JP3434963B2 - Aluminum nitride sintered body and method for producing the same - Google Patents

Aluminum nitride sintered body and method for producing the same

Info

Publication number
JP3434963B2
JP3434963B2 JP07289996A JP7289996A JP3434963B2 JP 3434963 B2 JP3434963 B2 JP 3434963B2 JP 07289996 A JP07289996 A JP 07289996A JP 7289996 A JP7289996 A JP 7289996A JP 3434963 B2 JP3434963 B2 JP 3434963B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
weight
nitride sintered
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07289996A
Other languages
Japanese (ja)
Other versions
JPH09263452A (en
Inventor
智広 岩井田
成樹 山田
安彦 吉原
浩 岡山
昭彦 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07289996A priority Critical patent/JP3434963B2/en
Publication of JPH09263452A publication Critical patent/JPH09263452A/en
Application granted granted Critical
Publication of JP3434963B2 publication Critical patent/JP3434963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種絶縁基板材料
や半導体素子収納用パッケージ材料等に適用される窒化
アルミニウム質焼結体及びその製造方法に関し、詳細に
は1700℃以下の温度での焼結が可能で、酸やアルカ
リ等の耐薬品性に優れ、かつ良好な熱伝導率を有する窒
化アルミニウム質焼結体及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body applied to various insulating substrate materials, semiconductor element housing package materials and the like, and a method for producing the same, and more specifically, it is fired at a temperature of 1700 ° C. or less. The present invention relates to an aluminum nitride sintered body that can be bonded, has excellent chemical resistance against acids and alkalis, and has good thermal conductivity, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、半導体素子の高集積化に伴い、半
導体装置から発生する熱も増加しており、該半導体装置
の誤動作をなくすためには、このような熱を装置外に速
やかに放出する基板が必要となっている。
2. Description of the Related Art In recent years, the heat generated from a semiconductor device has increased with the high integration of semiconductor elements, and in order to prevent malfunction of the semiconductor device, such heat is quickly released to the outside of the device. A substrate to be used is required.

【0003】しかしながら、従来から用いられてきた各
種絶縁基板や半導体素子収納用パッケージ等のアルミナ
材料は、熱伝導率が約20W/mKと低いことから、そ
れに代わるものとして高い熱伝導率を有する窒化アルミ
ニウムが注目され始めた。
However, since conventionally used alumina materials for various insulating substrates and semiconductor element housing packages have a low thermal conductivity of about 20 W / mK, nitriding having a high thermal conductivity as an alternative thereto. Aluminum has begun to be noticed.

【0004】本来、窒化アルミニウムは単結晶では理論
熱伝導率が320W/mKと高いことから、研究開発が
進んだ結果、最近では200W/mKを越えるような窒
化アルミニウム質焼結体も得られている。
Originally, aluminum nitride has a high theoretical thermal conductivity of 320 W / mK in a single crystal, and as a result of progress in research and development, recently, an aluminum nitride sintered body exceeding 200 W / mK has also been obtained. There is.

【0005】このような窒化アルミニウム質焼結体の製
造方法としては、従来より希土類化合物またはアルカリ
土類化合物等の焼結助剤を添加して1800℃以上の高
温で焼成する方法がある。
As a method of manufacturing such an aluminum nitride sintered body, there has been a method of adding a sintering aid such as a rare earth compound or an alkaline earth compound and firing it at a high temperature of 1800 ° C. or higher.

【0006】しかしながら、前記製造方法では焼成に使
用する治具の消耗や、焼成炉の構造、更にランニングコ
スト等を考慮すると製造コストがかなり高くなるという
欠点があった。
However, the above manufacturing method has a drawback that the manufacturing cost becomes considerably high in consideration of the wear of the jig used for the baking, the structure of the baking furnace, and the running cost.

【0007】そこで、係る欠点を解消して製造コストを
低減するために、焼結助剤として希土類化合物とアルカ
リ土類化合物を同時に添加し、1600〜1700℃で
焼成する方法が提案されている(特公平6−49613
号公報、特公平7−17454号公報参照)。
Therefore, in order to eliminate such drawbacks and reduce the manufacturing cost, there has been proposed a method in which a rare earth compound and an alkaline earth compound are simultaneously added as a sintering aid and the mixture is fired at 1600 to 1700 ° C ( Japanese Patent Examination 6-49613
(See Japanese Patent Publication No. 7-17454).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記希
土類化合物とアルカリ土類化合物を同時に添加して得ら
れた窒化アルミニウム質焼結体を用いてパッケージ等の
製品を製造する場合、メッキ工程において使用される酸
やアルカリ性の薬品に対して窒化アルミニウム質焼結体
が劣化するという問題があり、特にアルカリ性の薬品に
対しては、窒化アルミニウム自体が溶解するため劣化が
著しいという課題があった。
However, when a product such as a package is manufactured by using the aluminum nitride sintered body obtained by simultaneously adding the rare earth compound and the alkaline earth compound, it is used in the plating step. However, there is a problem in that the aluminum nitride sintered body is deteriorated by acid or alkaline chemicals, and particularly in the case of alkaline chemicals, the aluminum nitride itself is dissolved so that deterioration is remarkable.

【0009】また、前記窒化アルミニウム質焼結体の耐
薬品性を向上させようとすると、逆に熱伝導率が低下す
るという問題が発生し、現在のところ、1700℃以下
の温度で焼結し、酸やアルカリの薬品に対して劣化せ
ず、かつ少なくとも70W/mK以上の高熱伝導率を示
すような窒化アルミニウム質焼結体が得られていないと
いう課題があった。
[0009] Further, when attempting to improve the chemical resistance of the aluminum nitride sintered body, there arises a problem that the thermal conductivity is lowered, and at present, the sintering is performed at a temperature of 1700 ° C or lower. However, there is a problem in that an aluminum nitride sintered body that is not deteriorated by chemicals such as acids and alkalis and that exhibits a high thermal conductivity of at least 70 W / mK has not been obtained.

【0010】[0010]

【発明の目的】本発明は前記課題を解消するために成さ
れたもので、その目的は製造コストを低く抑えて高熱伝
導率を維持したまま、酸及びアルカリに対する耐薬品性
に優れた窒化アルミニウム質焼結体及びその製造方法を
提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is aluminum nitride excellent in chemical resistance to acids and alkalis while keeping manufacturing cost low and maintaining high thermal conductivity. The object is to provide a high quality sintered body and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明者等は、前記課題
に対して鋭意検討を重ねた結果、焼結助剤としてREと
Rの両方を添加するとともに、併せてSiO2 とMgO
を加え、1700℃以下の温度で焼成して、主たる粒界
相としてYAG型結晶を晶出させることにより、高い熱
伝導率を維持したまま酸及びアルカリに対する耐薬品性
を著しく改善した窒化アルミニウム質焼結体とその製造
方法が得られることを見いだした。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on the above problems, and as a result, added both RE and R as sintering aids, and also added SiO 2 and MgO.
Is added and calcined at a temperature of 1700 ° C. or lower to crystallize a YAG type crystal as a main grain boundary phase, thereby significantly improving chemical resistance to acids and alkalis while maintaining high thermal conductivity. It has been found that a sintered body and a manufacturing method thereof can be obtained.

【0012】即ち、本発明の窒化アルミニウム質焼結体
は、AlNを主成分とし、少なくともREとRの両方を
酸化物換算で合計0.5〜20.0重量%を含有し、更
にSiO2 とMgOを合計0.1〜3.0重量%とを含
有させ、かつ粒界相の主たる結晶相をYAG型結晶とし
たものである。
That is, the aluminum nitride sintered body of the present invention contains AlN as a main component, contains at least both RE and R in a total amount of 0.5 to 20.0 wt% in terms of oxide, and further contains SiO 2 And MgO in a total amount of 0.1 to 3.0% by weight, and the main crystal phase of the grain boundary phase is a YAG type crystal.

【0013】また、そのような窒化アルミニウム質焼結
体を製造する方法としては、AlNに主たる焼結助剤と
してREとRの両方を酸化物換算で合計0.5〜20.
0重量%と、更にSiO2 とMgOを合計0.1〜3.
0重量%、及びAl2 3 をRE2 3 に対するモル比
(Al2 3 /RE2 3 )で1.7〜20.0となる
ように調製した混合粉末を成形して1700℃以下の温
度で焼成し、窒化アルミニウム質焼結体の粒界の主たる
結晶相としてYAG型結晶を晶出させたことを特徴とす
るものである。
Further, as a method for producing such an aluminum nitride sintered body, both RE and R, which are main sintering aids for AlN, in total of 0.5 to 20.
0% by weight, and SiO 2 and MgO in total of 0.1 to 3.
0% by weight, and a mixed powder prepared so that the molar ratio of Al 2 O 3 to RE 2 O 3 (Al 2 O 3 / RE 2 O 3 ) was 1.7 to 20.0 was molded and molded at 1700 ° C. It is characterized in that it is fired at the following temperature to crystallize a YAG type crystal as a main crystal phase of a grain boundary of the aluminum nitride sintered body.

【0014】[0014]

【作用】本発明の窒化アルミニウム質焼結体及びその製
造方法によれば、焼結助剤のREは窒化アルミニウム原
料中に含有される不純物酸素と反応し、液相を生成する
ことにより焼結を促進する他、焼結中にYAG、YA
P、YAMのような結晶相を生成し、焼結体を構成する
窒化アルミニウム粒子に固溶する酸素を減少させて焼結
体の高熱伝導化を図ることができる。
According to the aluminum nitride sintered body and the method for producing the same of the present invention, the sintering aid RE reacts with the impurity oxygen contained in the aluminum nitride raw material to form a liquid phase, thereby sintering. In addition to promoting YAG, YA during sintering
It is possible to increase the thermal conductivity of the sintered body by generating a crystal phase such as P or YAM and reducing the oxygen dissolved in the aluminum nitride particles constituting the sintered body.

【0015】また、前記Rも窒化アルミニウム原料中に
含有される不純物酸素と反応し、REに比べてより低温
で液相を生成し、焼結を促進する上、焼結中にアルミネ
ートに結晶化し、焼結体を構成する窒化アルミニウム粒
子中に固溶する酸素を減少させ高熱伝導化を図ることが
できる。
The R also reacts with the impurity oxygen contained in the aluminum nitride raw material to form a liquid phase at a lower temperature than RE, accelerates the sintering, and crystallizes into an aluminate during the sintering. It is possible to reduce the amount of oxygen that is solid-solved in the aluminum nitride particles that form the sintered body and to achieve high thermal conductivity.

【0016】本発明では、更にSiO2 、MgOを加え
る他、窒化アルミニウム原料中に含有される不純物酸素
量から換算されるAl2 3 量に基づき全体のAl2
3 量を調整しており、SiO2 、MgO、Al2 3
それぞれ耐薬品性に優れ、Al2 3 はREと反応して
粒界結晶相をYAG型に安定化させ、耐アルカリ性を向
上させることになる。
In the present invention, further addition of addition of SiO 2, MgO, entire Al 2 O based on the amount of Al 2 O 3, which is converted from the impurity oxygen amount contained in the aluminum nitride raw material
The amount of 3 is adjusted, and SiO 2 , MgO, and Al 2 O 3 each have excellent chemical resistance, and Al 2 O 3 reacts with RE to stabilize the grain boundary crystal phase to the YAG type and to improve alkali resistance. Will be improved.

【0017】また、前記SiO2 とMgOを添加するこ
とにより液相生成温度が低下して低温での焼結性が向上
し、更にAl2 3 が加わると前記焼結助剤と反応して
液相を生成してより一層焼結を促進することになる。
The addition of SiO 2 and MgO lowers the liquidus formation temperature and improves the sinterability at low temperatures. When Al 2 O 3 is further added, it reacts with the sintering aid. A liquid phase is generated to further promote sintering.

【0018】[0018]

【発明の実施の形態】以下、本発明の窒化アルミニウム
質焼結体及びその製造方法について、詳細に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The aluminum nitride sintered body of the present invention and the method for producing the same will be described in detail below.

【0019】先ず、本発明の窒化アルミニウム質焼結体
を製造するための窒化アルミニウム原料としては、不純
物酸素量が0.5〜3.0重量%のものが望ましい。
First, as the aluminum nitride raw material for producing the aluminum nitride sintered body of the present invention, it is desirable that the amount of impurity oxygen is 0.5 to 3.0% by weight.

【0020】前記窒化アルミニウム原料粉末に添加する
REとしては、Y、La、Ce、Pr、Nd、Pm、S
m、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Lu等のいずれの元素でも好適に用いることがで
き、RとしてはCa、Ba、Sr等のいずれの元素でも
好適に用いることができる。
The RE added to the aluminum nitride raw material powder includes Y, La, Ce, Pr, Nd, Pm and S.
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
Any element such as b and Lu can be preferably used, and any element such as Ca, Ba and Sr can be suitably used as R.

【0021】また、前記RE、Rの添加量は、いずれか
一種以上を酸化物換算で0.5重量%未満あるいは2
0.0重量%を越えると、いずれも耐薬品性が悪く、そ
の上、熱伝導率も70W/mK以下と低くなる。
The amount of RE or R added is less than 0.5% by weight or 2 or more in terms of oxide of one or more of them.
If it exceeds 0.0% by weight, the chemical resistance is poor and the thermal conductivity is as low as 70 W / mK or less.

【0022】従って、その量はREとRの両方を酸化物
換算で合計0.5〜20.0重量%に特定され、RE2
3 +(Ca、Ba、Sr)Oで1.0〜20.0重量
%、具体的には酸化物に換算してREは0.5〜15.
0重量%、Rは0.05〜5.0重量%が望ましく、よ
り望ましくはREが3.0〜10.0重量%、Rが0.
2〜1.0重量%の範囲となる。
Therefore, the amount of both RE and R is specified to be 0.5 to 20.0% by weight in terms of oxide, and RE 2
O 3 + (Ca, Ba, Sr) O is 1.0 to 20.0% by weight, and specifically, RE is 0.5 to 15% in terms of oxide.
0% by weight, R is preferably 0.05 to 5.0% by weight, more preferably RE is 3.0 to 10.0% by weight, and R is 0.
It is in the range of 2 to 1.0% by weight.

【0023】一方、SiO2 、MgOの合計量が、0.
1重量%未満では耐薬品性が悪くなり、3.0重量%を
越えると、熱伝導率が低下することから、前記合計量は
0.1〜3.0重量%に特定され、より望ましくは0.
2〜1.0重量%となる。
On the other hand, the total amount of SiO 2 and MgO is 0.
If it is less than 1% by weight, the chemical resistance is poor, and if it exceeds 3.0% by weight, the thermal conductivity is lowered. Therefore, the total amount is specified to be 0.1 to 3.0% by weight, more preferably 0.
It becomes 2 to 1.0% by weight.

【0024】また、Al2 3 は粒界相に主としてYA
G型結晶相を晶出させるためには、前記RE2 3
と、前記窒化アルミニウム原料粉体中の不純物酸素量か
ら換算されるAl2 3 量及び必要に応じて添加するA
2 3 量との和との比により決定する必要があり、理
論的にはモル比(Al2 3 /RE2 3 )で1.67
であるが、安定してYAG型結晶相を得るためにはAl
2 3 がリッチな組成とする必要があることから、前記
モル比は1.7〜20.0の範囲とすることが望まし
い。
Al 2 O 3 is mainly YA in the grain boundary phase.
In order to crystallize the G-type crystal phase, the amount of RE 2 O 3 and the amount of Al 2 O 3 converted from the amount of impurity oxygen in the aluminum nitride raw material powder and A added as necessary
It must be determined by the ratio of the amount of 1 2 O 3 and the sum thereof, and theoretically, the molar ratio (Al 2 O 3 / RE 2 O 3 ) is 1.67.
However, to obtain a stable YAG type crystal phase, Al
Since it is necessary to make the composition rich in 2 O 3, it is desirable that the molar ratio is in the range of 1.7 to 20.0.

【0025】以上、個々に詳述したような窒化アルミニ
ウム原料粉末と各焼結助剤とを所定量添加混合し、該混
合粉末に有機バインダーと溶媒を添加して調製した成形
用原料を用いて、例えばプレス成形法や、CIP成形
法、テープ成形法、押出成形法、射出成形法等のいずれ
かの成形方法で成形体を得た後、該成形体を非酸化性雰
囲気中、所定温度で脱バインダー処理してから1550
〜1700℃の温度で焼成して焼結体を得ることができ
る。
The above-mentioned forming raw materials prepared by mixing and mixing a predetermined amount of aluminum nitride raw material powder and the respective sintering aids, and adding an organic binder and a solvent to the mixed powder are used. For example, after a molded body is obtained by a molding method such as a press molding method, a CIP molding method, a tape molding method, an extrusion molding method, or an injection molding method, the molded body is kept at a predetermined temperature in a non-oxidizing atmosphere. 1550 after debinding
A sintered body can be obtained by firing at a temperature of ˜1700 ° C.

【0026】[0026]

【実施例】以下、本発明を一実施例に基づき詳細に述べ
る。
The present invention will be described in detail below based on an embodiment.

【0027】平均粒径が1.9μm、酸素量が0.98
%の還元窒化法により製造されたAlN原料粉末に表1
に示す焼結助剤を所定量添加混合すると共に、各焼結助
剤の分析に基づく酸素量に加えて、AlN原料中の不純
物酸化量から換算されるAl2 3 量と、必要に応じて
添加したAl2 3 量を全Al2 3 量として酸素量を
調整し、その混合粉末に対して成形用バインダーとして
パラフィンワックスをイソプロピルアルコールを溶媒と
して添加し、混練乾燥後、篩を通して成形用顆粒を得、
該顆粒を成形圧1ton/cm2 で金型プレスにより、
直径12mm、厚さ5mmの円板状に成形した。
The average particle size is 1.9 μm and the oxygen content is 0.98.
% AlN raw material powder produced by the reduction nitriding method.
In addition to adding and mixing a predetermined amount of the sintering additive shown in (1), in addition to the oxygen amount based on the analysis of each sintering additive, the amount of Al 2 O 3 converted from the amount of oxidized impurities in the AlN raw material, and if necessary, The amount of Al 2 O 3 added as the total amount of Al 2 O 3 is adjusted to adjust the amount of oxygen, paraffin wax is added to the mixed powder as a binder for molding using isopropyl alcohol as a solvent, and the mixture is kneaded and dried, and then molded through a sieve. To obtain granules for
The granules were pressed with a mold at a molding pressure of 1 ton / cm 2 .
A disk having a diameter of 12 mm and a thickness of 5 mm was formed.

【0028】[0028]

【表1】 [Table 1]

【0029】かくして得られた成形体を所定温度で脱バ
インダーした後、窒素気流中、1650℃の温度で3時
間焼成して窒化アルミニウム質焼結体を作製し、評価用
の試料とした。
The molded body thus obtained was debindered at a predetermined temperature and then fired in a nitrogen stream at a temperature of 1650 ° C. for 3 hours to produce an aluminum nitride sintered body, which was used as a sample for evaluation.

【0030】前記評価用試料を用いて、先ずアルキメデ
ス法により窒化アルミニウム質焼結体の密度を測定し、
理論密度に対する比率(%)を算出した。次いで、X線
回折法により粒界相の主たる結晶相を同定すると共に、
レーザーフラッシュ法により熱伝導率を測定した。
Using the above-mentioned sample for evaluation, first, the density of the aluminum nitride sintered body was measured by the Archimedes method,
The ratio (%) to the theoretical density was calculated. Then, the main crystal phase of the grain boundary phase is identified by X-ray diffraction method, and
The thermal conductivity was measured by the laser flash method.

【0031】また、耐薬品性は、酸性の薬品としては4
6%のHF溶液を、アルカリ性の薬品としては4NのN
aOH溶液を用い、それぞれの溶液を25℃に保持して
該溶液中に前記試料を100時間浸漬した後、浸漬前後
の試料の重量変化を測定すると共に、試料外観を目視及
び顕微鏡により観察し、変化が認められないものを良、
変化が認められるものを不良と判定した。
The chemical resistance is 4 as an acidic chemical.
6% HF solution, 4N N as alkaline chemical
Using an aOH solution, each solution was kept at 25 ° C. and the sample was immersed in the solution for 100 hours, and then the weight change of the sample before and after the immersion was measured, and the appearance of the sample was visually and microscopically observed. Good if no change is observed,
Those with a change were judged to be defective.

【0032】[0032]

【表2】 [Table 2]

【0033】表2の結果から明らかなように、本発明の
請求範囲外であるYAP型結晶相とYAM型結晶相を粒
界に主として晶出している試料番号9、13、23は、
モル比(Al2 3 /RE2 3 )が1.7未満であ
り、耐薬品性が悪く重量減少が著しく、変色が著しいも
のであった。
As is clear from the results of Table 2, the sample numbers 9, 13, and 23, which mainly crystallize the YAP type crystal phase and the YAM type crystal phase outside the claims of the present invention at the grain boundaries,
The molar ratio (Al 2 O 3 / RE 2 O 3 ) was less than 1.7, the chemical resistance was poor, the weight reduction was remarkable, and the discoloration was remarkable.

【0034】また、粒界の結晶相が主としてYAG型で
あっても本発明の請求範囲外の組成を有する試料番号
1、7、16、21、22は、緻密化が不十分であった
り、熱伝導率の低い粒界相が増加するためと考えられる
が、いずれも耐薬品性が悪かったり、熱伝導率が67W
/mK以下と低かったり、なかでも試料番号22は熱伝
導率は85W/mKを示すものの、耐薬品性が不十分で
あり実用的でない。
Further, even if the crystal phase of the grain boundary is mainly of YAG type, Sample Nos. 1, 7, 16, 21, and 22 having a composition outside the scope of the claims of the present invention have insufficient densification, or It is considered that the grain boundary phase with low thermal conductivity increases, but both have poor chemical resistance and thermal conductivity of 67 W.
/ MK or less, and Sample No. 22 has a thermal conductivity of 85 W / mK, but it has insufficient chemical resistance and is not practical.

【0035】それに対して、本発明のものはいずれも粒
界の結晶相が主としてYAG型を示し、耐薬品性にも優
れ、熱伝導率も80W/mK以上を維持していることが
分かる。
On the other hand, it is understood that in all of the present invention, the crystal phase of the grain boundary is mainly of YAG type, the chemical resistance is excellent, and the thermal conductivity is maintained at 80 W / mK or more.

【0036】[0036]

【発明の効果】以上、詳述した通り、本発明の窒化アル
ミニウム質焼結体及びその製造方法によれば、AlNに
主たる焼結助剤としてREとRの両方を、更にSiO2
とMgO、及びAl2 3 を添加混合した粉末を成形し
て1700℃以下の温度で焼成し、窒化アルミニウム質
焼結体の粒界の主たる結晶相としてYAG型結晶を晶出
させたことから、従来より低い温度で緻密な70W/m
K以上の高い熱伝導率を維持すると共に、酸及びアルカ
リに対する耐薬品性に非常に優れた窒化アルミニウム質
焼結体が得られる。
As described above in detail, according to the aluminum nitride-based sintered body of the present invention and the method for producing the same, both RE and R as a main sintering aid for AlN, and SiO 2 are further added.
Since a powder obtained by adding and mixing MgO, MgO, and Al 2 O 3 was molded and fired at a temperature of 1700 ° C. or lower, YAG type crystals were crystallized as a main crystal phase of grain boundaries of the aluminum nitride sintered body 70W / m denser at lower temperature than before
It is possible to obtain an aluminum nitride-based sintered body that maintains a high thermal conductivity of K or higher and that has excellent chemical resistance to acids and alkalis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 昭彦 鹿児島県国分市山下町1番4号 京セラ 株式会社総合研究所内 (56)参考文献 特開 平8−157264(JP,A) 特開 平8−157261(JP,A) 特開 昭63−277568(JP,A) 特開 平6−329474(JP,A) 特開 平8−81267(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/581 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akihiko Nishimoto 1-4 Yamashita-cho, Kokubun-shi, Kagoshima Inside Kyocera Research Institute (56) Reference JP-A-8-157264 (JP, A) JP-A-8 -157261 (JP, A) JP 63-277568 (JP, A) JP 6-329474 (JP, A) JP 8-81267 (JP, A) (58) Fields investigated (Int.Cl) . 7 , DB name) C04B 35/581

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化アルミニウム(AlN)を主成分と
し、少なくとも希土類元素(RE)とアルカリ土類金属
(R)を酸化物換算で合計0.5〜20.0重量%と、
シリカ(SiO2 )とマグネシア(MgO)を合計0.
1〜3.0重量%とを含有し、かつ主たる粒界相がYA
G型結晶から成ることを特徴とする窒化アルミニウム質
焼結体。
1. A main component is aluminum nitride (AlN), and a total of at least rare earth element (RE) and alkaline earth metal (R) is 0.5 to 20.0% by weight in terms of oxide,
Silica (SiO 2 ) and magnesia (MgO) are added in a total of 0.
1 to 3.0% by weight, and the main grain boundary phase is YA
An aluminum nitride-based sintered body characterized by comprising a G-type crystal.
【請求項2】窒化アルミニウム(AlN)に、焼結助剤
として希土類元素(RE)とアルカリ土類金属(R)を
酸化物換算で合計0.5〜20.0重量%、シリカ(S
iO2 )とマグネシア(MgO)を合計0.1〜3.0
重量%、及びアルミナ(Al2 3 )を前記希土類元素
(RE)の酸化物(RE2 3 )に対するモル比(Al
2 3 /RE2 3 )で1.7〜20.0となるように
調製した混合粉末を成形した後、該成形体を1700℃
以下の温度で焼成し、主たる粒界相としてYAG型結晶
を晶出させたことを特徴とする窒化アルミニウム質焼結
体の製造方法。
2. A total of 0.5 to 20.0% by weight of rare earth element (RE) and alkaline earth metal (R) as a sintering aid in terms of oxide in aluminum nitride (AlN) and silica (S).
iO 2 ) and magnesia (MgO) total 0.1-3.0
% By weight, and alumina (Al 2 O 3 ) in molar ratio (Al 2 O 3 ) to oxide (RE 2 O 3 ) of the rare earth element (RE).
2 O 3 / RE 2 O 3 ) was molded into a mixed powder having a particle size of 1.7 to 20.0, and the molded body was molded at 1700 ° C.
A method for producing an aluminum nitride-based sintered body, which comprises firing at a temperature below to crystallize a YAG type crystal as a main grain boundary phase.
JP07289996A 1996-03-27 1996-03-27 Aluminum nitride sintered body and method for producing the same Expired - Fee Related JP3434963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07289996A JP3434963B2 (en) 1996-03-27 1996-03-27 Aluminum nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07289996A JP3434963B2 (en) 1996-03-27 1996-03-27 Aluminum nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09263452A JPH09263452A (en) 1997-10-07
JP3434963B2 true JP3434963B2 (en) 2003-08-11

Family

ID=13502665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07289996A Expired - Fee Related JP3434963B2 (en) 1996-03-27 1996-03-27 Aluminum nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3434963B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761617B2 (en) * 2000-12-07 2011-08-31 株式会社東芝 Aluminum nitride sintered body, method for producing the same, and electronic component using the same
CN110662728A (en) * 2017-05-30 2020-01-07 京瓷株式会社 Aluminum nitride sintered body and semiconductor holding device

Also Published As

Publication number Publication date
JPH09263452A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
US5077245A (en) Aluminum nitride-based sintered body and process for the production thereof
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
JPS5849510B2 (en) Chitsuka Aluminum Shouketsutaino
JP3481778B2 (en) Aluminum nitride sintered body and method for producing the same
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2000128643A (en) Highly heat conductive silicon nitride-based sintered compact and its production
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3145519B2 (en) Aluminum nitride sintered body
JP2962466B2 (en) Aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPS6217076A (en) Aluminum nitride powder composition
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0891960A (en) Base material for circuit board
JP3450955B2 (en) Method for producing aluminum nitride sintered body
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture
JPS63277569A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2000178072A (en) Aluminum nitride matter sintered compact
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JPH11217269A (en) Aluminum nitride-based sintered compact and its production
JP2541150B2 (en) Aluminum nitride sintered body
KR960006249B1 (en) Process for producing an aluminium sintered product
JPH0585827A (en) Sintered silicon nitride-mixed oxide and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees