JPH11310464A - Heat dissipating component made of silicon nitride and its production - Google Patents

Heat dissipating component made of silicon nitride and its production

Info

Publication number
JPH11310464A
JPH11310464A JP10116964A JP11696498A JPH11310464A JP H11310464 A JPH11310464 A JP H11310464A JP 10116964 A JP10116964 A JP 10116964A JP 11696498 A JP11696498 A JP 11696498A JP H11310464 A JPH11310464 A JP H11310464A
Authority
JP
Japan
Prior art keywords
silicon nitride
mol
thermal conductivity
rare earth
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10116964A
Other languages
Japanese (ja)
Other versions
JP3561145B2 (en
Inventor
Akihisa Makino
晃久 牧野
Tomohiro Iwaida
智広 岩井田
Masanobu Ishida
政信 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11696498A priority Critical patent/JP3561145B2/en
Priority to DE19859119A priority patent/DE19859119B4/en
Priority to US09/217,087 priority patent/US6294244B1/en
Publication of JPH11310464A publication Critical patent/JPH11310464A/en
Application granted granted Critical
Publication of JP3561145B2 publication Critical patent/JP3561145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat dissipating component made of silicon nitride at a low cost, capable of being produced through calcining at a temperature of <=1800 deg.C and normal pressure, and having high thermal conductivity, and to provide a method for producing the same component. SOLUTION: This heat dissipating component made of silicon nitride is obtained by calcining a molded product which contains 70-95 mol.% Si3 N4 , 4-30 mol.% [rare earth metals (RE)+Mg] in terms of their oxides and in a mol ratio (RE2 O3 /MgO) of 0.1-15 in terms of RE2 O3 and MgO and <=1.0 mol.% Al in terms of its oxides in a non-oxidizing atmosphere at 1,650-1,800 deg.C and then by the heat treatment of the product at 1,100-1,600 deg.C for >=1 h. The resultant product has a relative density of >=90%, a surface roughness (Rmax) of <=10 μm on the calcined face and a thermal conductivity of >=50 W/(m.K), and contains crystalline phases comprising MgSiO3 , MgSiN2 in grain boundary layers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子収納用
パッケージ材料における半導体素子から発生する熱、各
種発熱性素子から発生する熱を放熱するのに好適な窒化
珪素質放熱部材とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride heat radiation member suitable for radiating heat generated from semiconductor elements and heat generated from various heat-generating elements in a semiconductor element housing package material, and a method of manufacturing the same. Things.

【0002】[0002]

【従来技術】近年、MOSFETやIGBTなどのパワ
ー系デバイスを用いたパワーモジュールが電車、電気自
動車などの電動車両における制御基板に適用されつつあ
る。これらのパワー系デバイスに使用される電流は数十
〜数百Aを超え、また電圧も数百Vと非常に高電力とな
るため、パワー系デバイスから発生する熱も大きくな
る。これにより、デバイスの誤動作を防止するために、
発生熱をいかに系外に放出するかが大きな問題となって
いる。
2. Description of the Related Art In recent years, power modules using power devices such as MOSFETs and IGBTs have been applied to control boards in electric vehicles such as electric trains and electric vehicles. Since the current used for these power devices exceeds several tens to several hundreds of amperes and the voltage is very high at several hundred volts, the heat generated from the power devices increases. This prevents the device from malfunctioning,
A major problem is how to release the generated heat out of the system.

【0003】従来より、デバイスから発生した熱を放熱
するための好適な材料としては、炭化ケイ素、ベリリウ
ム、窒化アルミニウム等のセラミックスが用いられてき
たが、安全性および量産性などの点から窒化アルミニウ
ム質セラミックスが最も多用されている。
Conventionally, ceramics such as silicon carbide, beryllium, and aluminum nitride have been used as a suitable material for radiating heat generated from the device. However, aluminum nitride is preferred in terms of safety and mass productivity. Ceramics are most frequently used.

【0004】しかし、電動車両におけるモジュール基板
として適用するためには、高熱伝導性のみならず、高い
耐久性を有することが必要であるが、窒化アルミニウム
質セラミックスは、強度および破壊靭性が低いため、過
酷な条件下で使用される電動車両等の基板材料としては
不向きであった。
However, in order to be used as a module substrate in an electric vehicle, it is necessary to have not only high thermal conductivity but also high durability. However, aluminum nitride ceramics have low strength and fracture toughness. It is unsuitable as a substrate material for electric vehicles and the like used under severe conditions.

【0005】そこで、高熱伝導性とともに高強度、高信
頼性の要求に応える材料として、最近、窒化珪素質焼結
体が注目されてきている。従来より、窒化珪素質焼結体
は、ガスタービンなどの高温構造材料として盛んに研
究、開発されており、一般には、焼結助剤として、希土
類元素酸化物を添加し1800℃〜2000℃という非
常に高い温度で、また窒化珪素の高温での分解反応を抑
えるため数〜100気圧の加圧窒素雰囲気中で焼成さ
れ、作製されている。
Therefore, silicon nitride sintered bodies have recently been receiving attention as a material that meets the requirements of high thermal conductivity, high strength and high reliability. BACKGROUND ART Conventionally, silicon nitride-based sintered bodies have been actively studied and developed as high-temperature structural materials for gas turbines and the like. In general, a rare earth element oxide is added as a sintering aid to a temperature of 1800 ° C. to 2000 ° C. It is manufactured by firing at a very high temperature and in a pressurized nitrogen atmosphere of several to 100 atm in order to suppress the decomposition reaction of silicon nitride at a high temperature.

【0006】一方、耐熱特性がさほど要求されない場合
は、焼結助剤としてさらにアルミナやマグネシア等を添
加することにより1700〜1800℃の比較的低温で
焼成することにより作製されている。
On the other hand, when heat resistance is not so required, it is manufactured by adding alumina, magnesia or the like as a sintering aid and firing at a relatively low temperature of 1700 to 1800 ° C.

【0007】[0007]

【発明が解決しようとする課題】窒化珪素はその構成元
素や結晶構造から高熱伝導性を有すると予測されなが
ら、構造用材料の研究に比べ放熱部材としての研究はあ
まりなされていなかった。最近になって、高温構造材料
としての窒化珪素の熱伝導率がかなり高いことが注目さ
れており、放熱部材への検討が始まっている。
Although silicon nitride is predicted to have high thermal conductivity based on its constituent elements and crystal structure, much less research has been done on a heat dissipating member than research on structural materials. Recently, attention has been paid to the fact that silicon nitride as a high-temperature structural material has a considerably high thermal conductivity, and studies on heat dissipation members have begun.

【0008】このような経緯から放熱部材としての研究
も高温での焼結を前提としたものがほとんどであって、
低温低圧下での放熱部材の製造技術に関する研究はあま
りおこなわれていない。たとえば、特開平6−1357
71号、特開平7−149588号では、助剤として主
に希土類元素酸化物を含み1800〜2000℃にて窒
素加圧することにより60W/m・K以上の熱伝導率を
有する窒化珪素焼結体が得られるとしている。
[0008] From such circumstances, most of the research as a heat dissipating member is based on the premise of sintering at a high temperature.
There is not much research on the technology of manufacturing heat dissipating members under low temperature and low pressure. For example, Japanese Unexamined Patent Application Publication No.
No. 71 and JP-A-7-149588, a silicon nitride sintered body mainly containing a rare earth element oxide as an auxiliary agent and having a thermal conductivity of 60 W / m · K or more by pressurizing with nitrogen at 1800 to 2000 ° C. Is obtained.

【0009】しかしながら、高温加圧焼成は、高圧の窒
素ガスを用いるため、特殊な焼成炉が必要となり、コス
トが高くなるという問題があった。
[0009] However, high temperature and pressure sintering requires the use of a high pressure nitrogen gas, so that a special sintering furnace is required and the cost is increased.

【0010】また、焼成時に窒化珪素自身の分解は避け
られず、焼結体の焼き肌面は非常に荒れたものであっ
た。このため、このような材料を実際に使うには、研磨
などの加工処理が必要となるため、手間がかかり、かつ
コスト上昇の一因となっていた。
Further, decomposition of silicon nitride itself is inevitable during firing, and the burning surface of the sintered body is very rough. Therefore, in order to actually use such a material, processing such as polishing is required, which is troublesome and contributes to an increase in cost.

【0011】一方、1700〜1800℃の低温焼成さ
れた窒化珪素質焼結体は、焼結体の焼き肌面の荒れが低
減される反面、熱伝導率が20〜30W/m・Kと非常
に低いものであった。
On the other hand, a silicon nitride sintered body fired at a low temperature of 1700 to 1800 ° C. has a reduced thermal conductivity of 20 to 30 W / m · K, while the roughness of the burning surface of the sintered body is reduced. Was low.

【0012】本発明者らは、これまでに焼結助剤として
希土類元素化合物とマグネシウム化合物とを共に添加す
るとともに、焼結体中のAl量を制御することにより窒
化珪素質焼結体を低温で常圧焼成することが可能であ
り、かつ熱伝導率を向上できることを提案した。しかし
ながら、その熱伝導率はせいぜい30〜40W/m・K
程度であり、実用的には不十分であった。
The present inventors have heretofore added a rare earth element compound and a magnesium compound together as sintering aids, and controlled the amount of Al in the sintered body to reduce the silicon nitride sintered body to a low temperature. It was proposed that it could be fired at normal pressure and improve the thermal conductivity. However, its thermal conductivity is at most 30-40 W / m · K
And it was practically insufficient.

【0013】[0013]

【課題を解決するための手段】本発明者らは、前記課題
に対して、焼結助剤として希土類元素化合物とマグネシ
ウム化合物とを共に添加するとともに、焼結体中のAl
量を制御した窒化珪素質放熱部材に対して、焼成後に熱
処理を施すことによって、粒界に存在するMgを特定の
結晶相として析出させることによって、高熱伝導率を有
する窒化珪素質放熱部材が得られることを見出し、本発
明に至った。
The present inventors have solved the above-mentioned problem by adding both a rare earth element compound and a magnesium compound as sintering aids,
The silicon nitride-based heat radiating member having a high thermal conductivity is obtained by subjecting the silicon nitride-based heat radiating member whose amount is controlled to heat treatment after firing, thereby precipitating Mg present at the grain boundaries as a specific crystal phase. And found that the present invention was achieved.

【0014】即ち、本発明の窒化珪素質放熱部材は、窒
化珪素からなる主結晶相と、少なくとも希土類元素、M
gおよびSiを含む粒界相からなる焼結体からなり、前
記粒界相にMgSiO3 あるいはMgSiN2 からなる
結晶相を含有するとともにAlの酸化物換算による含有
量が1.0モル%以下、相対密度90%以上、焼肌面の
表面粗さ(Rmax)が10μm以下、熱伝導率が50
W/m・K以上であることを特徴とするものである。
That is, the silicon nitride heat dissipation member of the present invention comprises a main crystal phase made of silicon nitride, at least a rare earth element,
a sintered body consisting of a grain boundary phase containing g and Si, wherein the grain boundary phase contains a crystal phase consisting of MgSiO 3 or MgSiN 2 and the content of Al in terms of oxide is 1.0 mol% or less; The relative density is 90% or more, the surface roughness (Rmax) of the burnt surface is 10 μm or less, and the thermal conductivity is 50
W / m · K or more.

【0015】また、本発明の窒化珪素質放熱部材は、窒
化珪素を70〜95モル%、希土類元素金属(RE)お
よびとMgをRE2 3 およびMgO換算による合量で
4〜30モル%と、前記希土類元素金属(RE)とMg
を酸化物換算によるモル比(RE2 3 /MgO)が
0.1〜15となる比率で含むことが望ましい。
In the silicon nitride heat dissipation member of the present invention, 70 to 95 mol% of silicon nitride, and 4 to 30 mol% of rare earth metal (RE) and Mg in total in terms of RE 2 O 3 and MgO. And the rare earth element metal (RE) and Mg
Molar ratio of an oxide converted (RE 2 O 3 / MgO) may be desirable to include a proportion of a 0.1 to 15.

【0016】またその製造方法として窒化珪素(Si3
4 )を70〜95モル%、希土類元素(RE)及びM
gをRE2 3 およびMgO換算による合量で4〜30
モル%、前記希土類元素(RE)とMgの酸化物換算に
よるRE2 3 /MgOで表されるモル比が0.1〜1
5となる比率で含み、Alの酸化物換算による含有量が
1.0モル%以下の成形体を非酸化性雰囲気中、165
0〜1800℃の温度で焼成した後、1100〜160
0℃の温度範囲で1時間以上熱処理を施すことを特徴と
するものである。
As a method of manufacturing the same, silicon nitride (Si 3
N 4) 70-95 mol%, the rare earth element (RE) and M
g in a total amount of 4 to 30 in terms of RE 2 O 3 and MgO.
Mol%, and the molar ratio represented by RE 2 O 3 / MgO in terms of oxide of the rare earth element (RE) and Mg is 0.1 to 1
5 in a non-oxidizing atmosphere.
After firing at a temperature of 0 to 1800 ° C, 1100 to 160
The heat treatment is performed in a temperature range of 0 ° C. for 1 hour or more.

【0017】本発明によれば、窒化珪素質放熱部材およ
びその製造方法によれば、焼結助剤として添加する希土
類元素(RE)が存在することにより、結晶相の結晶を
促進する。また希土類元素(RE)は液相中に存在し、
最終的に粒界にRE2 Si33 4 、RE2 Si
5 、RE2 Si2 7 等の結晶相として析出し、粒界
に残存する低熱伝導性の非晶質相を低減できる結果、高
熱伝導率な焼結体を有することができる。また、希土類
元素(RE)は窒化珪素のα−β転移に伴う柱状晶のア
スペクト比を増加させ、得られる焼結体の破壊靱性を向
上する作用を有する。
According to the present invention, according to the silicon nitride heat radiation member and the method of manufacturing the same, the presence of the rare earth element (RE) added as a sintering aid promotes the crystallization of the crystal phase. Rare earth elements (RE) exist in the liquid phase,
Finally, RE 2 Si 3 O 3 N 4 and RE 2 Si
As a result of reducing the amorphous phase having low thermal conductivity that precipitates as a crystal phase such as O 5 and RE 2 Si 2 O 7 and remains at the grain boundary, a sintered body having high thermal conductivity can be obtained. Further, the rare earth element (RE) has an effect of increasing the aspect ratio of the columnar crystal accompanying the α-β transition of silicon nitride and improving the fracture toughness of the obtained sintered body.

【0018】また、本発明の窒化珪素質放熱部材及びそ
の製造方法によれば、焼結助剤の希土類元素(RE)成
分とMg成分は、窒化珪素原料中の不純物酸素と反応し
液相を生成することにより、低温での焼結を促進し、窒
化珪素の焼成を1800℃以下の比較的低温にて焼成す
ることができる結果、常圧の非酸化性雰囲気中にて、焼
き肌面の荒れの少ない焼結体を得ることができる。
According to the silicon nitride heat dissipation member and the method of manufacturing the same of the present invention, the rare earth element (RE) component and the Mg component of the sintering aid react with impurity oxygen in the silicon nitride raw material to form a liquid phase. By generating, the sintering at a low temperature can be promoted and the sintering of silicon nitride can be sintered at a relatively low temperature of 1800 ° C. or less. A sintered body with less roughness can be obtained.

【0019】本発明によれば、焼成後に熱処理を施し
て、粒界に残留する主にMgを含む非晶質相がMgSi
3 あるいはMgSiN2 として結晶化することによっ
て、粒界に残留する低熱伝導率の非晶質相が低減され、
焼結体の熱伝導率をさらに向上することができる。
According to the present invention, a heat treatment is performed after the sintering so that the amorphous phase mainly containing Mg remaining at the grain boundary is MgSi.
By crystallizing as O 3 or MgSiN 2 , the low thermal conductivity amorphous phase remaining at the grain boundary is reduced,
The thermal conductivity of the sintered body can be further improved.

【0020】さらに、Al成分は希土類元素(RE)成
分とMg成分と同様に低温で液相を生成し低温焼結性を
高めるが、多量に存在すると窒化珪素粒内に固溶した
り、サイアロンを形成するなどして熱伝導率を低下させ
るために、Al量を1.0モル%以下とすることによっ
て、高熱伝導性を付与することができる。
Further, the Al component forms a liquid phase at a low temperature and enhances the low-temperature sinterability similarly to the rare earth element (RE) component and the Mg component, but if present in a large amount, it may form a solid solution in silicon nitride grains or form sialon. In order to reduce the thermal conductivity by, for example, forming Al, by setting the Al content to 1.0 mol% or less, high thermal conductivity can be imparted.

【0021】[0021]

【発明の実施の形態】以下、本発明の放熱部材およびそ
の製造方法について、詳細に述べる。まず本発明の窒化
珪素放熱部材はβ−窒化珪素相を主体とするものであ
り、この窒化珪素結晶は、焼結体の断面における電子顕
微鏡写真より求めた平均アスペクト比が1.5〜5短軸
径が0.1μm〜1μmの結晶から構成される。そし
て、この焼結体中には、希土類元素およびMgを必須の
成分として含有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a heat radiating member of the present invention and a method of manufacturing the same will be described in detail. First, the silicon nitride heat radiating member of the present invention has a β-silicon nitride phase as a main component, and the silicon nitride crystal has an average aspect ratio of 1.5 to 5 short as determined from an electron micrograph of a cross section of the sintered body. It is composed of a crystal having a shaft diameter of 0.1 μm to 1 μm. The sintered body contains a rare earth element and Mg as essential components.

【0022】希土類元素(RE)としてはY、La、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb、Luの何れの元素でも好
適に用いることができるが、これらの中でもY、Ce、
Sm、Dy、Er、Yb、LuとりわけY、Erが特
性、コストの点で望ましい。
As the rare earth element (RE), Y, La, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
Any of y, Ho, Er, Tm, Yb, and Lu can be suitably used, and among these, Y, Ce,
Sm, Dy, Er, Yb, and Lu, especially Y and Er, are desirable in terms of characteristics and cost.

【0023】また、希土類元素(RE)及びMgは酸化
物換算による合量で4〜30モル%、特に5〜25モル
%の範囲で含有される。但し、前記希土類元素とMgと
の酸化物換算によるモル比(RE2 3 /MgO)が
0.1〜15、特に0.5〜13の範囲となるようにす
ることが望ましい。
The rare earth element (RE) and Mg are contained in a total amount of 4 to 30 mol%, particularly 5 to 25 mol% in terms of oxide. However, it is desirable that the molar ratio (RE 2 O 3 / MgO) of the rare earth element and Mg in terms of oxide be in the range of 0.1 to 15, particularly 0.5 to 13.

【0024】これは上記合量が4モル%より少ないと、
1800℃以下の温度で焼成して焼結体を充分に緻密化
させることが困難であり、30モル%を越えると焼結体
中での粒界相の絶対量が増加するため、焼結体の熱伝導
率が低下するためである。またRE2 3 /MgOの比
率が15を越えたり、0.1より小さくなると、Mgま
たは希土類元素(RE)の絶対量が少なくなるため、焼
成時に液相が充分に生成せず、低温焼成では緻密化が不
十分となり、熱伝導率は低下する。また、Al2 3
どのAl化合物の配合は、焼結性の向上に大きく寄与す
るが、Si3 4 結晶中に固溶して結晶内に欠陥を生成
しフォノンの伝播を阻害する結果、焼結体の熱伝導率を
著しく低下させるため、高熱伝導化のためには大量に存
在しないことが望ましく、具体的には、Alは酸化物換
算で1.0モル%以下、望ましくは0.5モル%以下、
より望ましくは0.1モル%以下、更には0.01モル
%以下にするのがよい。
This is because when the total amount is less than 4 mol%,
It is difficult to fire the sintered body at a temperature of 1800 ° C. or less to sufficiently densify the sintered body, and if it exceeds 30 mol%, the absolute amount of the grain boundary phase in the sintered body increases. This is because the thermal conductivity of the aluminum alloy decreases. If the ratio of RE 2 O 3 / MgO exceeds 15 or is smaller than 0.1, the absolute amount of Mg or the rare earth element (RE) decreases, so that a liquid phase is not sufficiently generated during firing, and In this case, the densification becomes insufficient, and the thermal conductivity decreases. The compounding of an Al compound such as Al 2 O 3 greatly contributes to the improvement of the sinterability, but results in a solid solution in the Si 3 N 4 crystal to generate defects in the crystal and inhibit the propagation of phonons. In order to significantly lower the thermal conductivity of the sintered body, it is desirable that the sintered body does not exist in a large amount for high thermal conductivity. Specifically, Al is 1.0 mol% or less in terms of oxide, preferably 0 mol%. 0.5 mol% or less,
More desirably, the content is 0.1 mol% or less, further preferably 0.01 mol% or less.

【0025】なお、この焼結体中には着色成分としてT
i、Hf、Zr、V、Nb、Ta、Cr、Mo、Wなど
周期律表第4a、5a、6a属金属のうち少なくとも1
種を酸化物換算で0.05〜1重量%の割合で含んでい
てもよい。
The sintered body contains T as a coloring component.
i, Hf, Zr, V, Nb, Ta, Cr, Mo, W and at least one of metals belonging to Groups 4a, 5a and 6a of the Periodic Table.
The seed may be contained at a ratio of 0.05 to 1% by weight in terms of oxide.

【0026】また、本発明の窒化珪素質放熱部材は、上
記の各成分組成からなるものであるが、その相対密度が
90%以上、特に95%以上であることが高熱伝導化を
図る上で重要であり、相対密度が90%よりも低いと熱
伝導率50W/m・K以上の達成は困難である。
The silicon nitride heat radiation member of the present invention is composed of the above-mentioned respective component compositions. The relative density of the heat radiation member is preferably at least 90%, especially at least 95% in order to achieve high thermal conductivity. Importantly, if the relative density is lower than 90%, it is difficult to achieve a thermal conductivity of 50 W / m · K or more.

【0027】また、本発明の窒化珪素質放熱部材におい
ては、窒化珪素結晶粒界にMgSiO3 あるいはMgS
iN2 の結晶相を含むものであり、さらにはRE2 Si
3 3 4 、RE2 SiO5 、RE2 Si2 7 等のR
E含有結晶相を含むものである。これらの結晶相の析出
によって、粒界中に存在する低熱伝導率の非晶質相を低
減せしめ、高熱伝導化を達成できる。
In the silicon nitride heat dissipation member of the present invention, MgSiO 3 or MgS
It contains a crystal phase of iN 2 , and further contains RE 2 Si
R such as 3 O 3 N 4 , RE 2 SiO 5 , RE 2 Si 2 O 7
It contains an E-containing crystal phase. By precipitation of these crystal phases, the low thermal conductivity amorphous phase present in the grain boundaries can be reduced, and high thermal conductivity can be achieved.

【0028】また、本発明の窒化珪素質放熱部材は、焼
肌面の表面粗さ(Rmax)が10μm以下、特に7μ
m以下であることも大きな特徴であり、これにより、必
ずしも表面を研磨加工することなく、製品に供すること
ができる。
The silicon nitride heat radiation member of the present invention has a surface roughness (Rmax) of 10 μm or less, especially 7 μm,
m is also a major feature, whereby the product can be provided to the product without necessarily polishing the surface.

【0029】本発明の窒化珪素質放熱部材を製造するに
は、窒化珪素粉末に対して、焼結助剤として、希土類元
素化合物、Mg化合物、場合によってはAl化合物を前
述の比率に配合する。
In order to manufacture the silicon nitride heat radiation member of the present invention, a rare earth element compound, a Mg compound, and in some cases, an Al compound are added to silicon nitride powder in the above-described ratio as a sintering aid.

【0030】用いる窒化珪素粉末としては不純物酸素量
が0.5〜3.0重量%のものが好ましい。これは不純
物酸素量が3.0重量%よりも多いと、焼結体表面が荒
れ強度劣化を招く虞があり、0.5重量%よりも少ない
と焼結性が悪くなるためである。また、平均粒径は、
0.1〜1.5μmであり、α率が90%以上であるこ
とが望ましい。なお、焼結助剤となる化合物は、酸化
物、炭酸塩、酢酸塩など焼成によって酸化物を形成し得
る化合物であることが望ましい。
The silicon nitride powder used preferably has an impurity oxygen content of 0.5 to 3.0% by weight. This is because if the amount of impurity oxygen is more than 3.0% by weight, the surface of the sintered body may be roughened and the strength may be degraded. If the amount is less than 0.5% by weight, the sinterability is deteriorated. The average particle size is
0.1 to 1.5 μm, and the α ratio is desirably 90% or more. The compound serving as a sintering aid is preferably a compound capable of forming an oxide by firing, such as an oxide, a carbonate, and an acetate.

【0031】次に、該混合粉末に有機バインダーと溶媒
とを添加して調製し、例えばプレス成形法や、CIP成
形法、ドクターブレード法、圧延法、テープ成形法、押
し出し成形法、射出成形法等の周知の成形方法で成形体
を作製する。その後、該成形体を弱酸化性雰囲気中、所
定温度で脱バインダー処理してから、窒素などの非酸化
性雰囲気中で、1650〜1800℃、特に1700〜
1800℃の温度で焼成する。
Next, an organic binder and a solvent are added to the mixed powder to prepare the mixture. For example, a press molding method, a CIP molding method, a doctor blade method, a rolling method, a tape molding method, an extrusion molding method, an injection molding method A molded body is produced by a known molding method such as that described above. Thereafter, the molded body is subjected to a binder removal treatment in a weakly oxidizing atmosphere at a predetermined temperature, and then in a non-oxidizing atmosphere such as nitrogen at 1650 to 1800 ° C., particularly 1700 to 1700 ° C.
Baking at a temperature of 1800 ° C.

【0032】その後、本発明によれば、前記焼成後に、
1100〜1600℃の範囲で1時間以上、特に3時間
以上熱処理を施す。熱処理温度を1100〜1600℃
としたのは、粒界相の結晶化温度は1200℃程度であ
り、1100℃より低い温度で熱処理を行なっても所望
の結晶相は得られず、非晶質粒界相が大量に残存するた
め熱伝導率は低下する。また1600℃より高い温度で
熱処理を行なった場合、通常の焼成と同じになり、所望
の結晶相は析出しない。
Thereafter, according to the present invention, after the sintering,
Heat treatment is performed in the range of 1100 to 1600 ° C. for 1 hour or more, particularly 3 hours or more. Heat treatment temperature 1100-1600 ° C
The reason is that the crystallization temperature of the grain boundary phase is about 1200 ° C., and even if heat treatment is performed at a temperature lower than 1100 ° C., a desired crystal phase cannot be obtained and a large amount of the amorphous grain boundary phase remains. Thermal conductivity decreases. Further, when the heat treatment is performed at a temperature higher than 1600 ° C., it becomes the same as normal firing, and the desired crystal phase does not precipitate.

【0033】また熱処理が1時間より短い場合、粒界相
の結晶化が不十分であるため、熱伝導率は低下する。熱
伝導率を向上させるためには、特に3時間以上の熱処理
が有効である。
If the heat treatment is shorter than one hour, the crystallization of the grain boundary phase is insufficient, so that the thermal conductivity decreases. In order to improve the thermal conductivity, a heat treatment of at least 3 hours is particularly effective.

【0034】なお、前記熱処理には、焼成後一旦室温ま
で冷却した後、再度1100〜1600℃に温度を上げ
1時間以上保持するか、あるいは焼成時冷却中に110
0〜1600℃の温度で1時間以上保持するかまたは1
100〜1600℃の温度範囲を5時間以上かけて徐冷
する等の方法がある。1100℃〜1600℃の温度範
囲を急冷すると所望の結晶相は得られず、同様に熱伝導
率は低下する。 なお、本発明の窒化珪素質放熱部材
は、例えば、半導体素子を搭載したパッケージにおける
ヒートシンク部材に用いることができる他、半導体素子
を搭載する配線基板の絶縁基板としても用いることがで
きる。その場合、絶縁基板の表面あるいは内部に配線層
を形成する場合がある。そのような場合には、焼結後の
放熱部材の表面に、Cu、W、Mo−Mn、Mo、Pd
−Agなどの高融点金属からなる導電性ペーストを印刷
塗布した後、非酸化性雰囲気中で焼き付けるか、成形体
表面に上記ペースト塗布後、同時焼成することにより作
製することができる。
In the heat treatment, the temperature is once cooled to room temperature after firing and then raised to 1100 to 1600 ° C. again and held for one hour or more.
Hold at a temperature of 0 to 1600 ° C. for 1 hour or more or 1
For example, there is a method in which the temperature is slowly cooled in a temperature range of 100 to 1600 ° C over 5 hours or more. If the temperature range of 1100 ° C. to 1600 ° C. is quenched, a desired crystal phase cannot be obtained, and the thermal conductivity similarly decreases. The silicon nitride heat dissipation member of the present invention can be used, for example, as a heat sink member in a package on which a semiconductor element is mounted, and also as an insulating substrate of a wiring board on which the semiconductor element is mounted. In that case, a wiring layer may be formed on the surface or inside of the insulating substrate. In such a case, Cu, W, Mo-Mn, Mo, Pd
It can be produced by printing and applying a conductive paste made of a high melting point metal such as -Ag and baking it in a non-oxidizing atmosphere, or by applying the paste on the surface of the molded body and firing it simultaneously.

【0035】また、焼成後の放熱部材の表面に銅箔を直
接あるいは接続用メタライズ層を介して接合後、場合に
よってはエッチングして配線層を形成することも可能で
ある。
It is also possible to form a wiring layer by bonding a copper foil to the surface of the heat radiating member after firing, directly or via a metallizing layer for connection, and in some cases, etching.

【0036】[0036]

【実施例】平均粒径が1.2μm、酸素量が1.3重量
%、α率93%の直接窒化法により製造された窒化珪素
原料粉末に希土類元素酸化物、MgCO3 、Al2 3
を表1、2に示すような成形体組成となるように添加混
合し、その混合粉末に対して成形用バインダーとしてパ
ラフィンワックスを、溶媒としてイソプロピルアルコー
ルを添加し、混練乾燥後、篩を通して成形用顆粒を得、
該顆粒を成形圧1ton/cm2 で金型プレスにより、
直径12mm、厚さ5mmの円板状に成形した。
EXAMPLE A rare earth element oxide, MgCO 3 , Al 2 O 3 was added to a silicon nitride raw material powder having an average particle diameter of 1.2 μm, an oxygen content of 1.3% by weight and an α rate of 93% by a direct nitriding method.
Is added and mixed so as to obtain a molded body composition as shown in Tables 1 and 2, paraffin wax is added as a molding binder to the mixed powder, isopropyl alcohol is added as a solvent, kneaded and dried, and then passed through a sieve. Obtain granules,
The granules were pressed by a mold press at a molding pressure of 1 ton / cm 2 ,
It was formed into a disk having a diameter of 12 mm and a thickness of 5 mm.

【0037】かくして得られた成形体を所定温度で脱バ
インダーした後、常圧(大気圧)、窒素雰囲気中、表
1、2に示す温度で3時間焼成し、さらに表1、2に示
す条件にて熱処理を施して窒化珪素質焼結体を作製し、
評価用の試料とした。
After debinding the thus obtained molded body at a predetermined temperature, it is fired at a temperature shown in Tables 1 and 2 for 3 hours under a normal pressure (atmospheric pressure) and a nitrogen atmosphere. To produce a silicon nitride-based sintered body
The sample was used for evaluation.

【0038】得られた評価用試料を用いて、まずアルキ
メデス法により窒化珪素質焼結体の密度を測定し、理論
密度に対する比率である相対密度(%)を算出した。つ
いで厚み3mmの試料について、レーザーフラッシュ法
により熱伝導率を測定した。また、相対密度が90%以
上の試料について焼結体表面についてX線回折測定を行
い、窒化珪素以外の結晶相が粒界に存在するとみなし、
粒界結晶相の同定を行った。さらに、JISR1601
に従い、焼肌面の室温における3点曲げ強度を測定し
た。また焼肌面の表面粗さRmaxを測定した。結果
は、表1、2に示した。
Using the obtained evaluation sample, the density of the silicon nitride sintered body was first measured by the Archimedes method, and the relative density (%) as a ratio to the theoretical density was calculated. Next, the thermal conductivity of the sample having a thickness of 3 mm was measured by a laser flash method. For a sample having a relative density of 90% or more, X-ray diffraction measurement was performed on the surface of the sintered body, and it was considered that a crystal phase other than silicon nitride was present at the grain boundary,
The grain boundary crystal phase was identified. Furthermore, JISR1601
, The three-point bending strength of the burnt skin surface at room temperature was measured. Further, the surface roughness Rmax of the burnt skin surface was measured. The results are shown in Tables 1 and 2.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表1、2の結果から明らかなように、試料
No.1〜13について、窒化珪素量、RE2 3 +M
gO量およびRE2 3 /MgOの比率が本発明の範囲
を逸脱する試料No.1、7、8、13では、相対密度
が低下するか、熱伝導率が低下し、50W/m・K以上
の熱伝導率は得られなかった。またAlの含有量として
原料粉末中に含まれる不純物Alを含めて1.0モル%
を超える試料No.18では緻密化はするが、熱伝導率
は大きく低下した。
As is clear from the results in Tables 1 and 2, Sample No. For 1 to 13, the amount of silicon nitride, RE 2 O 3 + M
The sample No. whose gO amount and the ratio of RE 2 O 3 / MgO deviated from the scope of the present invention. In 1, 7, 8, and 13, the relative density decreased or the thermal conductivity decreased, and a thermal conductivity of 50 W / m · K or more was not obtained. The content of Al is 1.0 mol% including the impurity Al contained in the raw material powder.
Sample no. In No. 18, although densification was performed, the thermal conductivity was significantly reduced.

【0042】また、希土類元素としてYの他の希土類元
素においても同様な焼結挙動と高熱伝導性を示した。
Further, the same sintering behavior and high thermal conductivity were exhibited in other rare earth elements of Y as the rare earth element.

【0043】熱処理をまったく行わない試料No.27
および熱処理時間が0.5時間の試料No.32ではM
g含有の結晶相は見られず、熱伝導率は低下した。熱処
理時間が1時間以上の試料では粒界結晶相が析出し、熱
伝導率は著しく向上した。しかし熱処理時間を3時間以
上長くした試料No.34については熱伝導率は変わら
なかった。
Sample No. which was not subjected to any heat treatment 27
Sample No. with a heat treatment time of 0.5 hour. 32 for M
No g-containing crystal phase was observed, and the thermal conductivity decreased. In the sample having a heat treatment time of 1 hour or more, a grain boundary crystal phase was precipitated, and the thermal conductivity was significantly improved. However, Sample No. 3 in which the heat treatment time was extended by 3 hours or more. For 34, the thermal conductivity did not change.

【0044】また、1100℃より低い温度で熱処理を
行った試料No.28および1600℃よりも高い温度
で熱処理を行った試料No.31ではMg含有の結晶相
は見られず、熱伝導率は熱処理しない試料No.27の
熱伝導率と変わらなかった。
Sample No. 1 which was heat-treated at a temperature lower than 1100 ° C. Sample No. 28 which was subjected to a heat treatment at a temperature higher than In Sample No. 31, no Mg-containing crystal phase was observed, and the thermal conductivity of Sample No. 31 was not heat-treated. It was not different from the thermal conductivity of 27.

【0045】さらに、1650℃より低い温度で焼成を
行った試料No.35では相対密度が低下し、また、1
800℃よりも高い温度で焼成を行った試料No.38
では表面粗さ(Rmax)が大きくなった。これに対
し、本発明の範囲内のものはいずれも相対密度90%以
上、3点曲げ強度700MPa以上、表面粗さ(Rma
x)10μm以下、熱伝導率50W/m・K以上を有す
る焼結体が得られた。
Further, Sample No. 2 was fired at a temperature lower than 1650 ° C. At 35, the relative density decreases, and
Sample No. baked at a temperature higher than 800 ° C. 38
In the table, the surface roughness (Rmax) was increased. On the other hand, those having a relative density of 90% or more and a three-point bending strength of 700 MPa or more and a surface roughness (Rma
x) A sintered body having 10 μm or less and a thermal conductivity of 50 W / m · K or more was obtained.

【0046】[0046]

【発明の効果】以上詳述したとおり、本発明の窒化珪素
質放熱部材及びその製造方法によれば、1800℃以下
の温度で常圧焼成可能であり、かつ熱伝導率50W/m
・K以上を達成できることから、低コストとともに、各
種放熱部材として幅広い分野に応用することができる
As described above in detail, according to the silicon nitride heat radiation member and the method of manufacturing the same of the present invention, normal pressure firing at a temperature of 1800 ° C. or less is possible and thermal conductivity is 50 W / m.
・ Because it can achieve K or more, it can be applied to a wide range of fields as various heat dissipating members with low cost.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素からなる主結晶相と、少なくとも
希土類元素、MgおよびSiを含む粒界相からなる焼結
体からなり、前記粒界相にMgSiO3 あるいはMgS
iN2 からなる結晶相を含有するとともにAlの酸化物
換算による含有量が1.0モル%以下、相対密度90%
以上、焼肌面の表面粗さ(Rmax)が10μm以下、
熱伝導率が50W/m・K以上であることを特徴とする
窒化珪素質放熱部材。
1. A sintered body comprising a main crystal phase made of silicon nitride and a grain boundary phase containing at least a rare earth element, Mg and Si, wherein said grain boundary phase is made of MgSiO 3 or MgS
It contains a crystalline phase composed of iN 2, has an Al content of 1.0 mol% or less in terms of oxide, and a relative density of 90%.
As described above, the surface roughness (Rmax) of the burnt surface is 10 μm or less,
A silicon nitride heat radiation member having a thermal conductivity of 50 W / m · K or more.
【請求項2】窒化珪素を70〜95モル%、希土類元素
(RE)及びMgをRE2 3 およびMgO換算による
合量で4〜30モル%、前記希土類元素(RE)とMg
を酸化物換算によるRE2 3 /MgOで表されるモル
比が0.1〜15となる比率で含む請求項1記載の窒化
珪素質放熱部材。
2. A silicon nitride of 70 to 95 mol%, a rare earth element (RE) and Mg of 4 to 30 mol% in total in terms of RE 2 O 3 and MgO, said rare earth element (RE) and Mg
RE 2 O 3 / claim 1 silicon nitride radiator member according to the molar ratio comprising a ratio to be 0.1 to 15 represented by MgO of an oxide converted.
【請求項3】窒化珪素を70〜95モル%、希土類元素
(RE)及びMgをRE2 3 およびMgO換算による
合量で4〜30モル%、前記希土類元素(RE)とMg
を酸化物換算によるRE2 3 /MgOで表されるモル
比が0.1〜15となる比率で含み、Alの酸化物換算
による含有量が1.0モル%以下の成形体を非酸化性雰
囲気中、1650〜1800℃の温度で焼成した後、1
100〜1600℃の温度範囲で1時間以上熱処理を施
すことを特徴とする窒化珪素質放熱部材の製造方法。
3. A silicon nitride of 70 to 95 mol%, a rare earth element (RE) and Mg of 4 to 30 mol% in total in terms of RE 2 O 3 and MgO, said rare earth element (RE) and Mg
Of a compact having a molar ratio expressed as RE 2 O 3 / MgO in terms of oxide of 0.1 to 15 and containing Al of 1.0 mol% or less in terms of oxide. After firing at a temperature of 1650 to 1800 ° C. in a neutral atmosphere,
A method for producing a silicon nitride heat radiating member, wherein a heat treatment is performed in a temperature range of 100 to 1600 ° C. for 1 hour or more.
JP11696498A 1997-12-22 1998-04-27 Silicon nitride heat dissipation member and method of manufacturing the same Expired - Lifetime JP3561145B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11696498A JP3561145B2 (en) 1998-04-27 1998-04-27 Silicon nitride heat dissipation member and method of manufacturing the same
DE19859119A DE19859119B4 (en) 1997-12-22 1998-12-21 Printed circuit board with very good heat radiation, process for its preparation and its use
US09/217,087 US6294244B1 (en) 1997-12-22 1998-12-21 Wiring board having excellent heat-radiating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11696498A JP3561145B2 (en) 1998-04-27 1998-04-27 Silicon nitride heat dissipation member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11310464A true JPH11310464A (en) 1999-11-09
JP3561145B2 JP3561145B2 (en) 2004-09-02

Family

ID=14700115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11696498A Expired - Lifetime JP3561145B2 (en) 1997-12-22 1998-04-27 Silicon nitride heat dissipation member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3561145B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride-base heat radiating member and its production
JP2002043756A (en) * 2000-07-31 2002-02-08 Kyocera Corp Silicon nitride multilayer wiring board
JP2012236743A (en) * 2011-05-12 2012-12-06 Mitsubishi Materials Corp CERAMIC SINTERED PLATE CONTAINING UNIAXIALLY ORIENTED ACICULAR Si3N4 PARTICLE
JP2013203633A (en) * 2012-03-29 2013-10-07 Kyocera Corp Silicon nitride sintered compact, and circuit board and electronic device using the same
US8586493B2 (en) 2008-07-03 2013-11-19 Hitachi Metals, Ltd. Silicon nitride sintered body, method of producing the same, and silicon nitride circuit substrate and semiconductor module using the same
CN108727035A (en) * 2017-04-24 2018-11-02 京瓷株式会社 Ceramic wafer and electronic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888175A (en) * 1981-11-19 1983-05-26 株式会社神戸製鋼所 Manufacture of high strength silicon nitride ceramics
JPH03218975A (en) * 1990-01-23 1991-09-26 Ngk Insulators Ltd Silicon nitride body and production thereof
JPH04175268A (en) * 1990-11-07 1992-06-23 Sumitomo Electric Ind Ltd Silicon nitride sintered compact
JPH06329470A (en) * 1993-05-19 1994-11-29 Toshiba Tungaloy Co Ltd Sintered silicon nitride and its sintered and coated material
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH09157054A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Circuit board
JPH09328365A (en) * 1996-05-31 1997-12-22 Denki Kagaku Kogyo Kk Silicon nitride powder, sintered silicon nitride and circuit board made thereof
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride-base heat radiating member and its production
JP2000044351A (en) * 1998-07-30 2000-02-15 Kyocera Corp Silicon nitride-based heat radiating member and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888175A (en) * 1981-11-19 1983-05-26 株式会社神戸製鋼所 Manufacture of high strength silicon nitride ceramics
JPH03218975A (en) * 1990-01-23 1991-09-26 Ngk Insulators Ltd Silicon nitride body and production thereof
JPH04175268A (en) * 1990-11-07 1992-06-23 Sumitomo Electric Ind Ltd Silicon nitride sintered compact
JPH06329470A (en) * 1993-05-19 1994-11-29 Toshiba Tungaloy Co Ltd Sintered silicon nitride and its sintered and coated material
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH09157054A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Circuit board
JPH09328365A (en) * 1996-05-31 1997-12-22 Denki Kagaku Kogyo Kk Silicon nitride powder, sintered silicon nitride and circuit board made thereof
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride-base heat radiating member and its production
JP2000044351A (en) * 1998-07-30 2000-02-15 Kyocera Corp Silicon nitride-based heat radiating member and its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride-base heat radiating member and its production
JP2002043756A (en) * 2000-07-31 2002-02-08 Kyocera Corp Silicon nitride multilayer wiring board
JP4535575B2 (en) * 2000-07-31 2010-09-01 京セラ株式会社 Silicon nitride multilayer wiring board
US8586493B2 (en) 2008-07-03 2013-11-19 Hitachi Metals, Ltd. Silicon nitride sintered body, method of producing the same, and silicon nitride circuit substrate and semiconductor module using the same
JP2012236743A (en) * 2011-05-12 2012-12-06 Mitsubishi Materials Corp CERAMIC SINTERED PLATE CONTAINING UNIAXIALLY ORIENTED ACICULAR Si3N4 PARTICLE
JP2013203633A (en) * 2012-03-29 2013-10-07 Kyocera Corp Silicon nitride sintered compact, and circuit board and electronic device using the same
CN108727035A (en) * 2017-04-24 2018-11-02 京瓷株式会社 Ceramic wafer and electronic device
JP2018184337A (en) * 2017-04-24 2018-11-22 京セラ株式会社 Ceramic plate and electronic apparatus

Also Published As

Publication number Publication date
JP3561145B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
WO2020059035A1 (en) Aluminum nitride sintered compact and method for producing same
JP3561145B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP3481778B2 (en) Aluminum nitride sintered body and method for producing the same
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JPH09268069A (en) Highly heat conductive material and its production
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP4999238B2 (en) Wiring board
JPH11236270A (en) Silicon nitride substrate and its manufacture
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2000244121A (en) Silicon nitride wiring board and manufacture thereof
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP4763929B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and circuit board using the sintered body
JP4535575B2 (en) Silicon nitride multilayer wiring board
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JP2000178072A (en) Aluminum nitride matter sintered compact
JPH09175867A (en) Aluminum nitride sintered product
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

EXPY Cancellation because of completion of term