JPH04132666A - Aluminum nitride sintered compact and production thereof - Google Patents

Aluminum nitride sintered compact and production thereof

Info

Publication number
JPH04132666A
JPH04132666A JP2255752A JP25575290A JPH04132666A JP H04132666 A JPH04132666 A JP H04132666A JP 2255752 A JP2255752 A JP 2255752A JP 25575290 A JP25575290 A JP 25575290A JP H04132666 A JPH04132666 A JP H04132666A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
compound
powder
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2255752A
Other languages
Japanese (ja)
Other versions
JP2773416B2 (en
Inventor
Akira Yamakawa
晃 山川
Koichi Sogabe
浩一 曽我部
Masaya Miyake
雅也 三宅
Kohei Shimoda
浩平 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17283139&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04132666(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2255752A priority Critical patent/JP2773416B2/en
Publication of JPH04132666A publication Critical patent/JPH04132666A/en
Application granted granted Critical
Publication of JP2773416B2 publication Critical patent/JP2773416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a dense sintered compact and improve high thermal conductivity, strength and light shielding properties by mixing AlN powder with a specific metallic compound, forming the resultant mixture and sintering the formed compact. CONSTITUTION:An AlN sintered compact is obtained by mixing 0.01-30wt.% (expressed in terms of metals) AlN powder having >=1mum grain diameter and one or two or more metallic compounds, selected from Ti, Zr, Hf, V, Nb, Ta, Mo, W, Fe, Co and Ni and having <=1mum grain diameter, as necessary, 0.01-10wt.% sintering assistant (e.g. stearic acid), forming the resultant mixture and then sintering the formed compact at 1600-2000 deg.C in a nonoxidizing atmosphere containing nitrogen. Thereby, the aforementioned sintered compact containing compound grains other than a wurtzite structure finely dispersed in AlN particles having hexagonal system wurtzite structure having >=30kg/mm<2> tensile strength, >=50cm<-1> apparent absorption coefficient at 500nm and >=70W/mk thermal conductivity is obtained.

Description

【発明の詳細な説明】 (発明の目的) [Piり′X1−の利用分野〕 本発明は、窒化アルミニウム焼結体およびその製造方法
に関し、さらに詳しくは窒化アルミニウム結晶中に微細
粒子が分散した緻密、高熱伝導でかつ高強度で遮光性に
秀れた窒化アルミニウム焼λ、一体およびその製造方法
に関する。
[Detailed Description of the Invention] (Object of the Invention) [Field of Application of Pi' The present invention relates to an aluminum nitride sintered lambda that is dense, has high thermal conductivity, high strength, and excellent light-shielding properties, and a method for producing the same.

〔従来の技術〕 最近の電子産業を中心とした技術進歩はめざましく、使
用される材料に要求される特性もきびしくなっている。
[Prior Art] Technological progress has been remarkable in recent years, mainly in the electronics industry, and the properties required of the materials used are becoming increasingly strict.

たきえば、半導体においてはその集積度、処理速度の増
大により、発熱量、発熱密度が急激に増大しており、基
板材料に要求される放熱特性がきびしいものになってい
る。そのため従来のAρ203基板では熱伝導率が低く
、放熱性が不十分であり、半導体の発熱量増大に対応で
きなくなっている。このためAρ203に代わる基板材
料として酸化ベリリウム(口eo)が挙げられるが、口
COは毒性があり取扱いがカ[シい欠点がある。そのた
めに新しい材料が要求されている。
For example, in semiconductors, as the degree of integration and processing speed increases, the amount of heat generated and the heat density are rapidly increasing, and the heat dissipation characteristics required of substrate materials have become stricter. Therefore, the conventional Aρ203 substrate has low thermal conductivity and insufficient heat dissipation, making it unable to cope with the increase in the amount of heat generated by semiconductors. For this reason, beryllium oxide (CO) can be used as an alternative substrate material to Aρ203, but CO has the drawback of being toxic and difficult to handle. New materials are therefore required.

また、自動車分野においては、地球環境の保護の必要か
らエンジン効率の向」二を1」ざして、車体の軽量化は
もちろん、エンジン系の軽量化、高効率化が追及されて
いる。とくに高熱部分においては、軽量、高耐熱、高強
度の高熱伝導の材料が必要とされ、もはや従来の金属材
料では対応できず、セラミック材料が検討されている。
Furthermore, in the automobile field, in order to improve engine efficiency due to the need to protect the global environment, efforts are being made not only to reduce the weight of vehicle bodies, but also to reduce the weight and improve the efficiency of engine systems. Particularly in high-temperature parts, lightweight, highly heat-resistant, high-strength, and high-thermal-conducting materials are required, and conventional metal materials are no longer suitable, so ceramic materials are being considered.

しかしながら従来のセラミックでは強度と熱伝導率を同
時に満足できるセラミックが存在しなかった。
However, there was no conventional ceramic that could satisfy both strength and thermal conductivity.

一方、窒化アルミニウム(ARN)は、その物性値とし
て高熱伝導でかつ高絶縁性の物質であり、しかも毒性も
なく、資源も豊富なことから、安価に焼結体が得られれ
ば、」−2に述べた要求特性を満足しうろこ2から、古
くから研究開発が行なわれてきた。ARNは焼結製が悪
<、Al2N単独での緻密化は困難である、そのため焼
結助剤の添加が行われ、たとえば特開昭60−7157
5に示されるように、アルカリ土類金属、イツトリウム
及びランタン族金属からなる群の一種または二種以上の
金属の化合物を用いて緻密化が行われる。AffNの材
料特性を発揮させ、有用な材料とするだめの研究開発は
このような緻密質焼結体を前提として、次の3つの方向
で行なわれてきた。第一の方向としては高強度材料を得
、構造材料として用いることを意図したもので、繊維構
造として得ることで強度の向上が達成された、たとえば
特公昭56−36153には、SiO2又はシリケート
鉱物を添加し高強度のA(2N焼結体が得られている。
On the other hand, aluminum nitride (ARN) is a material with high thermal conductivity and high insulation properties, is non-toxic, and has abundant resources, so if a sintered body can be obtained at a low cost, it will be useful.''-2 Since ancient times, research and development has been carried out on scale 2, which satisfies the required characteristics described in . ARN is poorly made by sintering, and it is difficult to densify it with Al2N alone. Therefore, sintering aids are added, for example, in JP-A-60-7157.
5, densification is carried out using a compound of one or more metals from the group consisting of alkaline earth metals, yttrium and lanthanum group metals. Research and development aimed at exploiting the material properties of AffN and making it a useful material has been carried out in the following three directions based on the premise of such a dense sintered body. The first approach was to obtain high-strength materials and use them as structural materials. A high-strength A(2N) sintered body was obtained by adding .

しかしながら熱伝導を犠牲にして達成されており、AR
Nの特性を十分に発1車させたとはいい難いものであっ
た。
However, this is achieved at the expense of heat conduction, and AR
It is difficult to say that the characteristics of the N were fully developed in one car.

第二の方向としては、高熱伝導を優先させた開発であり
、特開昭60−71575には、高純度のAβN粉末を
用いることによって、透光性のある高熱伝導性の焼結体
が得られ、6μmの赤外光の吸収係数が20cm−’程
度で熱伝導率60w/n+kを越える焼結体が得られて
いる。さらに、特開昭63−303863においては、
焼結時間を延長させ、添加した焼結助剤を派生せしめる
ことによって、さらに高熱伝導のARNが得られるとし
ており、200w/mk以」二の熱伝導と500nmの
光の吸収係数が50cm−’以下の透光性が達成されて
いる。
The second direction is development that prioritizes high thermal conductivity, and Japanese Patent Laid-Open No. 60-71575 describes the use of high-purity AβN powder to produce a highly thermally conductive sintered body with translucent properties. A sintered body having an absorption coefficient of 6 μm infrared light of about 20 cm −′ and a thermal conductivity exceeding 60 w/n+k has been obtained. Furthermore, in JP-A-63-303863,
It is said that by extending the sintering time and deriving the added sintering aid, an ARN with even higher thermal conductivity can be obtained. The following translucency has been achieved:

これらはいずれも熱伝導率は高いが、Al2Nの粗粒化
が著しく材料強度が低く、信頼性が低いものであった。
All of these had high thermal conductivity, but the grains of Al2N were extremely coarse, resulting in low material strength and low reliability.

また、透光性があるために、たとえば半導体パッケージ
材料としては好ましくないとされている。第三の方向き
しては、第二の方向の改良として、特定の化合物を添加
し、遮光性を持たせる、あるいはメタライズ性を改良す
るといった方向である。例えば、特開昭62−1531
73には、周期律表4a、 5a、 6a、 7a、 
8族元素を添加し、低温焼結が可能で緻密・高熱伝導率
のARNが着色されて得られるよされる。しかしながら
熱伝導率は高々100w/mk程度で曲げ強度は高々6
0kg/mm2である。特開昭61−270262には
、メタライズ強度を向上させるために周期律表4a、 
5a、 6a族元素の硼化物、窒化物、炭化物を含むA
ρN焼結体が示されているがこれはこれらの化合物が粒
界に存在し、メタライズ性を向上させるものである。
Furthermore, because of its light-transmitting properties, it is considered undesirable as a material for semiconductor packaging, for example. A third direction is to improve the second direction by adding a specific compound to impart light-shielding properties or to improve metallizability. For example, JP-A-62-1531
73 includes the periodic table 4a, 5a, 6a, 7a,
By adding Group 8 elements, it is possible to obtain colored ARN that is dense and has high thermal conductivity and can be sintered at low temperatures. However, the thermal conductivity is at most about 100w/mk, and the bending strength is at most 6.
It is 0 kg/mm2. In JP-A-61-270262, in order to improve metallization strength, periodic table 4a,
A containing borides, nitrides, and carbides of group 5a and 6a elements
A ρN sintered body is shown in which these compounds exist at grain boundaries and improve metallizability.

しかしながら、熱伝導率は120w/mk程度と低く焼
結体強度は不明である。また光の透過については何の記
述もない。特開平2−124772にはARNを主成分
とし、Ti、 Zr、 Iff、  V、 Nb、 T
a、 Cr、 Mo、  W。
However, the thermal conductivity is as low as about 120 w/mk, and the strength of the sintered body is unknown. Furthermore, there is no description regarding light transmission. JP-A-2-124772 has ARN as the main component, Ti, Zr, Iff, V, Nb, T
a, Cr, Mo, W.

Mn、 Pe、 Co、 Ni、 Nd、 lloから
選ばれた一種以上の金属元素を含み150w/mk以上
のΔρN焼結体が開示されている。
A ΔρN sintered body containing one or more metal elements selected from Mn, Pe, Co, Ni, Nd, and llo and having a power of 150 w/mk or more is disclosed.

しかしながら、遮光性がありかつ高熱伝導率ではあるが
その強度については低いままであった。
However, although it has light blocking properties and high thermal conductivity, its strength remains low.

すなわち、AffNの研究方向はAffN焼結体の酸素
を中心とした不純物を極力減少せしめることによって高
熱伝導を追及することが中心で、一部において強度向上
、添加物の検問による粒界相の変化によってメタライズ
強度の向上、着色が検討されてきたのである。ましてや
機械強度の改善の試みは放棄されてきた。
In other words, the research direction of AffN is centered on pursuing high thermal conductivity by reducing impurities, mainly oxygen, in AffN sintered bodies as much as possible, and in part, improving strength and changing the grain boundary phase by checking additives. Therefore, improvements in metallization strength and coloring have been studied. Furthermore, attempts to improve mechanical strength have been abandoned.

(発明が解決しようとする問題点) 現在までのAffNの開発が、八〇Nの熱伝導の追及に
かたより、ARNの特性をト分に利用できずまた実用上
必要な特性を充足しているとは言い難い状況である。
(Problems to be solved by the invention) The development of AffN to date has focused on pursuing 80N heat conduction, and has not been able to fully utilize the characteristics of ARN, and has not been able to satisfy the practically necessary characteristics. It is difficult to say that there are any.

すなわち、緻密で高熱伝導かつ高強度で遮光性に秀れた
窒化アルミニウムが必要とされる要求に対し、十分に答
えたARNが開発されたとは言えず、本発明はこれらの
複合した要求に答えるものである。
In other words, it cannot be said that ARN has been developed that satisfactorily meets the requirements for aluminum nitride that is dense, has high thermal conductivity, has high strength, and has excellent light-shielding properties, and the present invention satisfies these combined requirements. It is something.

〔発明の構成] (問題を解決するための手段及び作用)本発明者らは、
上記目的を達成ずべく ARN焼結体を種々検討を行な
い、ARN原料を含めて、実験をすすめた結果新規な構
造のAρN焼結体を見出し、本発明を完成した。
[Structure of the invention] (Means and effects for solving the problem) The present inventors
In order to achieve the above object, we conducted various studies on ARN sintered bodies and conducted experiments including ARN raw materials. As a result, we discovered an AρN sintered body with a new structure and completed the present invention.

すなわち、特定の結晶構造をもつ微細な化合物を^ρN
粒子内に分散させた特異な構造のAρN焼結体によって
特異な特性が達成されることが明らかとなり、その特性
は従来になかったものであり、その必要事項を種々検討
を行なった結果本発明が完成されたのである。
In other words, a fine compound with a specific crystal structure is ^ρN
It has become clear that unique characteristics can be achieved by AρN sintered bodies with a unique structure dispersed within particles, and these characteristics have never existed before.As a result of various studies on the necessary matters, the present invention was developed. was completed.

般にAffNは六方晶系に属し、ウルツ鉱型の結晶構造
をとる。これと異なった結晶系に属する化合物を微細に
分散したAρN結晶が焼結されて、本廓発明がなされる
。すなわち、微細分散した化合物が、六方晶系、ウルツ
鉱型以外の結晶系結晶構造にあることが必要であり、好
ましくは立方晶系で特にNaCA型構造の化合物が好ま
しい。これは、焼結体強度の向上にはAρN結晶とAf
fN粒内に分散した結晶の構造の相異が効果があると思
われる。
Generally, AffN belongs to a hexagonal system and has a wurtzite crystal structure. The present invention is accomplished by sintering an AρN crystal in which a compound belonging to a different crystal system is finely dispersed. That is, it is necessary that the finely dispersed compound has a crystal structure other than hexagonal or wurtzite, and compounds having a cubic crystal structure, particularly a NaCA structure, are preferable. This suggests that AρN crystal and Af
It is thought that the difference in the structure of the crystals dispersed within the fN grains is effective.

同一構造のBeOあるいはTi82等の結晶はAffN
粒内に分布し難く、また特性の向上も十分なものではな
い。
Crystals such as BeO or Ti82 with the same structure are AffN.
It is difficult to distribute within the grains, and the properties are not sufficiently improved.

AρN粒子と分散粒子の間の粒径の関係はもっとも重要
な項目の1つであり、特にAβN粒子の175以下の微
細結晶であることが望ましい。これは分散粒子がAQN
粒子の175以上の大きさでは分散粒子の効果が小さく
なるためであり、分散粒子は微細なほど効果が大きくな
る。特に分11に粒子は1μ以下がより好ましくAff
N粒は平均1μ以上であることが好ましい。これはAf
fN粒は微細な程焼給体強度は大きくなるが、微細分散
粒子のとり込みが不十分となり、分散粒のへρN粒界へ
の析出が増加するため、AρN粒子は平均1μ以上とす
ることが好ましい。また、分散粒子の最も好ましい平均
粒度は0.3μm以下である。
The relationship in particle size between the AρN particles and the dispersed particles is one of the most important items, and it is particularly desirable that the AβN particles be fine crystals of 175 or less. This means that the dispersed particles are AQN
This is because if the particle size is 175 or more, the effect of the dispersed particles becomes smaller, and the finer the dispersed particles, the greater the effect. In particular, particles at minute 11 are preferably 1μ or less.
It is preferable that the N grains have an average size of 1 μ or more. This is Af
The finer the fN grains, the greater the strength of the fired body, but the incorporation of finely dispersed particles becomes insufficient and precipitation of dispersed grains to the ρN grain boundaries increases, so the average size of AρN particles should be 1μ or more. is preferred. Moreover, the most preferable average particle size of the dispersed particles is 0.3 μm or less.

微細分散粒子は大部分がARN粒内に存在し、また、A
RN粒の大部分に微細分散粒子が存在するが、好ましく
は分散粒子の過半がAffN粒内にあり、残りはAρN
粒界に存在する。分散粒子がA72N粒内に存在する比
率は高い程好ましい。これは、粒内に分散すれば、熱伝
導率の低下が小さく、また遮光性の増加、焼結体強度へ
の寄与が大きくなるためである。
Finely dispersed particles are mostly present within ARN grains, and A
Although finely dispersed particles are present in most of the RN grains, preferably the majority of the dispersed particles are within the AffN grains, with the remainder being within the AffN grains.
Exists at grain boundaries. The higher the ratio of dispersed particles within the A72N grains, the better. This is because, if dispersed within the grains, the decrease in thermal conductivity will be small, the light-shielding property will increase, and the contribution to the strength of the sintered body will be large.

微細分散した粒子はTi、 Zr、 lげ、 V、 N
b、 Ta、Mo、 W、 Fe。
The finely dispersed particles are Ti, Zr, Ti, V, N.
b, Ta, Mo, W, Fe.

Co、Niから選ばれた一種または二種以上の化合物で
あることが好ましいが、たとえばAu、 Pt等でも効
果がありその限りではない。特にこれらの元素は光の吸
収効果が大きく遮光性に大きく寄与する。
It is preferable to use one or more compounds selected from Co and Ni, but Au, Pt, etc., for example, are also effective and are not limited thereto. In particular, these elements have a large light absorption effect and greatly contribute to light shielding properties.

またこれらの金属元素は酸化物、炭化物、窒化物等の化
合物でも、また金属であってもよいが、AQNの格子に
固溶するのではなく、あくまでも、分離分散しているこ
とが必要である1゜ ずなわぢ、AffN粒への固溶はAβNの熱伝導率を大
きく低下させるためさける必要がある。
Furthermore, these metal elements may be compounds such as oxides, carbides, nitrides, or metals, but they must be separated and dispersed rather than being solidly dissolved in the AQN lattice. Solid solution into AffN grains must be avoided because it greatly reduces the thermal conductivity of AβN.

微細分散粒子の金属元素はその大部分はAffN粒に置
換型あるいは侵入型に固溶していないことが必要である
。分散した粒子は特にTi、 Zr、 Iff、  V
It is necessary that most of the metal elements in the finely dispersed particles do not form a solid solution in the AffN grains in a substitutional or interstitial manner. The dispersed particles are in particular Ti, Zr, Iff, V
.

Nb  Taから選ばれた元素を含む化合物であること
が好ましい。これらの化合物はNaC11型構造をとる
化合物でたとえば窒化物、炭化物、硼化物、酸化物ある
いはこれらの固溶体で存在する。とくに主として窒化物
からなる化合物の場合に効果が大きい。分散粒子の金属
元素は0.01〜30重量パーセント好ましくは0.0
1〜5.0重量パーセント含まれる。
Preferably, it is a compound containing an element selected from Nb Ta. These compounds have a NaC11 type structure and exist in the form of, for example, nitrides, carbides, borides, oxides, or solid solutions thereof. This is particularly effective in the case of compounds mainly consisting of nitrides. The metal element of the dispersed particles is 0.01 to 30% by weight, preferably 0.0
1 to 5.0 weight percent.

含有量が大きいことは好ましいがかえって電気絶縁性の
低下、緻密度の低下がおこり限度内にすることが必要で
ある。分散粒子が微細であれば50重量パーセント以下
までで十分な効果が得られる。
Although it is preferable for the content to be large, it may cause a decrease in electrical insulation properties and a decrease in density, so it is necessary to keep the content within limits. If the dispersed particles are fine, sufficient effects can be obtained with up to 50% by weight.

特に、1.0重量パーセント以下で十分な遮光性機械的
強度が高い熱伝導率、絶縁特性とともに得ることが可能
である。また、AffN粒子の焼結性を向上させるため
に添加する焼結助剤を用いることも可能である。焼結助
剤としては、公知のアルカリ土類、稀土類元素の化合物
を用いることが好ましく、焼結体ではAQ、Nに固溶す
ることなく、AQNに含まれる八ρと0との化合物を形
成し、ARNの粒界に存在することができる。焼結助剤
は少なければ熱伝導率が低く、また焼結体密度があがり
難くなる。一方で多すぎれば焼結体の熱伝導率がかえっ
て低下してしまう、また焼結体表面測度が悪くなる。そ
のため、0.01〜10.0重量パーセント好ましくは
0旧〜3.0重量パーセントのアルカリ土類、希土類元
素を含む化合物を用いる。特に酸化物、炭酸塩、水酸化
物、ステアリン酸化合物、アルコキシド等が用いられる
、これは焼結体中では主として酸化物として存在し、A
ρ203との化合物を形成する場合が多い。
In particular, it is possible to obtain sufficient light-shielding mechanical strength with high thermal conductivity and insulation properties at 1.0 weight percent or less. It is also possible to use a sintering aid added to improve the sinterability of AffN particles. As the sintering aid, it is preferable to use compounds of known alkaline earth and rare earth elements, and in the sintered body, the compound of 8ρ and 0 contained in AQN can be used without solid solution in AQ and N. can be formed and present at the grain boundaries of ARN. If the amount of the sintering aid is small, the thermal conductivity will be low and the density of the sintered body will be difficult to increase. On the other hand, if the amount is too large, the thermal conductivity of the sintered body will decrease, and the surface quality of the sintered body will deteriorate. Therefore, a compound containing an alkaline earth or rare earth element in an amount of 0.01 to 10.0 weight percent, preferably 0 to 3.0 weight percent, is used. In particular, oxides, carbonates, hydroxides, stearic acid compounds, alkoxides, etc. are used, and these exist mainly as oxides in the sintered body.
It often forms compounds with ρ203.

次に得られる焼結体の特性について述べる。Next, the characteristics of the obtained sintered body will be described.

本発明の焼結体は抗折力が30kg/mm2以上である
The sintered body of the present invention has a transverse rupture strength of 30 kg/mm2 or more.

抗折力は4mmrlJX 0.635mm厚の板状試片
を3点曲げ20m1Tlスパンで測定して求められる。
The transverse rupture strength is determined by measuring a 4 mm rl JX 0.635 mm thick plate-shaped specimen in a 3-point bending span of 20 m 1 Tl.

好ましい条件の選定によって50kg/mm2以上の強
度が得られさらに80kg/mm2を越える強度を得る
ことも可能である。これは特にたとえばAρN粒度を5
μm以下、微細分散粒子を0.3μm以下でAρN粒子
に分散し、かつAρN粒界にも存在することで得られる
。このような高い強度は、AffN粒成長の適度な阻害
とAffN粒子強化および粒界強化によると考えられる
By selecting preferable conditions, it is possible to obtain a strength of 50 kg/mm2 or more, and even more than 80 kg/mm2. This is especially true for example if the AρN grain size is 5
μm or less, it can be obtained by dispersing finely dispersed particles in AρN particles with a size of 0.3 μm or less and also existing at AρN grain boundaries. Such high strength is considered to be due to moderate inhibition of AffN grain growth, AffN grain strengthening, and grain boundary strengthening.

光の吸収係数は500nmにおいて見かけの吸収係数が
50c+n−’以上で、黒色・茶色等に着色され遮光性
を示す。吸収係数は厚さ0.5mmの板状試片を用い分
光光度計を用いて測定する、なお吸収係数は簡易的に I : I oe−JJ−Lで算出したIO=入射光の
強度 ■=透過光の強度 β:焼結体厚 t:見かけの吸収係数 このように分散粒子、焼結助剤以外は高純度のAffN
からなり、高い熱伝導で示すにもかかわらず吸収係数が
高いのは、分散粒子の光の吸収能が高いためと考えられ
る。分散粒子の元素による効果とともに微細にA72N
粒内に分布しているため効率的に入射光の吸収に寄与し
ているためと考えられる。
The apparent absorption coefficient of light is 50c+n-' or more at 500 nm, and it is colored black, brown, etc., and exhibits light-shielding properties. The absorption coefficient is measured using a spectrophotometer using a plate specimen with a thickness of 0.5 mm.The absorption coefficient is simply calculated as I: I oe-JJ-L IO = Intensity of incident light ■ = Intensity of transmitted light β: Thickness of sintered body t: Apparent absorption coefficient As shown above, except for the dispersed particles and sintering aid, AffN is of high purity.
The reason why the absorption coefficient is high despite the high thermal conductivity is thought to be due to the high light absorption ability of the dispersed particles. Finely A72N with the effect of the elements of the dispersed particles
This is thought to be because it is distributed within the grain and thus contributes to the absorption of incident light efficiently.

熱伝導率については70w/mk以上が得られ、抗折強
度が30kg/mm2以上でかつ、50nmの光におけ
る吸収係数が50cm−’以上を同時に満足するもので
ある。
The thermal conductivity is 70 w/mk or more, the bending strength is 30 kg/mm2 or more, and the absorption coefficient for 50 nm light is 50 cm-' or more.

好ましくは50kg/+nn2を越える強度を得る。ま
た熱伝導率についても好ましくは120w/mk以上最
も好ましくは150w/mmL以」二の焼結体であり好
ましくは70Kg/mm2以上の高い抗折力を得る。
Preferably a strength of more than 50 kg/+nn2 is obtained. The sintered body preferably has a thermal conductivity of 120 w/mk or more, most preferably 150 w/mmL or more, and preferably has a high transverse rupture strength of 70 kg/mm2 or more.

本発明における焼結体のAffN粒子は微細に分散した
粒子以外は極めて高純度でAρN格子中に固溶する不純
物原子は極めて少ない。そのため、AQNの格子常数は
C軸方向が4979八〜4983人、a軸方向が3.1
10人−3,113八でc/aが1.602以下である
The AffN particles of the sintered body in the present invention have extremely high purity except for finely dispersed particles, and there are extremely few impurity atoms dissolved in the AρN lattice. Therefore, the lattice constant of AQN is 49798 to 4983 people in the C-axis direction and 3.1 in the a-axis direction.
10 people - 3,1138 had a c/a of 1.602 or less.

方半値巾は2θで0.15deg以下である。半値1】
が微細分散した粒子の影響により大きくなっているにも
かかわらず、格子常数のc/aが小さくΔρNへの格子
への固溶物質は極めて少ないと考えられる。これが熱伝
導率と遮光性、強度を同時に向」ニし得る理由であるき
考えられる。
The full width at half maximum is 0.15 deg or less in 2θ. Half price 1]
Although it is large due to the influence of finely dispersed particles, the lattice constant c/a is small and it is considered that there is very little solid solution in the lattice of ΔρN. This is thought to be the reason why thermal conductivity, light shielding properties, and strength can be improved at the same time.

次に本願発明の製法について説明する。Next, the manufacturing method of the present invention will be explained.

本願発明に用いるAρN粉末は微細分散粒子となる元素
およびまたはその化合物、焼結助剤となる化合物、酸素
、炭素を含むが、微細分散粒子となる元素およびまたは
その化合物、焼結助剤となる化合物、炭素はAffN粉
末に添加混合してもよい。その場合は、AffN粉末は
高純度の粉末を用いる。高純度へffN粉末としては焼
結性、成形性に秀れたものが必要で、好ましくは平均粒
径2μm以下、酸累含有量2.0重量パーセント以下で
ある。過度に微細なへρN粉は焼結性は高いものの成形
性(シート成形、押し出し、プレス成形等)が劣り、適
度な粒度が必要である。酸素量は添加する、あるいはA
ρN粉に含まれる炭素量を変動させることで広い範囲で
許容可能であるが、M7N粉内に固溶した酸素、炭素あ
るいは未反応のAρ203等の存在は好ましくない。A
ρN粉末合成時にあらかじめ微細分散粒子となる元素お
よび又はその化合物、焼結助剤となる化合物、炭素を含
有させてもよい。これはAρN合成原料にこれらの前駆
体を添加し、それより八12Nを合成する方法によれば
容易に得られる。
The AρN powder used in the present invention contains an element and/or a compound thereof that becomes finely dispersed particles, a compound that serves as a sintering aid, oxygen, and carbon. The compound and carbon may be added to and mixed with the AffN powder. In that case, a highly purified AffN powder is used. To achieve high purity, the ffN powder must have excellent sinterability and moldability, and preferably has an average particle diameter of 2 μm or less and an acid content of 2.0 weight percent or less. Although excessively fine ρN powder has high sinterability, it has poor formability (sheet forming, extrusion, press forming, etc.), and requires an appropriate particle size. The amount of oxygen is added or A
Although it is permissible in a wide range by varying the amount of carbon contained in the ρN powder, the presence of oxygen, carbon, unreacted Aρ203, etc. dissolved in the M7N powder is not preferable. A
During synthesis of the ρN powder, an element and/or a compound thereof that becomes finely dispersed particles, a compound that becomes a sintering aid, and carbon may be included in advance. This can be easily obtained by adding these precursors to the raw material for AρN synthesis and then synthesizing 812N.

得られた粉末にさらに所定量の微細分散粒子となる元素
および又は化合物、焼結助剤となる化合物、炭素を混合
してもよい。
The obtained powder may further be mixed with a predetermined amount of an element and/or compound that becomes finely dispersed particles, a compound that becomes a sintering aid, and carbon.

たとえばへρ203還元法によればAl2203粉に炭
素またはその前駆体、微細分散粒子となる元素およびま
たはその化合物の前駆体、焼結助剤となる化合物の前駆
体を添加し混合したのち窒素含有雰囲気中で1400℃
以上の温度で加熱して得ることが出来る。AβNの合成
法によらず、たとえば直接窒化法、気相反応法でもこれ
らの方法を採用できる。高純度AffN粉末に、微細分
ii& 1’M、子となる元素およびまたはその化合物
、焼結助剤となる化合物等の添加は、これら元素を含む
物質を所定量添加し、混合することで行なわれる。
For example, according to the ρ203 reduction method, carbon or its precursor, a precursor of an element and/or its compound that becomes finely dispersed particles, and a precursor of a compound that becomes a sintering aid are added to Al2203 powder, and then mixed in a nitrogen-containing atmosphere. 1400℃ inside
It can be obtained by heating at a temperature above. Regardless of the method of synthesizing AβN, for example, direct nitriding or gas phase reaction may be employed. Addition of fine fractions ii &1'M, child elements and/or their compounds, compounds serving as sintering aids, etc. to high purity AffN powder is done by adding a predetermined amount of substances containing these elements and mixing. It will be done.

これらの元素を含む物質とは酸化物、水酸化物、炭酸塩
、蓚酸塩等の粉末あるいは、アルコールに溶解させたア
ルコキシド等の溶液であってもよい。
The substances containing these elements may be powders of oxides, hydroxides, carbonates, oxalates, etc., or solutions of alkoxides, etc. dissolved in alcohol.

好ましくは平均粒径0゜2μm以下の微粉末、あるいは
溶液等で7M2N粉に微細混合する必要がある。
Preferably, it is necessary to finely mix the 7M2N powder with a fine powder having an average particle diameter of 0°2 μm or less, or a solution.

微細分散粒子きなる元素はTi、 Zr、 Iff、 
 V、 Nb。
The elements that form finely dispersed particles are Ti, Zr, Iff,
V, Nb.

Ta、 Mo、  W、 Tc、 Co、 Niが好ま
しく、特にTi、 Zr。
Ta, Mo, W, Tc, Co, and Ni are preferred, especially Ti and Zr.

Iff、  V、 Nb、 Taが好ましい。If, V, Nb, and Ta are preferred.

これらの金属あるいは酸化物、炭化物、窒化物の粉末を
AffN粉に添加あるいはMN合成時に予め添加し、A
ffNを合成させる等によって含有させる。
Powders of these metals, oxides, carbides, and nitrides are added to AffN powder or added in advance during MN synthesis, and
It is contained by synthesizing ffN or the like.

焼結体中に元素換算で0.01〜30重量パーセント、
好ましくは0.01〜5.0重量パーセント存在させる
に必要な量を含有させる。焼結助剤となる化合物は、ア
ルカリ土類、希土類元素を焼結体中に0.旧〜]0w1
0存在させるに必要な量を添加する。これらの元素の酸
化物、炭酸塩、水酸化物等あるいはステアリン酸、オレ
イン酸等の化合物も有効である。炭素は成形体の加熱途
中、たとえば1000℃加熱により遊離炭素として0.
旧〜5.0重量パーセント存在する。これはAl2N粉
にあらかじめ存在させた遊離炭素あるいはAρN粉に添
加した遊離炭素(たとえばアセチレンブラック グラフ
ァイト等)あるいは加熱により遊離炭素を残す有機物、
フェノール樹脂等)を添加させることによって得られる
。また成形助剤として添加される樹脂(PVB等)も加
熱により分解し、遊離炭素を残す場合がある。遊離炭素
はAρN粉の表面あるいは内部に存在する酸素を除去す
る。(OをCOガスとして除去する、たとえばAff 
20−は還元され、COガスを放出する又は低級酸化物
として蒸発1iif敗する)とともに、微細分散する元
素および化合物を還元する。たとえば添加あるいは含有
させられたTiO2粉は還元され、かつ雰囲気N2によ
り直ちに窒化されTiNとなってMNN円内分散するの
である。
0.01 to 30% by weight in terms of elements in the sintered body,
It is preferably present in an amount of 0.01 to 5.0 weight percent. The compound serving as a sintering aid contains 0.0% alkaline earth or rare earth element in the sintered body. Old~]0w1
Add the amount necessary to make 0 present. Oxides, carbonates, hydroxides, etc. of these elements, and compounds such as stearic acid and oleic acid are also effective. Carbon is released as free carbon during heating of the compact, for example, at 1000°C.
present at ~5.0 weight percent. This is free carbon pre-existing in Al2N powder, free carbon added to AρN powder (such as acetylene black graphite, etc.), or organic substances that leave free carbon when heated.
phenolic resin, etc.). Furthermore, resins (such as PVB) added as molding aids may also decompose upon heating, leaving free carbon behind. Free carbon removes oxygen present on the surface or inside the AρN powder. (Remove O as CO gas, e.g. Af
20- is reduced, releasing CO gas or evaporating as lower oxides) and reducing finely dispersed elements and compounds. For example, the added or contained TiO2 powder is reduced and immediately nitrided by the N2 atmosphere to become TiN, which is dispersed within the MNN circle.

AρNの成形、焼結は公知の方法によって行なわれ、成
形法には何ら制限を受けない。また焼結は窒素含有の非
酸化雰囲気中1600℃以北2000℃で行なわれ、こ
れらの製造方法については何ら制限を受けない。
Molding and sintering of AρN is performed by a known method, and there are no restrictions on the molding method. Further, the sintering is performed in a nitrogen-containing non-oxidizing atmosphere at a temperature north of 1600°C and 2000°C, and there are no restrictions on these manufacturing methods.

以下実施例をあげて説明する実施台は製法等についての
−例を示したものでそれによって本願発明は何ら制限さ
れない。
The embodiments described below with reference to examples are merely examples of manufacturing methods, etc., and the present invention is not limited thereto in any way.

本明細書における測定方法。Measurement method in this specification.

・粒径  原則上してSEM又はTEMによる観察、粉
末の粒径は沈降法による平 均粒径 ・元素分析 アルカリ溶融後の定量分析、金属元素、炭
素、酸素はガス分析(1eco社製)・抗折力 巾4m
m  厚み0.635mm  長さ30 mmの試料2
0mmスパン 3点曲げテスト・吸収係数 分光光度計
により、鏡面加工した0、5mmTの試料について測定 ・熱伝導率 レーザーフラッシュ法による2次元測定(
真空理工製TC−7000相当)・空孔率 AffNの
密度を3,26として算出した焼結密度と実測値より算
出 ・密度  アルキメデス法 ・格子常数 X線回折による(si標QL>実施例1 ARN粉末(平均粒径0,8μm、酸素1.5w / 
o、Aρを除く金属不純物0,1w10以下、炭素0.
03w10)に表1に示した添加物平均粒径05μm以
下とY2O3粉末(平均粒径0.5μm、純度99.9
%)を0.5fffffiパーセント添加し、フェノー
ルを1.0重量パーセント加え、PVBを10重量パー
セントとともにトルコン系溶剤でナイロンボール、ナイ
ロンポットで10時間置屋して得たスラリーをシト状に
キャスティング後乾燥して厚さ0.8mmのシトを得た
。50mm角に打ち抜いて窒素中1B50℃でBNルツ
ボ中で5時間加熱焼結体を得た。昇温途中1000℃で
取り出し炭素分析したところ遊離炭素は0.6%であっ
た。?゛)られた焼結体の特性を表1にボす。
・Particle size: Observation using SEM or TEM in principle. Powder particle size is determined by sedimentation method. ・Elemental analysis: Quantitative analysis after alkali melting. Metal elements, carbon, and oxygen are determined by gas analysis (manufactured by 1eco). Folding force width 4m
Sample 2 with a thickness of 0.635 mm and a length of 30 mm
0mm span 3-point bending test ・Absorption coefficient measured using a spectrophotometer on a mirror-finished 0.5 mmT sample ・Thermal conductivity 2-dimensional measurement using laser flash method (
(equivalent to TC-7000 manufactured by Shinku Riko Co., Ltd.)・Porosity Calculated from the sintered density calculated with the density of AffN as 3.26 and the actual value・Density Archimedes method・Lattice constant By X-ray diffraction (si standard QL>Example 1 ARN Powder (average particle size 0.8μm, oxygen 1.5w/
o, metal impurities excluding Aρ 0.1w10 or less, carbon 0.
03w10), the additives shown in Table 1 with an average particle size of 05 μm or less and Y2O3 powder (average particle size of 0.5 μm, purity 99.9
%) was added, 1.0% by weight of phenol was added, and 10% by weight of PVB was placed in a nylon ball and nylon pot in a Torcon solvent for 10 hours. The resulting slurry was cast into a sheet shape and dried. A sheet with a thickness of 0.8 mm was obtained. A sintered body was obtained by punching out a 50 mm square and heating it in nitrogen at 50° C. in a BN crucible for 5 hours. The sample was taken out at 1000° C. during heating and analyzed for carbon, and the free carbon content was 0.6%. ? Table 1 shows the properties of the sintered body.

表 セント加え、PMMA (ポリメチルメタアクリレート
)を10重量%、ナフサ系溶剤でナイロンポット、ナイ
ロンボールを用いてlO時間置屋して得たスラリーをシ
ート状にキャスティング後乾燥して厚さ0.8mmのシ
ートを得た。50mm角に打ち抜いて窒素中1850℃
にてBNルツボ中で3時間加熱して焼結体を得た。焼結
体の特性は表2に示す。
The slurry obtained by adding 10% by weight of PMMA (polymethyl methacrylate) and a naphtha-based solvent to a nylon pot and a nylon ball for 10 hours was cast into a sheet and dried to a thickness of 0.8 mm. I got a sheet of Punch out into 50mm squares and heat in nitrogen at 1850℃
A sintered body was obtained by heating in a BN crucible for 3 hours. The properties of the sintered body are shown in Table 2.

表    2 *は比較例 実施例2 AffN粉末(平均粒径0.8μm、酸素1.5w /
 O%Aρを除く金属不純物0,1w10以下、炭素0
.03w10)にTiO2粉末(平均粒径0.1μm、
純度99.9%)を2,0w10.焼結助剤として表2
に示した化合物を添加し、フェノールを1.0重量パ実
施例3 AffN粉末(平均粒径1.0μm、酸素1.2W10
、AQを除く金属不純物0.1w10以下、炭素0.0
5w10)に表3に示した添加物と焼結助剤としてY2
O3を1.0W10. フェノールを0.8%、成形バ
インダーとして、PMMA (ポリメチルアクリレート
)を10重量パーセント、ナフサ系溶剤でナイロンポッ
ト、ナイロンボールを用いて10時間置屋して得たスラ
リーをシート状にキャスティング後乾燥して厚さ 0.
8mmのシートを得た。50mm角に打ち抜いて窒素中
1850℃にてBNルツボ中で3時間加熱して焼結体を
得た。焼結体の特性は表3に示す。
Table 2 * indicates comparative example Example 2 AffN powder (average particle size 0.8 μm, oxygen 1.5 w/
O%Metal impurities except Aρ 0.1w10 or less, carbon 0
.. 03w10) with TiO2 powder (average particle size 0.1 μm,
purity 99.9%) to 2.0w10. Table 2 as a sintering aid
Example 3 AffN powder (average particle size 1.0 μm, oxygen 1.2W10
, metal impurities excluding AQ 0.1w10 or less, carbon 0.0
5w10) with the additives shown in Table 3 and Y2 as a sintering aid.
O3 to 1.0W10. A slurry obtained by storing 0.8% phenol, 10% by weight of PMMA (polymethyl acrylate) as a molding binder, and a naphtha-based solvent in a nylon pot and a nylon ball for 10 hours was cast into a sheet and dried. Thickness 0.
A sheet of 8 mm was obtained. It was punched into a 50 mm square and heated in a BN crucible at 1850° C. for 3 hours in nitrogen to obtain a sintered body. The properties of the sintered body are shown in Table 3.

表 実施例4 AffN粉末(平均粒径1.2μm、酸素1.Ow /
 o、Aβを除く金属不純物0.1w10以下、炭素0
.03w10)にTlO2粉末平均粒径0.2μm、 
99.9%)を0,5%焼結助剤としてY2O,粉を0
.5%に種々の重量のグラファイト、フェノールを添加
、成形バインダーとして、PMMA (ポリメチルアク
リレート)10重量パーセント、ナフサ系溶剤でナイロ
ンポット、ナイロンボールを用いて10時間置屋して得
たスラリーをシート状にキャスティングし、乾燥した後
、50mm角に打ち抜き、厚さ 0.8mmの角形シー
トを得た。シートは窒素気流中1800℃にて5時間焼
結して焼結体を得た。得た焼結体の特性を表4に示す。
Table Example 4 AffN powder (average particle size 1.2 μm, oxygen 1.Ow/
o, metal impurities excluding Aβ 0.1w10 or less, carbon 0
.. 03w10) TlO2 powder average particle size 0.2 μm,
99.9%) and 0.5% Y2O as sintering aid, powder as 0.
.. 5%, various weights of graphite and phenol were added, 10% by weight of PMMA (polymethyl acrylate) as a molding binder, and a naphtha-based solvent for 10 hours using a nylon pot and a nylon ball.The obtained slurry was then molded into a sheet. After drying, the sheet was punched into 50 mm squares to obtain a square sheet with a thickness of 0.8 mm. The sheet was sintered at 1800° C. for 5 hours in a nitrogen stream to obtain a sintered body. Table 4 shows the properties of the obtained sintered body.

表    4 実施例5 種々の添加物を含むAQN粉末を直接窒化法、還元窒化
法、アルキルアルミ分解法により合成(特性は表5に示
す)にY2O3粉末(平均粒径0.5μm1純度99.
9%)を0.5重量パーセント、TiO2粉(粒径0.
1μm1純度99.9%)を0.5w10゜フェノール
樹脂を1.0重量パーセン)、PVBを10重量パーセ
ント、トルエン系溶剤にてナイロンポット、ナイロンボ
ールにて5時置屋合して得たスラリーをシート状にキャ
スティング後、乾燥して厚さ0.7mmのシートを得た
。50mm角に打ち抜いて得たブランクを窒素気流中1
850℃にて3時間AaN製のルツボにて焼結した。得
られた焼結体の特性を表5に示す。
Table 4 Example 5 AQN powder containing various additives was synthesized by a direct nitriding method, a reductive nitriding method, and an alkyl aluminum decomposition method (characteristics are shown in Table 5) and Y2O3 powder (average particle size 0.5 μm 1 purity 99.
9%) and 0.5% by weight of TiO2 powder (particle size 0.9%).
A slurry obtained by combining 0.5w10゜phenol resin (1.0% by weight) and 10% by weight of PVB in a toluene solvent in a nylon pot and a nylon ball for 5 hours. After casting into a sheet, it was dried to obtain a sheet with a thickness of 0.7 mm. A blank obtained by punching out 50 mm squares was placed in a nitrogen stream.
It was sintered at 850° C. for 3 hours in an AaN crucible. Table 5 shows the properties of the obtained sintered body.

表 ト、トルエン系溶剤にてナイロンポット、ナイロンボー
ルにて5時置屋合して得たスラリーをシート状にキャス
ティング後、乾繰して厚さ0.7mmのシトを得た。5
0mm角に打ち抜いて得たブランクを窒累気流中185
0  ℃にて3時間MN製のルツボにて焼結した。得ら
れた焼結体の特性を表6に示す。
The resulting slurry was mixed with a toluene solvent in a nylon pot and a nylon ball for 5 hours, then cast into a sheet, and dried to obtain a sheet with a thickness of 0.7 mm. 5
The blank obtained by punching out a 0 mm square was placed in a nitrogen stream at 185 mm.
Sintering was performed at 0° C. for 3 hours in a crucible made of MN. Table 6 shows the properties of the obtained sintered body.

実施例6 種々の添加物を含むAρN粉末を直接窒化法、還元窒化
法、アルキルアルミ分解法(特性は表6に示す)し、Y
2O3粉末(平均粒径0.5μm1純度99.9%)を
0.5重量パーセント、フェノール樹脂を1.0重量パ
ーセント、P V 13を10重量パーセン実施例7 /VN粉(平均粒径Q.3,czm,酸素1.0w10
、Δlを除く金属不純物0,1w10以下、炭素0.0
3w10)に表7に示す種々の粒径のTi化合物炭素源
としてのフェノール樹脂1.0w10、6W’tバイン
ダーとしてPMMAIO重量パーセントをナフサ系溶剤
でナイロンポット、ナイロンボールを用いて10時間置
屋して得たスラリーをシート状にキャストし、乾繰した
後、50no+角に打ち抜き、厚さ0.8mmの角形シ
ートを得た。シートは表7に示す。温度、時間でN2気
流中で焼結した。得られた焼結体の特性を表7に示す。
Example 6 AρN powder containing various additives was subjected to direct nitriding, reductive nitriding, and alkyl aluminum decomposition methods (characteristics are shown in Table 6), and Y
Example 7 /VN powder (average particle size Q. 3, czm, oxygen 1.0w10
, metal impurities excluding Δl 0.1w10 or less, carbon 0.0
3w10) Ti compounds of various particle sizes shown in Table 7, phenolic resin 1.0w10 as a carbon source, and PMMAIO weight percent as a 6W't binder were placed in a naphtha-based solvent for 10 hours using a nylon pot and a nylon ball. The obtained slurry was cast into a sheet shape, dried, and then punched into 50mm square sheets to obtain a square sheet with a thickness of 0.8 mm. The sheets are shown in Table 7. Sintering was performed in a N2 stream at different temperatures and times. Table 7 shows the properties of the obtained sintered body.

実施例8 MN粉末(平均粒径0.8μm,酸素1,Ow/.o、
Mを除く金属不純物0.1w10以下、炭素0.03w
10)に0,1μmのTi0 2粉を1.0W10、炭
素源としてのフェノール樹脂1,Owlo、成形バイン
ダーとしてPMMΔ IOWloをナフサ系の溶剤でナ
イロンポット、ナイロンボールを用いて10時間置屋し
て得たスラリーをシート状にキャストし、乾怪した後、
50mm角に打ち抜き、厚さ 0.8mmの角形シート
を得た。シートは1850℃にて5時間窒素気流中で焼
結した。得られた焼結体の格子常数はa軸3.]]、1
人、C軸4.981人でc/aは1.601とTiO2
を添加しないで同一条件で作製したものと同一であった
。なお、熱伝導率は170w / mと190w / 
mとであった。また半値巾は2θ20で0.10dcg
で’l’i02で添加しない場合の0.05degより
も大きかった。
Example 8 MN powder (average particle size 0.8 μm, oxygen 1, Ow/.o,
Metal impurities excluding M: 0.1w10 or less, carbon: 0.03w
10) 0.1 μm TiO2 powder was mixed with 1.0W10, phenol resin 1, Owlo as a carbon source, and PMMΔ IOWlo as a molding binder in a naphtha-based solvent using a nylon pot and a nylon ball for 10 hours. After casting the slurry into a sheet and letting it dry,
A square sheet with a thickness of 0.8 mm was obtained by punching out a 50 mm square sheet. The sheets were sintered at 1850° C. for 5 hours in a nitrogen stream. The lattice constant of the obtained sintered body is a-axis 3. ]], 1
People, C axis 4.981 people, c/a is 1.601 and TiO2
It was the same as that produced under the same conditions without adding. The thermal conductivity is 170w/m and 190w/m.
It was m. Also, the half width is 0.10dcg at 2θ20
'l'i02 was larger than 0.05deg when not added.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (9)

【特許請求の範囲】[Claims] (1)六方晶系のウルツ鉱構造を有する窒化アルミニウ
ムの粒内に、ウルツ鉱構造以外の化合物粒子を微細分散
したことを特徴とする窒化アルミニウム焼結体。
(1) An aluminum nitride sintered body characterized in that particles of a compound other than wurtzite structure are finely dispersed within grains of aluminum nitride having a hexagonal wurtzite structure.
(2)微細分散した粒子がNaCl構造をとる化合物で
ある特許請求の範囲第(1)項記載の窒化アルミニウム
焼結体。
(2) The aluminum nitride sintered body according to claim (1), wherein the finely dispersed particles are a compound having an NaCl structure.
(3)窒化アルミニウム粒子と該窒化アルミニウム粒子
中に微細分散した化合物粒子の平均サイズ比が5以上で
ある特許請求の範囲第(1)項記載の窒化アルミニウム
焼結体。
(3) The aluminum nitride sintered body according to claim (1), wherein the average size ratio of the aluminum nitride particles to the compound particles finely dispersed in the aluminum nitride particles is 5 or more.
(4)微細分散した粒子がTi,Zr,Hf,V,Nb
,Ta,Mo,W,Fe,Co,Niから選ばれた1種
または2種以上の金属またはこれらの元素を金属元素で
0.01〜30重量パーセント含む化合物である特許請
求の範囲第(1)項記載の窒化アルミニウム焼結体。
(4) Finely dispersed particles are Ti, Zr, Hf, V, Nb
, Ta, Mo, W, Fe, Co, and Ni, or a compound containing 0.01 to 30 weight percent of these elements as a metal element. ) The aluminum nitride sintered body described in item ).
(5)焼結助剤とAl_2O_3との化合物相から構成
される粒界相が微細粒子化合物を含むことを特徴とする
特許請求の範囲第(1)項記載の窒化アルミニウム焼結
体。
(5) The aluminum nitride sintered body according to claim (1), wherein the grain boundary phase composed of a compound phase of a sintering aid and Al_2O_3 contains a fine grain compound.
(6)500nmにおける見掛けの光の吸収係数が50
cm^−^1以上である特許請求の範囲第(1)項記載
の窒化アルミニウム焼結体。
(6) The apparent absorption coefficient of light at 500 nm is 50
The aluminum nitride sintered body according to claim (1), wherein the aluminum nitride sintered body has a diameter of at least cm^-^1.
(7)窒化アルミニウム粉未と平均粒径1μm以下のT
i,Zr,Hf,V,Nb,Ta,Mo,W,Fe,C
o,Niから選ばれた1種または2種以上の化合物を混
合し、成形、焼結することを特徴とする特許請求の範囲
第(1)項記載の窒化アルミニウム焼結体の製造方法。
(7) Aluminum nitride powder and T with an average particle size of 1 μm or less
i, Zr, Hf, V, Nb, Ta, Mo, W, Fe, C
A method for producing an aluminum nitride sintered body according to claim 1, characterized in that one or more compounds selected from Ni, O, Ni, and the like are mixed, molded, and sintered.
(8)Ti,Zr,Hf,V,Nb,Ta,Mo,W,
Fe,Co,Niから選ばれた1種または2種以上の化
合物を含む窒化アルミニウム粉末を合成し、合成した窒
化アルミニウム粉末を成形、焼結することを特徴とする
特許請求の範囲第(1)項記載の窒化アルミニウム焼結
体の製造方法。
(8) Ti, Zr, Hf, V, Nb, Ta, Mo, W,
Claim (1) characterized in that aluminum nitride powder containing one or more compounds selected from Fe, Co, and Ni is synthesized, and the synthesized aluminum nitride powder is molded and sintered. A method for producing an aluminum nitride sintered body as described in 1.
(9)窒化アルミニウムを主成分とする粉末、スラリー
に成形助剤あるいは加熱により、遊離炭素を残す有機化
合物を加え、混合したのち成形、焼結体する過程で遊離
炭素を0.01〜5.0重量パーセント含有する組成物
の状態を経ることを特徴とする特許請求の範囲第(7)
項、第(8)項記載の窒化アルミニウム焼結体の製造方
法。
(9) A molding aid or an organic compound that leaves free carbon by heating is added to the powder or slurry mainly composed of aluminum nitride, and after mixing, the free carbon is reduced by 0.01 to 5.0% during the process of molding and sintering. Claim No. 7, characterized in that the composition is in the state of containing 0% by weight.
A method for producing an aluminum nitride sintered body according to item (8).
JP2255752A 1990-09-25 1990-09-25 Aluminum nitride sintered body and method for producing the same Expired - Lifetime JP2773416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2255752A JP2773416B2 (en) 1990-09-25 1990-09-25 Aluminum nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255752A JP2773416B2 (en) 1990-09-25 1990-09-25 Aluminum nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04132666A true JPH04132666A (en) 1992-05-06
JP2773416B2 JP2773416B2 (en) 1998-07-09

Family

ID=17283139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255752A Expired - Lifetime JP2773416B2 (en) 1990-09-25 1990-09-25 Aluminum nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2773416B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104507A (en) * 1994-10-04 1996-04-23 Toyo Alum Kk Light shielding aluminum nitride powder and production thereof and sintered compact thereof
US6383962B1 (en) 1999-03-17 2002-05-07 Asahi Techno Glass Corporation Aluminum nitride sintered product
KR20140140567A (en) * 2012-03-30 2014-12-09 미쓰비시 마테리알 가부시키가이샤 Metal nitride film for thermistor, process for producing same, and thermistor sensor of film type

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298071A (en) * 1988-05-27 1989-12-01 Sumitomo Electric Ind Ltd Aluminum nitride sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298071A (en) * 1988-05-27 1989-12-01 Sumitomo Electric Ind Ltd Aluminum nitride sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104507A (en) * 1994-10-04 1996-04-23 Toyo Alum Kk Light shielding aluminum nitride powder and production thereof and sintered compact thereof
US6383962B1 (en) 1999-03-17 2002-05-07 Asahi Techno Glass Corporation Aluminum nitride sintered product
KR20140140567A (en) * 2012-03-30 2014-12-09 미쓰비시 마테리알 가부시키가이샤 Metal nitride film for thermistor, process for producing same, and thermistor sensor of film type

Also Published As

Publication number Publication date
JP2773416B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
TW397807B (en) Aluminium nitride sintered body
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
KR960016070B1 (en) Sintered aluminium nitride and its production
WO2012115136A1 (en) Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP4153080B2 (en) Method for producing boron nitride-containing composite ceramic sintered body and sintered body
JP4903431B2 (en) Silicon nitride sintered body and manufacturing method thereof, semiconductor manufacturing apparatus member and liquid crystal manufacturing apparatus member using the same
JPH04132666A (en) Aluminum nitride sintered compact and production thereof
JP2008169115A (en) Production method of composite ceramic sintered compact containing boron nitride and the sintered compact
JPH09268069A (en) Highly heat conductive material and its production
JP2628510B2 (en) Method for producing BN-AlN-based composite sintered body
JP3742661B2 (en) Aluminum nitride sintered body and method for producing the same
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP3145519B2 (en) Aluminum nitride sintered body
JPH01264973A (en) Production of sintered body of beta-sialon
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP7434208B2 (en) Silicon nitride substrate and its manufacturing method
WO1992007805A1 (en) Aluminum nitride sinter and production thereof
JPH09227236A (en) Silicon nitride-base sintered compact and its production
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3793645B2 (en) SLEEVE, MANUFACTURING METHOD THEREOF, AND DIE CASTING MACHINE
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP2000033467A (en) Sleeve of multilayered structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13