JPH01298071A - Aluminum nitride sintered body - Google Patents

Aluminum nitride sintered body

Info

Publication number
JPH01298071A
JPH01298071A JP63130972A JP13097288A JPH01298071A JP H01298071 A JPH01298071 A JP H01298071A JP 63130972 A JP63130972 A JP 63130972A JP 13097288 A JP13097288 A JP 13097288A JP H01298071 A JPH01298071 A JP H01298071A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
thermal conductivity
nitride sintered
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63130972A
Other languages
Japanese (ja)
Other versions
JP2678213B2 (en
Inventor
Akira Yamakawa
晃 山川
Hitoshi Sakagami
坂上 仁之
Koichi Sogabe
浩一 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63130972A priority Critical patent/JP2678213B2/en
Publication of JPH01298071A publication Critical patent/JPH01298071A/en
Application granted granted Critical
Publication of JP2678213B2 publication Critical patent/JP2678213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered body having high density and high thermal conductivity by specifying the content of Fe, Co, Ni, V, Nb Or Ta incorporated in the aluminum nitride sintered body, the mean particle diameter and thermal conductivity thereof. CONSTITUTION:An aluminum nitride sintered body incorporates 0.01-1.0wt.% at least one kind of element selected from among Fe, Co, Ni, V, Nb and Ta and has both <=5mum mean particle diameter and >=100w/mK thermal conductivity. The above-mentioned aluminum nitride sintered body is obtained by adding a small quantity of Fe, Co, Ni, V, Nb and Ta to high-purity aluminum nitride powder and thereafter heating and sintering the mixture at 1700-2100 deg.C in the nonoxidative atmosphere contg. nitrogen. Aluminum nitride which is high purity and fine particle is preferably utilized as a raw material. For example, aluminum nitride powder having <=500ppm content of metallic impurities, 1.0wt.% oxygen content and about 4.0m<2>/g specific surface area is favorable.

Description

【発明の詳細な説明】 〔産業上の利用分野コ この発明は窒化アルミニウム焼結体に関し、特に絶縁回
路基板、半導体集積回路装置用パッケージ等に用いられ
る高熱伝等性を有し、微粒からなる窒化アルミニウム焼
結体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an aluminum nitride sintered body, which has high thermal conductivity and is made of fine particles and is used particularly for insulating circuit boards, packages for semiconductor integrated circuit devices, etc. This invention relates to an aluminum nitride sintered body.

[従来の技術] 最近、大規模集積回路装置(LSI)に関する技術の進
歩は目覚しく、特に集積度の向上は著しいものである。
[Prior Art] Recently, technology regarding large-scale integrated circuit devices (LSI) has made remarkable progress, and in particular, the degree of integration has improved significantly.

この集積度の向上に対しては、半導体集積回路装置(I
C)のチップサイズの大型化も寄与しており、ICチッ
プサイズの大型化に伴なってパッケージあたりの発熱量
が増大している。このため、半導体装置用パッケージ等
に用いられる絶縁体基板の材料の放熱性が重要視される
ようになってきた。この絶縁体基板の材料としては、従
来よりアルミナ(Al1 o、)が−船釣である。しか
し、アルミナは電気絶縁性および機械強度に優れている
半面、熱伝導率か30W/mKと小さいために熱放散性
が悪いので、たとえば、高発熱量の電界効果トランジス
タ(FET)等をアルミナ基板の上に搭載することは不
適当である。
To improve this degree of integration, semiconductor integrated circuit devices (I
C) The increase in chip size also contributes to this, and the amount of heat generated per package increases as the IC chip size increases. For this reason, importance has been placed on the heat dissipation properties of materials for insulating substrates used in semiconductor device packages and the like. Conventionally, alumina (Al1O) has been used as the material for this insulating substrate. However, while alumina has excellent electrical insulation and mechanical strength, it has poor heat dissipation due to its low thermal conductivity of 30 W/mK. It is inappropriate to install it on top of the

その上に高発熱量の半導体素子を搭載するために、高い
熱伝導率をHするベリリア(Bed)を用いた絶縁体基
板も存在するが、ベリリアは毒性があり、使用上の安全
対策が煩雑である。
In order to mount semiconductor elements with high heat generation on it, there are insulating substrates using beryllia (Bed), which has high thermal conductivity, but beryllia is toxic and safety measures for use are complicated. It is.

そこで、最近では、高発熱量の半導体素子搭載用の絶縁
体基板として、高い熱伝導率を白°し、毒性がなく、ま
た、アルミナと同等の電気絶縁性や機械強度を有する窒
化アルミニウム(AuN)が半導体装置用の絶縁材料あ
るいはパッケージ材料として釘望視されている。
Therefore, recently, aluminum nitride (Au), which has high thermal conductivity, is nontoxic, and has electrical insulation properties and mechanical strength equivalent to alumina, has been used as an insulating substrate for mounting high-heat-generating semiconductor devices. ) is expected to be used as an insulating material or packaging material for semiconductor devices.

[発明が解決しようとする課題] 上述のように窒化アルミニウムは理論的には単結晶とし
ては高熱伝導性、高絶縁性を有する材料である。しかし
ながら、窒化アルミニウム粉末から焼結体を製造する場
合、窒化アルミニウム粉末自体の焼結性かよくないため
、粉末成形後、焼結することによって得られる窒化アル
ミニウム焼結体の相対密度(窒化アルミニウムの理論密
度3゜26 g / c m 3を基準とする)は、焼
結条件にもよるか、たかたか70〜80%しか示さず、
多量の気孔を包含する。そのため、窒化アルミニウム粉
末を単独に用いることにより、窒化アルミニウム焼結体
を緻密化することは困難である。
[Problems to be Solved by the Invention] As described above, aluminum nitride is theoretically a material that has high thermal conductivity and high insulation properties as a single crystal. However, when producing a sintered body from aluminum nitride powder, the sinterability of the aluminum nitride powder itself is not good, so the relative density of the aluminum nitride sintered body obtained by sintering after powder compaction (the relative density of aluminum nitride) The theoretical density (based on 3゜26 g/cm3) is only 70-80%, depending on the sintering conditions.
Contains a large amount of pores. Therefore, it is difficult to densify an aluminum nitride sintered body by using aluminum nitride powder alone.

−ノj、窒化アルミニウム焼結体のような絶縁性セラミ
ックスの熱伝導機構はフォノン伝導を主体とするため、
焼結体中の気孔、不純物等の欠陥がフォノン散乱の原因
となり、その熱伝導率は低レベルのものしか得られない
。これらの状況に対し、高熱伝導性を有する。IIN焼
結体を得るためには種々の提案がなされている。たとえ
ば、AQNの焼結助剤、脱酸剤としてY2O,を添加し
、高密度、高熱伝導性のAQN焼結体を得る方法等か提
案されている。しかしながら、これらの方法では、平均
粒径10μm程度以上の粗粒からなる窒化アルミニウム
焼結体が得られる。そのため、熱伝導率の高い窒化アル
ミニウム焼結体か得られるものの、その焼結体の表面粗
さか大きいという問題点があった。したがって、窒化ア
ルミニウム焼結体が絶縁回路基板に用いられる場合、そ
の上に形成される薄膜からなる回路パターンに不具合か
生しるなどの問題点があった。
-Noj, since the heat conduction mechanism of insulating ceramics such as aluminum nitride sintered bodies is mainly phonon conduction,
Defects such as pores and impurities in the sintered body cause phonon scattering, and only a low level of thermal conductivity can be obtained. For these situations, it has high thermal conductivity. Various proposals have been made to obtain IIN sintered bodies. For example, it has been proposed to add Y2O as a sintering aid and deoxidizing agent to AQN to obtain an AQN sintered body with high density and high thermal conductivity. However, these methods yield aluminum nitride sintered bodies consisting of coarse grains with an average grain size of about 10 μm or more. Therefore, although an aluminum nitride sintered body with high thermal conductivity can be obtained, there is a problem that the surface roughness of the sintered body is large. Therefore, when the aluminum nitride sintered body is used for an insulated circuit board, there are problems such as defects in the circuit pattern formed on the thin film formed thereon.

そこで、この発明は上記のような問題点を解消するため
になされたもので、高密度でしかも高熱伝導性をHする
窒化アルミニウム焼結体を得ることができるとともに、
微粒からなる窒化アルミニウム焼結体を提供することを
目的とする。
Therefore, this invention was made to solve the above-mentioned problems, and it is possible to obtain an aluminum nitride sintered body having high density and high thermal conductivity.
The object of the present invention is to provide an aluminum nitride sintered body consisting of fine particles.

[課題を解決するための手段] この発明は上記の技術問題を解決するために種々検討し
た結果、微粒からなる窒化アルミニウム焼結体をi′7
るために、窒化アルミニウム粉末に成る種の元素を少f
A添加した後、焼結することにより、微粒からなり、か
つ高熱伝導性を有する窒化アルミニウム焼結体が得られ
ることを見出したものである。すなわち、Fe、Co、
Ni、V、Nb、Taのうちの少なくとも1種の元素を
少量、窒化アルミニウム粉末に添加すれば、得られる窒
化アルミニウム焼結体の熱伝導率を阻害せず、その粒成
長を防市する効果があることを見出したものである。
[Means for Solving the Problems] As a result of various studies to solve the above-mentioned technical problems, the present invention has developed an aluminum nitride sintered body consisting of fine grains.
In order to make aluminum nitride powder
It has been discovered that by sintering after adding A, an aluminum nitride sintered body consisting of fine particles and having high thermal conductivity can be obtained. That is, Fe, Co,
Adding a small amount of at least one element among Ni, V, Nb, and Ta to aluminum nitride powder has the effect of preventing grain growth without inhibiting the thermal conductivity of the resulting aluminum nitride sintered body. This is what we discovered.

この発明に従った窒化アルミニウム焼結体は、Fe、C
o、Ni、V、Nb、Taからなる群より選ばれた少な
くとも1種の元素を0.01〜1゜0重量%含合し、そ
の平均粒径が5μm以下であり、かつ、100W/mK
以上の熱伝導率を有するものである。
The aluminum nitride sintered body according to the present invention includes Fe, C
Contains 0.01 to 1.0% by weight of at least one element selected from the group consisting of O, Ni, V, Nb, and Ta, and has an average particle size of 5 μm or less, and 100 W/mK
It has the above thermal conductivity.

[作用コ この発明に従った窒化アルミニウム焼結体は、訓練度の
窒化アルミニウム粉末に少量のFe、Co、Ni、V、
Nb、Taを添加した後、温度1700〜2100℃の
窒素を含む非酸化性雰囲気中で加熱し、焼成されること
により得られる。原料として用いられる窒化アルミニウ
ム粉末は高純度で微粒のものが好ましい。たとえば、金
属不純物の含有量が500ppm以下、酸素含有量か〕
[Function] The aluminum nitride sintered body according to the present invention contains a small amount of Fe, Co, Ni, V,
It is obtained by adding Nb and Ta and then heating and firing in a non-oxidizing atmosphere containing nitrogen at a temperature of 1700 to 2100°C. The aluminum nitride powder used as a raw material is preferably of high purity and fine particles. For example, if the content of metal impurities is 500 ppm or less, or if the content is oxygen content]
.

0重量%、比表面積が4.0m2/g程度の窒化アルミ
ニウム粉末が望ましい。
Aluminum nitride powder with a specific surface area of about 4.0 m2/g and 0% by weight is desirable.

窒化アルミニウム粉末に含まれる金属不純物の二が過大
であると、窒化アルミニウム中への固溶、粒界への析出
により、得られる窒化アルミニウム焼結体の熱伝導率を
低下させるように作用する。
If the amount of metal impurities contained in the aluminum nitride powder is too large, the metal impurities will dissolve in the aluminum nitride and precipitate at the grain boundaries, thereby reducing the thermal conductivity of the resulting aluminum nitride sintered body.

また、金属不純物の含有量が過大であると、窒化アルミ
ニウム粒子の粒成長か促進され、得られる窒化アルミニ
ウム焼結体の特性を劣化させる。
Moreover, if the content of metal impurities is excessive, the grain growth of aluminum nitride particles is promoted, and the properties of the obtained aluminum nitride sintered body are deteriorated.

窒化アルミニウム粒子の粒成長を抑制し、焼結を促進さ
せ、その熱伝導率を向上させる添加元素としてのFe、
Co、Ni、V、Nb、Taは、それらの少なくとも1
種以上の元素量として0゜01〜1.0重量%添加され
る。0.01重量?6以下では、添加によってもたらさ
れる粒成長抑制等の効果を発揮し得ない。また、1.0
重量%以上添加すると、得られる窒化アルミニウム焼結
体の熱伝導率をかえって低下させてしまう。
Fe as an additive element that suppresses grain growth of aluminum nitride particles, promotes sintering, and improves its thermal conductivity;
Co, Ni, V, Nb, Ta, at least one of them
It is added in an amount of 0.01 to 1.0% by weight as the amount of more than one species. 0.01 weight? If it is less than 6, the effect of grain growth suppression etc. brought about by addition cannot be exhibited. Also, 1.0
If more than % by weight is added, the thermal conductivity of the resulting aluminum nitride sintered body will be reduced.

本願発明によれば、窒化アルミニウム焼結体はその平均
粒径が5μm以下であり、かつ100W/ m K以上
の熱伝導率を有するものが得られる。
According to the present invention, an aluminum nitride sintered body having an average grain size of 5 μm or less and a thermal conductivity of 100 W/mK or more can be obtained.

しかしながら、焼結工程において、焼結温度を過剰に高
く、あるいは焼結時間を長時間に設定すると、窒化アル
ミニウム粒子の粒成長が著しく促進される。そのため、
たとえば、温度1900℃において10時間程度以下の
焼結時間で焼結されるのが好ましい。
However, in the sintering process, if the sintering temperature is set too high or the sintering time is set for a long time, grain growth of aluminum nitride particles is significantly promoted. Therefore,
For example, it is preferable to sinter at a temperature of 1900° C. for a sintering time of about 10 hours or less.

また、窒化アルミニウム粉末への添加物としては、上記
の元素以外に少量の周期律表11a、 IIIa族元素
をたとえば、酸化物として添加することによって、得ら
れる窒化アルミニウム焼結体の緻密化を促進することも
可能である。周期律表Tla族元素としてはBe、Mg
、Ca、Sr、Ba、Raが挙げられる。周期律表ma
族元素としてはSc、Y、La、Ce、Pr、Nd、P
m、Sm。
In addition, as additives to the aluminum nitride powder, in addition to the above elements, small amounts of Group 11a and IIIa elements of the periodic table may be added as oxides to promote densification of the resulting aluminum nitride sintered body. It is also possible to do so. Be, Mg as Tla group elements of the periodic table
, Ca, Sr, Ba, and Ra. periodic table ma
Group elements include Sc, Y, La, Ce, Pr, Nd, P
m, Sm.

Eu、  Gd、  Tb、  Dy、  Ho、  
Er、  Tm、  Yb、Lu、Acが挙げられる。
Eu, Gd, Tb, Dy, Ho,
Examples include Er, Tm, Yb, Lu, and Ac.

さらに、Fe、Co、Ni、V、Nb、Taは酸化物と
して添加することも可能であるが、他の化合物、たとえ
ば、炭酸塩、水酸化物、アルコキシド、脂肪酸塩などの
化合物として添加することも可能である。
Furthermore, Fe, Co, Ni, V, Nb, and Ta can be added as oxides, but they can also be added as other compounds, such as carbonates, hydroxides, alkoxides, fatty acid salts, etc. is also possible.

なお、得られる焼結体の表面粗さとしてRaか0.2μ
m以下であれば、その窒化アルミニウム焼結体は回路基
板に用いられるのに望ましいものとなる。
Note that the surface roughness of the obtained sintered body is Ra or 0.2μ.
m or less, the aluminum nitride sintered body is desirable for use in circuit boards.

[発明の実施例] 比表面積3.0m2/g、金属不純物含有量80ppm
、酸素含有量017重量%である窒化アルミニウム粉末
に、添加元素として第1図に示される元素の酸化物をそ
れぞれ別々に2000ppm添加したものが準備された
。これら元素が添加された窒化アルミニウム粉末はアル
コール中で十分混合された後、乾燥された。このように
して得られた窒化アルミニウム粉末はプレス成形か施さ
れ、直径φ12mmX5mmt (厚み)の成形体に圧
縮成形された。それぞれ添加元素の種類ごとに得られた
成形体は窒素ガス雰囲気中において温度1950℃で5
時間加熱され、焼結された。このようにして作製された
それぞれの窒化アルミニウム焼結体の熱伝導率、粒径は
測定結果として第1図に示されている。なお、粒径の4
−1定方法としては、窒化アルミニウム焼結体の破面を
走査型電子顕微鏡を用いて5000倍の倍率で観察する
ことによってその粒径がallJ定された。
[Example of the invention] Specific surface area 3.0 m2/g, metal impurity content 80 ppm
, aluminum nitride powder having an oxygen content of 0.17% by weight was prepared by adding 2000 ppm of each of the oxides of the elements shown in FIG. 1 as additional elements. The aluminum nitride powder to which these elements were added was thoroughly mixed in alcohol and then dried. The aluminum nitride powder thus obtained was press-molded into a compact having a diameter of 12 mm and a thickness of 5 mm. The molded bodies obtained for each type of added element were heated at a temperature of 1950°C in a nitrogen gas atmosphere for 50 minutes.
heated for an hour and sintered. The thermal conductivity and grain size of each aluminum nitride sintered body thus produced are shown in FIG. 1 as measurement results. In addition, the particle size of 4
-1 determination method: The grain size was determined by observing the fracture surface of the aluminum nitride sintered body at a magnification of 5000 times using a scanning electron microscope.

この測定結果によれば、本発明に従った窒化アルミニウ
ム焼結体は、100W/mK以上の熱伝導率を有し、!
]シ均粒径が5μm以下であることが理解される。した
がって、微粒でかつ高熱伝導性を有する窒化アルミニウ
ム焼結体を得るためには、Fe、Co、Ni、V、Nb
、Taの添加が有効であることが理解される。
According to the measurement results, the aluminum nitride sintered body according to the present invention has a thermal conductivity of 100 W/mK or more!
] It is understood that the average particle size is 5 μm or less. Therefore, in order to obtain an aluminum nitride sintered body with fine grains and high thermal conductivity, Fe, Co, Ni, V, Nb
, it is understood that the addition of Ta is effective.

[発明の効果] 以上説明したように、本発明によれば微粒でかつ熱伝導
率の高い窒化アルミニウム焼結体を得ることができ、面
精度の良好な表面を有する焼結体を与えることができる
。したがって、この発明の窒化アルミニウム焼結体は、
IC用絶縁体話基板IC用パッケージ等に用いられる絶
縁性セラミックスとして広く適用されるだけでなく、種
々の放熱部品として幅広く適用されることが可能である
[Effects of the Invention] As explained above, according to the present invention, an aluminum nitride sintered body with fine grains and high thermal conductivity can be obtained, and a sintered body with a surface with good surface accuracy can be obtained. can. Therefore, the aluminum nitride sintered body of this invention is
It can be widely used not only as insulating ceramics used in IC insulator boards and IC packages, but also as various heat dissipation components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は窒化アルミニウム焼結体の平均粒径と熱伝導率
とを、含有する元素の種類との関係で示した図である。 (ほか2名)″゛
FIG. 1 is a diagram showing the average grain size and thermal conductivity of an aluminum nitride sintered body in relation to the types of elements contained therein. (2 others) ″゛

Claims (1)

【特許請求の範囲】[Claims] (1)Fe,Co,Ni,V,Nb,Taからなる群よ
り選ばれた少なくとも1種の元素を0.01〜1.0重
量%含有し、その平均粒径が5μm以下であり、かつ、
100W/mK以上の熱伝導率を有する窒化アルミニウ
ム焼結体。
(1) Contains 0.01 to 1.0% by weight of at least one element selected from the group consisting of Fe, Co, Ni, V, Nb, and Ta, and has an average particle size of 5 μm or less, and ,
An aluminum nitride sintered body having a thermal conductivity of 100 W/mK or more.
JP63130972A 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body Expired - Lifetime JP2678213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130972A JP2678213B2 (en) 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130972A JP2678213B2 (en) 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01298071A true JPH01298071A (en) 1989-12-01
JP2678213B2 JP2678213B2 (en) 1997-11-17

Family

ID=15046911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130972A Expired - Lifetime JP2678213B2 (en) 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2678213B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132666A (en) * 1990-09-25 1992-05-06 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact and production thereof
JP2015020937A (en) * 2013-07-22 2015-02-02 住友電気工業株式会社 Aluminum nitride sintered body and method of producing the same
CN110998886A (en) * 2017-07-07 2020-04-10 天工方案公司 Substituted aluminum nitride for improved acoustic wave filters
US12101076B2 (en) 2020-02-28 2024-09-24 Skyworks Solutions, Inc. Aluminum nitride dopant scheme for bulk acoustic wave filters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698434A (en) * 1979-12-21 1981-08-07 Union Carbide Corp Production of refractory sintered composition with high density
JPS61281074A (en) * 1985-06-05 1986-12-11 日本特殊陶業株式会社 High heat conductivity aluminum nitride sintered body
JPS62223070A (en) * 1986-03-13 1987-10-01 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-less polycrystal aluminum nitride formed body and manufacture thereof without sintering aid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698434A (en) * 1979-12-21 1981-08-07 Union Carbide Corp Production of refractory sintered composition with high density
JPS61281074A (en) * 1985-06-05 1986-12-11 日本特殊陶業株式会社 High heat conductivity aluminum nitride sintered body
JPS62223070A (en) * 1986-03-13 1987-10-01 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-less polycrystal aluminum nitride formed body and manufacture thereof without sintering aid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132666A (en) * 1990-09-25 1992-05-06 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact and production thereof
JP2015020937A (en) * 2013-07-22 2015-02-02 住友電気工業株式会社 Aluminum nitride sintered body and method of producing the same
CN110998886A (en) * 2017-07-07 2020-04-10 天工方案公司 Substituted aluminum nitride for improved acoustic wave filters
CN110998886B (en) * 2017-07-07 2023-09-26 天工方案公司 Aluminum nitride replacement for improved acoustic wave filters
US11778915B2 (en) 2017-07-07 2023-10-03 Skyworks Solutions, Inc. Substituted aluminum nitride for improved acoustic wave filters
US12101076B2 (en) 2020-02-28 2024-09-24 Skyworks Solutions, Inc. Aluminum nitride dopant scheme for bulk acoustic wave filters

Also Published As

Publication number Publication date
JP2678213B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
EP0963966B1 (en) High thermal conductive silicon nitride sintered body and method of producing the same
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JPH01298071A (en) Aluminum nitride sintered body
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JPS6217076A (en) Aluminum nitride powder composition
JPH06329474A (en) Sintered aluminum nitride and its production
JP3606923B2 (en) Aluminum nitride sintered body and method for producing the same
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0891960A (en) Base material for circuit board
JPH01179765A (en) Aluminum nitride sintered body and production thereof
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JP2742598B2 (en) Aluminum nitride sintered body and method for producing the same
JP2742599B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0566339B2 (en)
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JP2620260B2 (en) Manufacturing method of aluminum nitride sintered body
JPH01298072A (en) Aluminum nitride presintered body, aluminum nitride sintered body, and their production
JPH01179764A (en) Aluminum nitride sintered body and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

EXPY Cancellation because of completion of term