晶相は、ピーク強度の大きい順に表3に示した。
【0091】
さらに、参考例1と同様に、焼結体を鏡面研磨し、走査型電子顕微鏡(SEM)写真からBaAl2Si2O8結晶相のアスペクト比を算出した。結果は表3に示した。
【0092】
【表3】
【0093】
表3の結果から明らかなように、ガーナイト結晶相(結晶相(a))、針状のセルシアン結晶相(結晶相(b))、特定のセラミック結晶相(結晶相(c))及びY含有結晶相(結晶相(d))が析出した試料No.1〜8では、熱伝導率が2W/mK以上、抗折強度が280MPa以上となった。
実施例2
実施例1の試料No.1の試料の原料粉末に対して、アクリル系バインダと可塑剤とトルエンを添加、混合し、ドクターブレード法によって厚み250μmのグリーンシートを作製した。次に、該グリーンシートの所定位置にビアホールを形成し、銅を主成分とする導体ペーストを充填した後、スクリーン印刷法により前記導体ペーストを用いてグリーンシート表面に配線層を形成した。
【0094】
そして、前記配線層を形成したグリーンシートを位置合わせしながら4枚積層、熱圧着した。この積層体を水蒸気含有窒素中、700℃で脱バインダ処理した後、200℃/時間で昇温した後、窒素中、800℃で1時間焼成して銅を主成分とする配線層を具備する多層配線基板を作製した。
【0095】
得られた配線基板について、配線層の導通を確認したところ、断線等がなく、低抵抗で良好な導通特性を示した。
【0096】
【発明の効果】
以上詳述した通り、本発明によれば、ガーナイト結晶相および/またはスピネル結晶相や、アスペクト比が3以上の針状晶を含むセルシアン結晶相などの特定の結晶相を存在せしめることによって、銀、銅、金等の低抵抗金属との同時焼成が可能であり、高い強度、高熱伝導性、ヤング率、靱性を有する焼結体を得ることができる。また、上記の焼結体を配線基板における絶縁基板として用いることによって基板強度を高め、高信頼性の配線基板が得ることができ、また、絶縁基板の平滑性に優れることから、この配線基板には薄膜形成法によって前記セラミック焼結体表面に導体層を形成することもできる、などあらゆる配線基板に好適に使用される。
【図面の簡単な説明】
【図1】図1は、本発明の低温焼成セラミック焼結体の構造を示す図であり、
【図2】図2は、本発明の低温焼成セラミック焼結体を絶縁基板とする配線基板(半導体素子収納パッケージ)の一例を示す側断面図である。
【符号の説明】
1 絶縁基板
2 配線層
3 ビアホール導体
4 接続用電極
5 デバイス
A 半導体素子収納用パッケージ
B 外部回路基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-temperature fired ceramic sintered body optimum for an insulating substrate used for a semiconductor element storage package, a multilayer wiring board, and the like, a manufacturing method thereof, and a wiring board.
[0002]
[Prior art]
The rapid development of information and communication technology in recent years has led to higher speeds and larger sizes of semiconductor devices, etc., and in connection with this, wiring boards equipped with such devices are designed to reduce signal transmission loss. There is a demand for lower resistance of the layer. Therefore, a wiring board using a low-temperature fired ceramic as an insulating board that can be densified by firing at 1000 ° C. or less and can be fired simultaneously with a wiring layer mainly composed of a low-resistance metal such as silver, copper, or gold is proposed. ing.
[0003]
For example, JP-A-2-141458 discloses
[0004]
JP-A-6-305770 discloses SiO.2, B2OThree, CaO, BaO, Al2OThreeAlkali metal (Li, Na, K) oxide, MgO, ZnO, TiO2And ZrO2For glass powder containing2OThreeA glass ceramic added with powder, celsian powder and anorthite powder is disclosed, and such glass ceramic can be fired even in a non-oxidizing atmosphere. By using this glass ceramic, the dielectric constant of the insulating substrate can be reduced. It becomes possible and its strength is 2700 kg / cm2It is described that it can be increased up to.
[0005]
[Problems to be solved by the invention]
However, the sintered body obtained from the conventional glass ceramic as described above is still unsatisfactory in terms of mechanical strength as compared with a conventional insulating substrate material such as an alumina sintered body, for example, 2700 kg / cm.2An insulating substrate with higher strength cannot be obtained. It also has the disadvantage of low thermal conductivity. That is, an increase in the size and speed of a semiconductor element leads to an increase in the amount of heat generated from the semiconductor element, and as a result, a thermal resistance increases in a wiring board using a glass ceramic sintered body having a low thermal conductivity as an insulating substrate. Or a problem that the mechanical reliability is lowered.
[0006]
Furthermore, the conventional glass ceramic sintered body has a low Young's modulus. For example, in a package for housing a semiconductor element using the sintered body as an insulating substrate, a heat sink, a heat spreader such as a metal heat sink, or a lid is used. When the lid, seal ring, or other sealing metal fittings required for hermetic sealing, or a sealing resin such as a potting agent or underfill agent is adhered to the surface of the insulating substrate, the insulating substrate itself is deformed. As a result, there is a possibility that distortion occurs in the mounting (primary mounting) portion of the semiconductor element (chip) or, in the worst case, destruction of the mounting portion or destruction of the chip. In addition, when a wiring board having such an insulating substrate is mounted on a printed circuit board (secondary mounting), it is caused by a difference in thermal expansion between the insulating substrate and the printed circuit board, and the insulating substrate has a low Young's modulus. There is a problem that a large warp occurs in the insulating substrate, cracks or peeling occurs in the terminal portion, and electrical connection reliability is lowered.
[0007]
Therefore, the present invention is capable of co-firing with a low-resistance metal such as silver, copper, and gold, and has a low strength fired ceramic sintered body having high strength and high Young's modulus, a method for producing the same, and such a sintered body. It is an object of the present invention to provide a used wiring board.
[0008]
[Solving the problemMeans to do]
The low-temperature fired ceramic sintered body according to the present invention includes, as a crystal phase, (a) a garnite crystal phase and / or a spinel crystal phase, (b) a celsian crystal phase including an acicular crystal having an aspect ratio of 3 or more, (c) AlN , Si3N4, SiC, Al2O3, ZrO23Al2O3・ 2SiO2And Mg2SiO4At least one crystalline phase selected from the group of: and (d)YAlO 3 , Y 4 Al 2 O 9 , BaY 2 O 4 , Ba 4 Y 2 O 7 , Y 4 Zr 3 O 12 , Y 6 ZrO 11 Is at least one selected from the group ofIt contains a Y (yttrium) -containing crystal phase and has an open porosity of 0.3% or less. By making such a crystal phase exist, silver, copper, gold, etc. Simultaneous firing with a low-resistance metal is possible, and a sintered body having high strength, Young's modulus, and toughness is obtained.
[0009]
Such a sintered body can easily control the crystal phase by firing a molded body made of a mixed powder of glass powder and ceramic powder. In particular, the crystal phases (a) and (b) are It is desirable that it is deposited from glass powder.
[0010]
Further, this sintered body has a PbO content and A2The O (A: alkali metal) content is preferably suppressed to 1% by weight or less in terms of environmental resistance, chemical resistance, hygroscopicity, and the like.
[0011]
Furthermore, this sintered body has a thermal conductivity of 2 W / mK or more, a bending strength of 280 MPa or more, a Young's modulus of 100 GPa or more, 1.5 MPa · m, in accordance with the above-described configuration.1/2It can have the above fracture toughness.
[0012]
The (b) celsian crystal phase contains hexagonal crystals, and in X-ray diffraction measurement, Ihex / Imon (where Ihex represents the main peak intensity of hexagonal crystals and Imon represents the main peak of monoclinic crystals). By showing an X-ray diffraction pattern having a main peak intensity ratio of 3 or more, the hexagonal crystals, which are needle-like crystals, can be precipitated, and the strength and toughness can be improved.
[0013]
Furthermore, the strength and Young's modulus can be further improved by including (d) a Y (yttrium) -containing crystal phase in the sintered body. (D) As Y (yttrium) -containing crystal phase, YAlOThree, YFourAl2O9, BaY2OFour, BaFourY2O7, YFourZrThreeO12, Y6ZrO11At least one selected from the group of these is suitable, and it is desirable that this Y (yttrium) -containing crystal phase is precipitated from glass.
[0014]
Further, it is desirable that the amorphous phase in the sintered body is 50% by weight or less, and particularly does not substantially contain the amorphous phase. In addition, when an amorphous phase is included, the amorphous phase contains Y (yttrium) so that it is amorphous.phaseThe Young's modulus can be improved, and the strength and Young's modulus of the sintered body can be improved.
[0020]
Moreover, the wiring board of the present invention uses the above-mentioned low-temperature fired ceramic sintered body as an insulating substrate, and has a conductor layer containing at least one selected from the group of Cu, Ag, Au, and Al on the surface and / or inside thereof. The conductor layer can be formed by simultaneous firing with a molded body made of the mixed powder. Further, a conductor layer can be formed on the surface of the ceramic sintered body on the wiring board by a thin film forming method.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the low-temperature fired ceramic sintered body of the present invention has at least three crystal phases (a), (b), and (c). And an amorphous phase (residual glass phase) G derived from glass powder.
Crystal phase (a):
The crystalline phase (a) is a garnite crystalline phase and / or a spinel crystalline phase, ideally ZnAl2OFour, MgAl2OFourIt has the chemical composition represented by these. Such a crystal phase (a) has a Young's modulus as a single crystal of 200 GPa or more. Therefore, the Young's modulus of the sintered body can be increased by precipitating such a crystal phase.
[0022]
The crystal phase (a) is a granular crystal, and the average particle size is particularly preferably 1 μm or less. By dispersing such microcrystals in the sintered body, the Young's modulus of the sintered body can be improved and the bending strength can be increased.
[0023]
In the present invention, the crystal phase (a) described above is preferably precipitated from the raw glass powder by firing, whereby the crystallinity of the glass is increased, and an amorphous phase (residual glass phase) G described later is formed. The content is reduced, the open porosity of the sintered body can be reduced, and the Young's modulus of the sintered body can be increased.
[0024]
The crystal phase (a) includes ZnAl.2OFourAnd MgAl2OFourDissolved in (Zn, Mg) Al2OFourThe garnite crystal phase of the form may be formed. In other words, the crystallinity of the glass can be increased by dissolving MgO and / or ZnO contained in the raw glass powder in the crystal phase (a). The porosity can be reduced and the Young's modulus of the sintered body can be increased, and since the spinel crystal phase has the same characteristics as the garnite crystal phase, such a spinel crystal phase is precipitated. This also produces the same effect as when the garnite crystal phase is precipitated.
Crystalline phase (b):
The crystal phase (b) is a celsian crystal phase, ideally BaAl2Si2O8It has the chemical composition represented by these.
[0025]
In the present invention, it is important that the celsian crystal phase contains an acicular crystal (shown as 13a in FIG. 1) having an aspect ratio of 3 or more, preferably 4 or more, and more preferably 5 or more. By precipitating such needle crystals 13a, the strength and thermal conductivity of the sintered body can be improved, and the dielectric constant of the sintered body can be lowered. In addition, the aspect ratio of the acicular crystal is celsian (BaAl) observed by cross-sectional SEM and EPMA analysis of the sintered body.2Si2O8) Refers to an average value when 10 crystal phases are selected from those having a large aspect ratio (major axis / minor axis ratio). Particularly, the acicular crystal 13a has a major axis of 1 to 10 μm and a minor axis of 0.1 to 2 μm. In particular, it is desirable that the acicular crystals 13a are randomly dispersed from the viewpoint of suppressing the progress of cracks and improving the bending strength. Further, the celsian crystal phase (b) may contain granular crystals (shown as 13b in FIG. 1) in addition to the needle crystals 13a.
[0026]
In the present invention, as the celsian crystal phase (b), in the X-ray diffraction measurement, the following formula:
Ihex / Imon
Where Ihex represents the main peak intensity of the hexagonal crystal,
Imon indicates the main peak intensity of the monoclinic crystal,
The X-ray diffraction pattern having a main peak intensity ratio of 3 or more, preferably 5 or more, most preferably 7 or more improves the fracture toughness, bending strength and thermal conductivity of the sintered body. This is desirable because it can be done. That is, the hexagonal crystal forms the needle-like crystal 13a, and the monoclinic crystal forms the granular crystal 13b. Therefore, when the main peak intensity ratio is within the above range, a lot of needle-like crystals 13a are precipitated, and as a result, the above characteristics of the sintered body are improved.
[0027]
The hexagonal crystal indicates the crystal phase of JCPDS card 28-0124, and the monoclinic crystal indicates the crystal phase of 38-1450.
[0028]
The main peaks of hexagonal crystal and monoclinic crystal mean the highest intensity peaks of these crystal phases in the X-ray diffraction diagram, and the main peak of hexagonal crystal corresponds to the peak having a d value of 3.900. The main peak of monoclinic crystal corresponds to a peak having a d value of 3.355. Therefore, the peak intensity ratio is calculated as I (d = 3.900) / I (d = 3.355).
[0029]
Further, the celsian crystal phase (b) described above is also preferably precipitated from the raw glass powder by firing in the same manner as the crystal phase (a). This increases the crystallinity of the glass, and the amorphous phase (residual The glass phase) G content can be reduced, the open porosity of the sintered body can be reduced, and the Young's modulus of the sintered body can be increased.
Crystal phase (c):
The crystal phase (c) is a ceramic crystal phase precipitated from the ceramic powder mixed with the glass powder. In particular, AlN, SiThreeNFour, SiC, Al2OThree, ZrO2,
3Al2OThree・ 2SiO2And Mg2SiOFourA crystal phase selected from the group of The ceramic crystal phase (c) is a component for improving the bending strength as well as improving the Young's modulus of the sintered body. This crystalline phase usually exists as a granular crystal, but is preferably a plate-like crystal, which further improves the bending strength of the sintered body and also improves the thermal conductivity.
[0030]
The ceramic crystal phase (c) is formed from one or more of the above nitrides, carbides, oxides or composite oxides, but in terms of strength and sinterability, At least Al2OThreeIt preferably contains a crystal phase.
[0031]
The ceramic crystal phase (c) is preferably contained in the sintered body in an amount of 10 to 80% by weight, particularly 30 to 75% by weight, and further 40 to 70% by weight.
Crystal phase (d):
In the low-temperature fired ceramic sintered body of the present invention, in addition to the crystal phases (a) to (c) described above, a crystal containing Y (yttrium) as the crystal phase (d) (omitted in FIG. 1). The inclusion of the phase is suitable for increasing the strength of the sintered body.
[0032]
Such Y-containing crystals include, but are not limited to, YAlOThree, YFourAl2O9, BaY2OFour, BaFourY2O7, YFourZrThreeO12, Y6ZrO11Etc., and these may be precipitated alone or in combination of two or more. Further, like the above-described crystal phases (a) and (b), it is desirable that such a Y-containing crystal phase is also precipitated from the raw glass powder by firing.
Other crystal phases:
Further, as long as the excellent properties of the low-temperature fired ceramic sintered body of the present invention are not impaired, other crystal phases other than the above-mentioned various crystal phases, for example, SiO2, CaAl2Si2O8, SrAl2Si2O8, Ca2MgSi2O7, Sr2MgSi2O7, Ba2MgSi2O7ZnO, MgSiOThree, Zn2SiOFour, ZrSiOFour, CaMgSi2O6, Zn2AlFourSiFiveO18, CaSiOThree, SrSiOThree, BaSiOThreeEtc. may exist. For example, such other crystal phases may be contained in the sintered body in a total amount of 40% by weight or less, preferably 30% by weight or less, and most preferably 20% by weight or less.
Amorphous phase:
In addition, when the sintered body of the present invention is obtained by firing a molded body composed of a mixed powder of glass powder and ceramic powder, normally, as shown in FIG. Glass phase) G is contained. In order to improve the Young's modulus of the sintered body, it is desirable that the amorphous phase G is small. For example, the glass content in the sintered body is 50% by weight or less, particularly 30% by weight or less, and further 20% by weight or less. Further, it is preferably 10% by weight or less, and the amorphous glass phase G may be substantially absent in the sintered body. The content of each crystal phase and amorphous phase in the sintered body is determined by the Rietveld method from the X-ray diffraction peak of the sintered body.
Sintered body composition:
The low-temperature fired ceramic sintered body of the present invention contains the above-described crystal phases (a), (b), and (c) as essential components, and crystal phase (d) is precipitated as necessary. It has a chemical composition according to the type.
[0033]
For example, a suitable chemical composition of the sintered body in which the Y-containing crystal phase (d) is not precipitated is as follows.
[0034]
SiO2: 2 to 31.5% by weight, especially 4.5 to 21% by weight
Al2OThree11-82% by weight, especially 32.1-74.5% by weight
ZnO + MgO: 1.2-22.5% by weight, especially 3-14% by weight
B2OThree: 1 to 27% by weight, especially 3 to 17.5% by weight
BaO: 2 to 36% by weight, especially 6.3 to 35% by weight
At least one selected from the group of CaO and SrO: 0 to 18% by weight, particularly 0.2 to 7% by weight
ZrO2, SnO2And TiO2At least one selected from the group: 0 to 9% by weight, particularly 0.2 to 3.5% by weight
The preferred chemical composition of the sintered body on which the Y-containing crystal phase (d) is deposited is as follows.
[0035]
SiO2: 2 to 38% by weight, especially 4.5 to 25.5% by weight
Al2OThree: 6 to 86% by weight, especially 17.6 to 77.5% by weight
BaO: 2 to 38% by weight, especially 6 to 29.8% by weight
Y2OThree: 0.2 to 19% by weight, especially 0.9 to 12.8% by weight
ZnO + MgO: 1.2 to 23.8% by weight, especially 2.4 to 12.8% by weight
B2OThree: 0 to 28.5% by weight, especially 0 to 12.3% by weight
At least one selected from the group of CaO and SrO: 0 to 19% by weight, particularly 0 to 12.8% by weight
ZrO2, SnO2And TiO2At least one selected from the group of: 0 to 9.5% by weight, particularly 0 to 5.1% by weight
In addition, in the sintered body, PbO and A are associated with impurity components contained in the glass powder and ceramic powder.2Metal oxides such as O (A: alkali metals of Li, Na, K, and Rb) are included, but PbO and A in terms of environmental resistance, chemical resistance, hygroscopicity, etc.2The O content is preferably suppressed to 1% by weight or less, particularly 0.1% by weight or less. Adjustment of the content of such components can be performed by removing impurity components from the glass powder or ceramic powder used.
[0036]
The low-temperature fired ceramic sintered body of the present invention described above has an open porosity of 0.3% or less, particularly 0.25% or less, in connection with the crystal phases (a) to (c) being precipitated. Furthermore, it is as low as 0.2% or less, extremely dense, and has a heat conductivity of 2 W / mK or more, particularly 2.5 W / mK or more, more preferably 3 W / mK or more, and a bending strength of 280 MPa or more. In particular, it is 300 MPa or more, further 320 MPa or more, and fracture toughness is 1.5 MPa · m.1/2Above, especially 1.8 MPa · m1/2In addition, 2.0 MPa · m1/2The Young's modulus is 100 GPa or more, particularly 120 GPa or more, and further 140 GPa or more.
Method for producing low-temperature fired ceramic sintered body
The above-mentioned low-temperature fired ceramic sintered body of the present invention is prepared by mixing glass powder and ceramic powder to prepare a mixed powder, forming the mixed powder into a predetermined shape using an appropriate binder, and firing after debinding. It is manufactured by doing.
Glass powder:
As the glass powder, those not containing a Y (yttrium) component or those containing a Y component are used depending on the crystal structure of the intended low-temperature fired ceramic sintered body.
[0037]
The glass powder not containing the Y (yttrium) component is used for producing a low-temperature fired ceramic sintered body in which the Y-containing crystal phase (d) described above is not precipitated, and its preferred composition is It is as follows.
[0038]
SiO210-35% by weight, especially 15-30% by weight
Al2OThree1-20% by weight, especially 3-15% by weight
MgO and / or ZnO; 6-25% by weight, especially 10-20% by weight
B2OThree5-30% by weight, especially 10-25% by weight
BaO; 10-40% by weight, especially 10-25% by weight
At least one selected from the group of CaO and SrO: 0 to 20% by weight, particularly 1 to 10% by weight
ZrO2, SnO2And TiO2At least one selected from the group: 0 to 10% by weight, in particular 1 to 5% by weight
That is, in a glass powder containing no Y (yttrium) component, SiO2, Al2OThreeMgO and / or ZnO, BaO, B2OThreeWhen the content of S exceeds the above range, the open porosity of the sintered body exceeds 0.3%, or it becomes difficult to precipitate the specific crystal phase described above, and at the same time the Young's modulus of the sintered body decreases. Also, the strength and thermal conductivity tend to decrease. Of the above components, SiO2And Al2OThreeIf the content is less than the above range, the softening point of the glass is lowered and the binder removal property at the time of firing is deteriorated. The open porosity tends to increase. MgO and / or ZnO, BaO and B2OThreeIf the content is less than the above range, the open porosity of the sintered body is increased by firing at 1000 ° C. or lower, and the amount of ceramic powder (filler component) to be described later can be added to reduce strength and heat. Conductivity decreases. On the other hand, when the amount is large, the softening point of the glass is lowered, the binder removal property during firing is deteriorated, and the open porosity tends to be increased.
[0039]
Moreover, CaO and SrO contained as an optional component in the glass raw material have an action of controlling the softening behavior of the glass, and CaAl2Si2O8Crystal phase, SrAl2Si2O8Crystal phase (especially needle-like crystals), Ca2MgSi2O7Crystal phase, Sr2MgSi2O7It also has the effect of precipitating other crystal phases such as crystal phases from the glass, especially as needle crystals. Therefore, it is advantageous to use the glass powder containing such components to control the bending strength and dielectric constant of the sintered body. Furthermore, ZrO2, SnO2And TiO2At least one selected from the group of groups has an effect of promoting the precipitation of the specific crystal phase (a) or (b) described above.
[0040]
Moreover, the glass powder containing a Y (yttrium) component is used for producing a low-temperature fired ceramic sintered body in which the above-described Y-containing crystal phase (d) is deposited, and its preferred composition Is as follows.
[0041]
SiO210 to 40% by weight, in particular 15 to 30% by weight
Al2OThree1-30% by weight, especially 3-25% by weight
MgO and / or ZnO; 6-25% by weight, in particular 9-20% by weight
BaO; 10-40% by weight, in particular 15-37% by weight
Y2OThree1-20% by weight, especially 3-15% by weight
At least one selected from the group of CaO and SrO: 0 to 20% by weight, particularly 0 to 15% by weight
ZrO2, SnO2And TiO2At least one selected from the group of: 0 to 10% by weight, particularly 0 to 5% by weight
That is, in the Y (yttrium) component-containing glass powder, SiO2, Al2OThreeWhen the contents of MgO, ZnO, and BaO deviate from the above range, the open porosity of the sintered body exceeds 0.3%, or the specific crystal phases (a) and (b) described above may be precipitated. It becomes difficult, the Young's modulus of the sintered body decreases, and the strength and thermal conductivity tend to decrease. In addition, similar to the glass powder not containing the Y component, SiO2And Al2OThreeIf the content is less than the above range, the debinding property at the time of firing is deteriorated due to a decrease in the softening point of the glass. There is a risk. Further, if the content of MgO and / or ZnO or BaO is less than the above range, the open porosity of the sintered body increases upon firing at 1000 ° C. or lower, and the amount of ceramic powder (filler component) that can be added. Decreases and strength and thermal conductivity decrease. On the other hand, when the amount is large, the softening point of the glass is lowered, the binder removal property during firing is deteriorated, and the open porosity may be increased.
[0042]
Furthermore, Y contained in this glass powder2OThreeHas the effect of increasing the bending strength of the sintered body by precipitating the Y-containing crystal phase (d) described above from the glass. This Y2OThreeHas a function of increasing the softening point of glass and a function of improving the Young's modulus of the amorphous phase (residual glass phase) G derived from the glass powder. For example, when the low-temperature fired ceramic sintered body of the present invention is used as an insulating substrate of a wiring board provided with copper having excellent migration resistance as a wiring layer, in order to enable debinding in a non-oxidizing atmosphere It is necessary to increase the glass transition point (Tg) of the glass powder to 550 ° C. or higher, particularly 600 to 850 ° C.
[0043]
However, when glass powder whose glass transition point is shifted to such a high temperature side is used, the ceramic crystal phase which is a filler component, particularly Al2OThreeThe crystal phase content is insufficient, and the bending strength of the insulating substrate (low-temperature fired ceramic sintered body) tends to decrease. However, Y2OThreeSince the Young's modulus of the residual glass phase G is improved by using the glass powder containing, it is possible to effectively prevent the bending strength from being lowered.
[0044]
Y2OThreeHas a function as a crystallizing agent, and Y2OThreeIn the glass containing, the precipitation of the garnite and / or spinel crystal phase (a) or celsian crystal phase (b) from the glass can be promoted, and the content of these crystal phases can be increased. That is, Y in the glass powder2OThreeBy adjusting the content, the amount of the crystal phase (a) and the crystal phase (b) precipitated in the sintered body can be adjusted. In the present invention, Y in the glass powder2OThreeIf the content is less than the above-described range, the above-described effect of increasing the strength is insufficient, and if the content is more than the above-described range, the open porosity of the sintered body exceeds 0.3%.
[0045]
In the Y component-containing glass powder described above, other components, that is, CaO and / or SrO, or ZrO2, SnO2And TiO2At least one component selected from the group has the same function as described for the glass powder not containing the Y component.
[0046]
In this invention, it is preferable that the glass powder which does not contain the Y component mentioned above has a glass transition point (Tg) of 500-850 degreeC, and a Y component containing glass powder has a glass transition of 550-850 degreeC. It preferably has a point (Tg). The glass powder having such a glass transition point (Tg) is advantageous for the production of an insulating substrate in a wiring substrate (particularly one having a copper wiring layer). That is, in order to manufacture a wiring board having a copper wiring layer, it is necessary to perform heat treatment in a non-oxidizing atmosphere as described above, for example, heat treatment for debinding is also performed in a non-oxidizing atmosphere. It is. In this case, if the glass transition point is lower than the above range, the shrinkage start temperature of the sintered body becomes too low, and as a result, it is difficult to effectively remove the binder. On the other hand, if the glass transition point of the glass powder is higher than 850 ° C., it becomes difficult to obtain a dense sintered body by firing at a temperature of 1000 ° C. or less, and the open porosity is less than 0.3%. It will be high.
[0047]
In addition, the PbO content in the glass powder and A2As described above, the O content (A: alkali metal) must be suppressed to 1% by weight or less, particularly 0.1% by weight or less in terms of environmental resistance, chemical resistance, hygroscopicity, etc. Is preferred.
Ceramic powder:
In the present invention, as the ceramic powder (filler component) to be mixed with the glass powder described above, AlN, SiThreeNFour, SiC, Al2OThree, ZrO23Al2OThree・ 2SiO2And Mg2SiOFourAt least one selected from the group is used. That is, these ceramic powders are used to cause the above-described crystal phase (c) to exist in the sintered body. In the present invention, these ceramic powders are good in wettability with the glass powder described above, and good in sinterability at a low temperature of 1000 ° C. or less.2OThreeA powder is preferred. In particular, when the Y component-containing glass powder is used as the glass powder described above, as the ceramic powder, Al2OThreeIt is optimal to use a powder.
[0048]
Moreover, in order to reduce the amount of voids in the sintered body and increase the Young's modulus, flexural strength, and thermal conductivity, the ratio of the pressed bulk density to the true density of the ceramic powder (pressed bulk density / true density) The ratio is preferably 0.5 or more, particularly 0.52 or more, and most preferably 0.54 or more. Thereby, for example, the open porosity of the sintered body can be made 0.3% or less.
[0049]
Here, the pressurized bulk density of the ceramic powder means the density of a molded body obtained by uniaxially molding 2 g of ceramic powder into a cylindrical shape with a diameter of 20 mmφ under a pressure of 98 MPa × 30 sec. In order to set the pressed bulk density ratio of the ceramic powder within the above range, the average particle size distribution is controlled, the ceramic powder with less aggregation is used, or there are two or more peak particle size values. It is effective to increase the pressed bulk density of the ceramic powder by using two or more ceramic powders having different particle sizes.
Preparation of mixed powder:
In the present invention, the glass powder and the ceramic powder described above are mixed, and if necessary, an appropriate solvent is added and pulverized to prepare a mixed powder in which both are uniformly dispersed.
[0050]
In the preparation of such a mixed powder, when glass powder containing no Y component is used as glass powder, the glass powder and ceramic powder are mixed into 20:80 to 90:10, preferably 25:75. To 80:20, most preferably 30:70 to 70:30, and when a Y component-containing glass powder is used as the glass powder, the glass powder and ceramic powder (especially Al2OThree) 20:80 or90:10The weight ratio is preferably 25:75 to 90:10, and most preferably 30:70 to 85:15. That is, ceramic powder (or Al2OThreeIf the added amount of the powder is less than the above range, the Young's modulus, strength, and thermal conductivity of the sintered body are reduced. If the added amount is more than the above range, the sintered body may be fired at 1000 ° C. or less. Thus, the open porosity cannot be reduced to 0.3% or less, for example, and it becomes difficult to obtain a dense sintered body.
[0051]
Further, for the mixed powder of the glass powder and the ceramic powder as described above, the ratio of the pressed bulk density / true density is preferably 0.45 or more, particularly 0.5 or more, and most preferably 0.54 or more. .
[0052]
Furthermore, in the present invention, as long as the mixing ratio of the glass powder and the specific ceramic powder satisfies the above-mentioned quantitative ratio, and the properties such as Young's modulus, strength, and thermal conductivity of the sintered body are not impaired. In ceramic powders other than those mentioned above, for example SiO2, CaAl2Si2O8, SrAl2Si2O8, Ca2MgSi2O7, Sr2MgSi2O7, Ba2MgSi2O7ZnO, MgSiOThree, Zn2SiOFour, ZrSiOFour, CaMgSi2O6, Zn2AlFourSiFiveO18, CaSiOThree, SrSiOThree, BaSiOThreeEtc. can also be mixed. These exist as the other crystal phases described above.
Molding:
If desired, an organic binder, a plasticizer and a solvent are added to and mixed with the mixed powder prepared as described above to prepare a slurry (molding slurry), and a molding method known per se, for example, a doctor blade method. Then, a molded body having a predetermined shape is formed by a calendar roll method, a rolling method, press molding, extrusion molding, injection molding, casting molding, tape molding, or the like.
Firing:
After the binder obtained above is treated to remove the binder at 450 to 750 ° C., it is 1000 ° C. or less, preferably 700 to 1000 ° C., more preferably 800 to 950 ° C. in an oxidizing atmosphere or a non-oxidizing atmosphere. By firing, the low-temperature fired ceramic sintered body of the present invention is obtained.
[0053]
In addition, in order to precipitate the specific crystal phases (a) and (b) described above in the sintered body, and to reduce the open porosity of the sintered body, the temperature increase rate after the binder removal treatment is increased. The holding time at 20 ° C./hour or more is desirable, and the holding time at the firing temperature is desirably 0.2 to 10 hours, particularly 0.5 to 2 hours.
Wiring board:
The low-temperature fired ceramic sintered body described above is extremely useful as an insulating substrate in various wiring boards. FIG. 2 shows a schematic cross-sectional view of a typical semiconductor element storage package as an example of such a wiring board.
[0054]
In FIG. 2, the package A includes an insulating
[0055]
A
[0056]
In the present invention, by forming the insulating
[0057]
Further, since the insulating
[0058]
In FIG. 2, the
[0059]
According to the present invention, the insulating
[0060]
A wiring board such as the above-described package can be manufactured in the same manner as the low-temperature fired ceramic sintered body described above. That is, a molding slurry is prepared using a mixed powder obtained by mixing the glass powder and ceramic powder described above in a certain quantitative ratio, and a ceramic green sheet (insulating) having a thickness of, for example, 50 to 500 μm is prepared using the molding slurry. Sheets for layers 1a-1d) are formed.
[0061]
A through hole is formed at a predetermined position of the green sheet, and a conductive paste containing a low resistance metal such as copper, silver, or gold is filled in the through hole. Further, on the surface of the green sheet corresponding to the insulating layer on which the
[0062]
Then, the plurality of green sheets prepared as described above are aligned and laminated and pressure-bonded, and then subjected to binder removal treatment in an oxidizing atmosphere, a low-oxidizing atmosphere or a non-oxidizing atmosphere, and then 1000 ° C. or lower. By baking in an oxidizing atmosphere or non-oxidizing atmosphere, the insulating
[0063]
The binder removal atmosphere or firing atmosphere is appropriately determined according to the type of low-resistance metal used. For example, in the case of using a metal that oxidizes by firing in an oxidizing atmosphere such as copper, the atmosphere is in a non-oxidizing atmosphere. Then, binder removal or firing is performed.
[0064]
A
[0065]
Further, the sealing
[0066]
Thus, since the low-temperature fired ceramic sintered body of the present invention can be manufactured by firing at a low temperature of 1000 ° C. or lower, by using such a sintered body as an insulating substrate material, Cu, Ag, Au and By simultaneous firing with a low-resistance conductor such as Al, a wiring layer made of these low-resistance conductors and an insulating substrate can be manufactured at once, and the production efficiency of various wiring boards can be improved.
[0067]
Further, in the example of FIG. 2, an example is shown in which the insulating
[0068]
That is, taking the insulating
[0069]
Since the low-temperature fired ceramic sintered body of the present invention has a low open porosity of 0.3% or less, the voids are few and the surface smoothness is good. By using such a thin film forming method, it is possible to form a wiring layer with a fine pattern with high accuracy without causing inconvenience such as misalignment. Prior to forming a thin film metal layer on the surface of the insulating
[0070]
In addition, since the low-temperature fired ceramic sintered body of the present invention is excellent in mechanical properties such as strength, the thickness of the insulating
[0071]
【Example】
Three types of glass powders having the following composition (average particle size is 2 μm) were prepared.
Glass A: SiO228 wt% -Al2O310 wt%-ZnO15 wt%
-B2O318 wt%-BaO28 wt%-
(Glass transition point: 610 ° C)
Glass B: SiO220% by weight-Al2O38 wt%-ZnO20 wt%
-B2O321 wt% -BaO-20 wt% -SrO 9 wt%
-
(Glass transition point: 570 ° C.)
Glass C: SiO224 wt% -Al2O38 wt%-ZnO15 wt%
-B2O318 wt%-BaO-26 wt%-
-
(Glass transition point: 590 ° C)
On the other hand, 2 g of ceramic powder shown in Table 1 having an average particle diameter of 1 to 2 μm is filled in a 20 mmφ diameter mold, and uniaxial press molding is performed at a pressure of 98 MPa for 30 seconds. Calculated as Further, the true density was measured by the He substitution method, and the ratio of pressurized bulk density / true density was calculated and shown in Table 1.
[0072]
Then, the glass powder and the ceramic powder are mixed according to the composition shown in Table 1, and an organic binder, a plasticizer, and toluene are added to the mixture to prepare a slurry. A sheet-like molded body having a thickness of 300 μm was produced. Further, a plurality of the sheet-like molded bodies were laminated so as to have a desired thickness, and thermocompression bonding was performed by applying a pressure of 10 MPa at a temperature of 60 ° C.
[0073]
The obtained laminate was treated to remove the binder at 500 ° C. in the air, then heated at 200 ° C./hour, and fired in the air under the conditions shown in Table 1 to obtain a ceramic sintered body.
[0074]
Next, the open porosity of the obtained ceramic sintered body was measured by the Archimedes method. Further, Young's modulus was measured by an ultrasonic pulse method. Furthermore, this ceramic sintered body was processed into φ10 mm and a thickness of 1.5 mm, and the thermal conductivity was measured by a laser flash method. Moreover, this ceramic sintered body was processed into 3 mm × 4 mm × 50 mm, and a three-point bending strength based on JIS R-1601 was measured using an autograph. Furthermore, this ceramic sintered body was mirror-polished and the fracture toughness was measured by IF method. The results are shown in Table 2.
[0075]
Furthermore, the ceramic sintered body was processed to φ16 mm and
[0076]
BaAl2Si2O8As for the crystal phase, the intensity ratio I (d = 3.900) / I (d = 3.355) was set, with the hexagonal main peak d = 3.900 and the monoclinic main peak d = 3.355. ) Was calculated.
[0077]
Further, the ceramic sintered body was mirror-polished, and BaAl was obtained from a scanning electron microscope (SEM) photograph.2Si2O8The aspect ratio of the crystal phase (needle crystals) was calculated. These results are shown in Table 2.
[0078]
Further, after forming a Ti layer with a thickness of 0.2 μm on the insulating substrate surface of the multilayer wiring board by a vacuum deposition method, various metal layers such as TiW, TiMo, Ni, Cr, and Ta are formed with a thickness of 10 μm. After the formation, a Cu layer was formed with a thickness of 3 μm. The contents of W and Mo in the alloy layer of TiW and TiMo are 90% by weight.
[0079]
Thereafter, a photosensitive photoresist is applied to the entire surface of the thin film metal layer, an etching mask is formed by photolithography technique, and an unnecessary portion of the thin film is removed from the thin film layer with an acidic etching solution. A 1 mm evaluation pad was formed. Then, a pin made of Cu is soldered to this pad, and the multilayer wiring board is held for 15 minutes / 15 minutes in a constant temperature bath controlled at -40 ° C. and 125 ° C. for 100 cycles. After performing the thermal cycle, the pin was pulled up vertically, and the strength when the solder or thin film metal layer was separated was evaluated as the adhesive strength of the thin film metal layer. The results are shown in Table 2.
[0080]
On the other hand, it evaluated similarly using the glass D and glass E which consist of the following compositions instead of the said glass A, B, and C as a comparative example.
[0081]
[Table 1]
[0082]
[Table 2]
[0083]
As is clear from the results in Tables 1 and 2, the crystal phases corresponding to the crystal phases (a) to (c) described above were precipitated, and the celsian crystal phase (b) (BaAl2Si2O8Sample No. containing needle-like crystals having a crystal phase of at least an aspect ratio of 3 or more. 2-8, 10 and 12-22, the intensity ratio I (hex.) / I (mon.) Of the main peak between hexagonal crystal (hex.) And monoclinic crystal (mon.) In X-ray diffraction measurement is 3. The open porosity is 0.3% or less, the bending strength is 280 MPa or more, the thermal conductivity is 2 W / mK or more, the Young's modulus is 100 GPa or more, and the fracture toughness is 1.5 MPa · m.1/2That's it. Moreover, when the surface roughness Ra of the burned skin surface was measured for these sintered bodies, all were 0.5 μm or less. Further, even when a thin metal layer was formed, a high adhesive strength of 22.5 MPa or more was exhibited.
[0084]
On the other hand, Sample No. with a glass powder amount of more than 90% by weight. In Nos. 1 and 11, the filler was insufficient, and some of the components were lost due to baking at 800 ° C. or higher, making it difficult to prepare an appropriate sample. In addition, sample No. in which the amount of glass powder is less than 20% by weight. In No. 9, the open porosity increased, and a dense ceramic sintered body could not be obtained.
[0085]
Sample No. 23 and 24 are AlN, SiThreeNFour, SiC, Al2OThree, ZrO23Al2OThree・ 2SiO2, Mg2SiOFourSince the crystal phase (c) selected from these groups was not contained, the bending strength was lower than 280 MPa, and the Young's modulus was lower than 100 GPa.
[0086]
Furthermore, sample No. using glass D, E which does not contain a predetermined amount of ZnO or BaO as glass powder. 25 and 26, the bending strength is lower than 280 MPa, the thermal conductivity is lower than 2 W / mK, the Young's modulus is lower than 100 GPa, and the fracture toughness is 1.5 MPa · m.1/2It was lower.
referenceSample No. 1 of Example 1 An acrylic binder, a plasticizer, and toluene were added to and mixed with the raw material powder of 10 samples, and a sheet-like molded body having a thickness of 250 μm was produced by a doctor blade method. Next, a via hole is formed at a predetermined position of the sheet-like molded body, and after filling a conductor paste mainly composed of silver, a wiring pattern is formed on the surface of the sheet-like molded body using the conductor paste by a screen printing method. Formed.
[0087]
And 4 sheets were laminated | stacked and thermocompression bonded, aligning the sheet-like molded object in which the said wiring pattern was formed. A binder substrate having a wiring layer mainly composed of silver is obtained by removing the binder from the laminated body at 500 ° C. in the atmosphere, heating at 200 ° C./hour, and firing at 800 ° C. for 1 hour in the atmosphere. Produced.
[0088]
About the obtained wiring board, after mounting a semiconductor element, it was sealed with a sealant, and it showed no warping or deformation, etc. Also, when the conduction of the wiring layer was confirmed, there was no disconnection or the like and low resistance And showed good conduction characteristics.
Example1
Two types of glass powders having the following composition (average particle diameter is 2 μm) were prepared.
Glass F: SiO229% by weight-Al2O312% by weight-ZnO 15% by weight
-B2O310% by weight—BaO 30% by weight—
-Y2O33% by weight (glass transition point: 660 ° C.)
Glass G: SiO224 wt% -Al2O38 wt%-ZnO7 wt%
-MgO 8 wt%-B2O310% by weight-BaO-26% by weight
-
-
(Glass transition point: 500 ° C)
And it mixed according to the composition of Table 3 using the metal oxide powder shown in Table 3 whose average particle diameter is 1-2 micrometers with respect to these glass powders.
[0089]
And using this mixture,referenceA low-temperature fired ceramic sintered body was obtained in the same manner as Example 1 (firing temperatures are shown in Table 3).
[0090]
About the obtained sintered body,referenceAs in Example 1, the open porosity, thermal conductivity, and three-point bending strength were measured. Further, the crystal phase in the sintered body was identified by X-ray diffraction measurement, and these results are shown in Table 3. The identified crystal phases are shown in Table 3 in descending order of peak intensity.
[0091]
further,referenceAs in Example 1, the sintered body was mirror-polished, and BaAl was obtained from a scanning electron microscope (SEM) photograph.2Si2O8The aspect ratio of the crystal phase was calculated. The results are shown in Table 3.
[0092]
[Table 3]
[0093]
As apparent from the results in Table 3, the garnite crystal phase (crystal phase (a)), acicular celsian crystal phase (crystal phase (b)), specific ceramic crystal phase (crystal phase (c)) and Y-containing Sample No. in which the crystal phase (crystal phase (d)) was precipitated was deposited. In 1 to 8, the thermal conductivity was 2 W / mK or more and the bending strength was 280 MPa or more.
Example2
Example1Sample No. An acrylic binder, a plasticizer, and toluene were added to and mixed with the raw material powder of
[0094]
Then, four green sheets on which the wiring layer was formed were stacked and thermocompression bonded while being aligned. The laminate is treated to remove the binder at 700 ° C. in nitrogen containing water vapor, heated at 200 ° C./hour, and then fired at 800 ° C. for 1 hour in nitrogen to provide a wiring layer mainly composed of copper. A multilayer wiring board was produced.
[0095]
The obtained wiring board was confirmed to be conductive in the wiring layer. As a result, there was no disconnection or the like, and the conductive characteristics were low and good.
[0096]
【The invention's effect】
As described above in detail, according to the present invention, by causing a specific crystal phase such as a garnite crystal phase and / or a spinel crystal phase and a celsian crystal phase including an acicular crystal having an aspect ratio of 3 or more to exist, silver , And can be co-fired with a low-resistance metal such as copper or gold, and a sintered body having high strength, high thermal conductivity, Young's modulus, and toughness can be obtained. Further, by using the sintered body as an insulating substrate in the wiring substrate, the substrate strength can be increased, and a highly reliable wiring substrate can be obtained, and the insulating substrate has excellent smoothness. Can be suitably used for any wiring substrate such as a conductor layer can be formed on the surface of the ceramic sintered body by a thin film forming method.
[Brief description of the drawings]
FIG. 1 is a view showing the structure of a low-temperature fired ceramic sintered body of the present invention,
FIG. 2 is a side sectional view showing an example of a wiring board (semiconductor element housing package) using the low-temperature fired ceramic sintered body of the present invention as an insulating substrate.
[Explanation of symbols]
1 Insulating substrate
2 Wiring layer
3 Via-hole conductor
4 Connection electrodes
5 devices
A Package for storing semiconductor elements
B External circuit board
Claims (16)
Ihex/Imon
式中、Ihexは、六方晶のメインピーク強度を示し、
Imonは、単斜晶のメインピーク強度を示す、
で表されるメインピーク強度比が3以上であるX線回折パターンを示すことを特徴とする請求項1乃至請求項7のいずれか記載の低温焼成セラミック焼結体。The (b) celsian crystal phase contains a hexagonal crystal, and in the X-ray diffraction measurement, the following formula:
Ihex / Imon
Where Ihex represents the main peak intensity of the hexagonal crystal,
Imon indicates the main peak intensity of the monoclinic crystal,
The low-temperature fired ceramic sintered body according to any one of claims 1 to 7, wherein an X-ray diffraction pattern having a main peak intensity ratio of 3 or more is represented.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001257775A JP5057620B2 (en) | 2000-08-28 | 2001-08-28 | Low-temperature fired ceramic sintered body and wiring board |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-258021 | 2000-08-28 | ||
JP2000258021 | 2000-08-28 | ||
JP2000258021 | 2000-08-28 | ||
JP2000-261827 | 2000-08-30 | ||
JP2000261827 | 2000-08-30 | ||
JP2000261827 | 2000-08-30 | ||
JP2000332658 | 2000-10-31 | ||
JP2000332658 | 2000-10-31 | ||
JP2000-332658 | 2000-10-31 | ||
JP2001-155499 | 2001-05-24 | ||
JP2001155499 | 2001-05-24 | ||
JP2001155499 | 2001-05-24 | ||
JP2001257775A JP5057620B2 (en) | 2000-08-28 | 2001-08-28 | Low-temperature fired ceramic sintered body and wiring board |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011120685A Division JP5665657B2 (en) | 2000-08-28 | 2011-05-30 | Low-temperature fired ceramic sintered body, method for producing the same, and wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003040668A JP2003040668A (en) | 2003-02-13 |
JP5057620B2 true JP5057620B2 (en) | 2012-10-24 |
Family
ID=27531642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001257775A Expired - Fee Related JP5057620B2 (en) | 2000-08-28 | 2001-08-28 | Low-temperature fired ceramic sintered body and wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5057620B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156457A1 (en) | 2013-03-26 | 2014-10-02 | 日本碍子株式会社 | Glass/ceramic composite material |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4549029B2 (en) * | 2003-02-25 | 2010-09-22 | 京セラ株式会社 | Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board |
JP4549028B2 (en) * | 2003-02-25 | 2010-09-22 | 京セラ株式会社 | Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board |
JP5013239B2 (en) * | 2004-06-15 | 2012-08-29 | 日立金属株式会社 | High strength low temperature fired ceramic composition and multilayer electronic component using the same |
JP4704836B2 (en) * | 2005-03-16 | 2011-06-22 | 日本特殊陶業株式会社 | Low-temperature fired porcelain composition, method for producing the same, and electronic component using the same |
JP4629525B2 (en) * | 2005-07-22 | 2011-02-09 | 日本特殊陶業株式会社 | Multilayer ceramic component and manufacturing method thereof |
JP5177342B2 (en) | 2006-03-31 | 2013-04-03 | 双信電機株式会社 | Manufacturing method of ceramic porcelain |
JP4960453B2 (en) * | 2006-07-21 | 2012-06-27 | ダウ グローバル テクノロジーズ エルエルシー | Improved diesel particulate filter |
CN101754938A (en) | 2007-07-23 | 2010-06-23 | Tdk株式会社 | Ceramic substrate, process for producing the same, and dielectric-porcelain composition |
JP2009158576A (en) * | 2007-12-25 | 2009-07-16 | Ngk Spark Plug Co Ltd | Multilayer ceramic substrate for electronic component inspecting tool |
JP5288296B2 (en) * | 2011-03-10 | 2013-09-11 | 日立金属株式会社 | Manufacturing method of high strength low temperature fired ceramic and high strength low temperature fired ceramic substrate |
TWI613177B (en) * | 2011-11-16 | 2018-02-01 | 製陶技術股份有限公司 | Process to produce a substrate |
CN103803973B (en) * | 2013-12-26 | 2015-09-09 | 浙江大学 | Lower thermal conductivity, high strength dense pure phase zirconic acid lanthanum pottery and preparation method thereof |
CN107001147B (en) * | 2014-12-16 | 2020-07-10 | 日本碍子株式会社 | Ceramic substrate and method for producing same |
JP6314292B1 (en) * | 2016-06-16 | 2018-04-18 | 日本碍子株式会社 | Ceramic substrate and manufacturing method thereof |
JP7248653B2 (en) * | 2018-03-28 | 2023-03-29 | 日本碍子株式会社 | Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59137341A (en) * | 1983-01-20 | 1984-08-07 | Ngk Spark Plug Co Ltd | Crystallized glass body |
JPH0643258B2 (en) * | 1987-11-27 | 1994-06-08 | 昭栄化学工業株式会社 | Dielectric material for circuit boards |
-
2001
- 2001-08-28 JP JP2001257775A patent/JP5057620B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156457A1 (en) | 2013-03-26 | 2014-10-02 | 日本碍子株式会社 | Glass/ceramic composite material |
Also Published As
Publication number | Publication date |
---|---|
JP2003040668A (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5665657B2 (en) | Low-temperature fired ceramic sintered body, method for producing the same, and wiring board | |
JP5057620B2 (en) | Low-temperature fired ceramic sintered body and wiring board | |
JP5057644B2 (en) | Glass ceramic composition and method for producing glass ceramic sintered body | |
JP3793560B2 (en) | Low-temperature fired porcelain and manufacturing method thereof | |
US6753277B2 (en) | Ceramics having excellent high-frequency characteristics and method of producing the same | |
JP4081299B2 (en) | Glass ceramic sintered body and wiring board | |
JP2002111210A (en) | Wiring board and its manufacturing method | |
JP2001240470A (en) | Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use | |
JP4859288B2 (en) | Glass composition, glass sintered body, and wiring board using the same | |
JP5057607B2 (en) | GLASS CERAMIC, ITS MANUFACTURING METHOD, AND WIRING BOARD USING THE SAME | |
JP4422453B2 (en) | Wiring board | |
JP3793559B2 (en) | High frequency porcelain composition and high frequency porcelain | |
JP3523590B2 (en) | Low temperature fired porcelain composition, low temperature fired porcelain, and wiring board using the same | |
JP4762711B2 (en) | Ceramic sintered body and wiring board | |
JP3466561B2 (en) | Low temperature fired porcelain composition, low temperature fired porcelain, and wiring board using the same | |
JP2004256346A (en) | Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact body, and its mounting structure | |
JP2003073162A (en) | Glass ceramic and wiring board | |
JP2010241685A (en) | Glass ceramic sintered compact, and wiring board and thin film wiring board using the compact | |
JP3314131B2 (en) | Wiring board | |
JP4422452B2 (en) | Wiring board | |
JP2003137657A (en) | Glass ceramics and method of manufacturing the same and wiring board | |
JP2005101095A (en) | Porcelain composition, porcelain, and its manufacturing method | |
JP2005179137A (en) | Porcelain having excellent high frequency transmission characteristics | |
JP2004231453A (en) | Glass-ceramic composition, glass-ceramic sintered compact, wiring substrate using the compact, and packaging structure of the wiring substrate | |
JP3827498B2 (en) | Glass ceramic sintered body and wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120703 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120731 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5057620 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |