JPH01179764A - Aluminum nitride sintered body and production thereof - Google Patents

Aluminum nitride sintered body and production thereof

Info

Publication number
JPH01179764A
JPH01179764A JP63002538A JP253888A JPH01179764A JP H01179764 A JPH01179764 A JP H01179764A JP 63002538 A JP63002538 A JP 63002538A JP 253888 A JP253888 A JP 253888A JP H01179764 A JPH01179764 A JP H01179764A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
metal
nitride sintered
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63002538A
Other languages
Japanese (ja)
Inventor
Akira Yamakawa
晃 山川
Masaya Miyake
雅也 三宅
Hitoshi Sakagami
坂上 仁之
Hisao Takeuchi
久雄 竹内
Koichi Sogabe
浩一 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63002538A priority Critical patent/JPH01179764A/en
Publication of JPH01179764A publication Critical patent/JPH01179764A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered body having high heat conductivity and useful for a semiconductor device, etc., by adding a fatty acid salt or alcoholate of a IIa or IIIa metal to AlN powder and sintering them. CONSTITUTION:At least one kind of org. acid salt or alkoxide of a IIa or IIIa metal, preferably yttrium stearate is added to AlN powder preferably contg. <=0.2wt.% metal impurities and having <=0.7% oxygen content and 1m<2>/g specific surface area by 0.01-20wt.% (expressed in terms of metal oxide). They are mixed, molded as usual and sintered at 1,500-2,200 deg.C in a nonoxidizing atmosphere. The resulting sintered body has >=100w/mk heat conductivity and is suitable for use as an IC board, a heat radiating plate, a structural substrate, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高熱伝導性の窒化アルミニウム焼結体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a highly thermally conductive aluminum nitride sintered body.

[従来の技術] エレクトロニクスの分野における急激な技術の発達は、
半導体デバイスの小型化ばかりでなく、高出力化、高集
積度化をも同時に可能なものとしてきている。また、単
一の基板上に、半導体デバイスの高密度な実装方法も研
究されている。例えばパワーダイオード、パワートラン
ジスタ、半導体レーザー、LSIさらにVLSIなどで
ある。
[Conventional technology] The rapid development of technology in the field of electronics has led to
It has become possible not only to make semiconductor devices smaller, but also to increase their output and density. Additionally, research is also being conducted on methods for high-density packaging of semiconductor devices on a single substrate. Examples include power diodes, power transistors, semiconductor lasers, LSIs, and VLSIs.

高出力化、高集積度化、あるいは、高密度実装化する半
導体デバイスは、単位面積、単位体積当りの発熱量が大
きくなるという問題がある。
2. Description of the Related Art Semiconductor devices that have higher output, higher integration, or higher density packaging have a problem in that the amount of heat generated per unit area or unit volume increases.

現在のところ、半導体デバイスから発生する熱は、熱伝
導性の良い、ダイヤモンド、立方晶窒化ホウ素、酸化ベ
リリウム、絶縁性炭化ケイ素などを、ヒートシンクやパ
ッケージ材料の一部として用いて、散逸させる方法がと
られている。
Currently, the heat generated by semiconductor devices can be dissipated by using materials with good thermal conductivity, such as diamond, cubic boron nitride, beryllium oxide, or insulating silicon carbide, as part of the heat sink or packaging material. It is taken.

しかし、上記の良熱伝導性材料には、安全性、製造に要
するコスト、生産の絶対量などの観点から見た場合、必
すしも十分とは言えない。
However, the above-mentioned materials with good thermal conductivity are not necessarily sufficient from the viewpoint of safety, cost required for manufacturing, absolute amount of production, etc.

発熱量の大きい半導体デバイスの実用化に対して、低コ
ストで供給量の大きな、高熱伝導性材料が必要となって
きている。
For the practical application of semiconductor devices that generate a large amount of heat, there is a need for high thermal conductivity materials that are low cost and available in large quantities.

[発明か解決しようとする問題点コ そこで、本発明者らは低コストで供給量の大きな高熱伝
導性材料として窒化アルミニウムに右目した。
[Problems to be Solved by the Invention] Therefore, the present inventors turned to aluminum nitride as a highly thermally conductive material that is low cost and available in large quantities.

素材である窒化アルミニウムは、その結晶構造から、サ
ファイヤの8倍近くの熱伝導率を有するものと考えられ
ていたが、測定値は50W/mk程度のものであった。
The material, aluminum nitride, was thought to have a thermal conductivity nearly eight times that of sapphire due to its crystal structure, but the measured value was about 50 W/mk.

窒化アルミニウムの焼結体の熱伝導率が、理論値(32
0W/.01k>の1/6程度の値を示す。この原因と
しては、結晶粒界や不純物あるいは格子欠陥が影響する
ためと考えられている。特に窒化アルミニウム結晶粒中
の酸素の存在が、熱伝導率の低下に大きな影響を与えて
いる。この問題を解決する一つの方法として、各種の化
合物を添加し、焼結を行い、主に粉末表面に存在する酸
素を添加剤によりトラップする方法か行われている。し
かしこの方法においても未だ不充分であり、熱伝導率か
100W/mk程度の焼結体しか得られていないのが現
状である。
The thermal conductivity of the sintered body of aluminum nitride is the theoretical value (32
0W/. The value is approximately 1/6 of 01k>. This is thought to be caused by the effects of grain boundaries, impurities, or lattice defects. In particular, the presence of oxygen in aluminum nitride crystal grains has a large effect on the decrease in thermal conductivity. One method to solve this problem is to add various compounds, perform sintering, and trap oxygen mainly present on the powder surface with additives. However, this method is still insufficient, and at present only a sintered body with a thermal conductivity of about 100 W/mK can be obtained.

本発明は熱伝導率力用00W/mkを超える窒化アルミ
ニウム焼結体を得ることを目的とするものである。
The object of the present invention is to obtain an aluminum nitride sintered body with a thermal conductivity exceeding 00 W/mk.

[問題点を解決するための手段] 本発明は、より高伝導性の窒化アルミニウムを安価に生
産すべく検討した結果なされたもので、周期表IIa族
およびIIIa族の金属元素の何れかの有機金属化合物
(金属と有機物との化合物を以下有機金属化合物と称す
る)の少くとも1つを酸化物換算て0.旧〜20重瓜%
添加した窒化アルミニウム粉を、1500℃〜2200
℃の非酸化雰囲気で背焼結することを特徴とする窒化ア
ルミニウム焼結体およびその製造方法でアル。
[Means for Solving the Problems] The present invention was made as a result of studies to produce aluminum nitride with higher conductivity at a lower cost. At least one of the metal compounds (a compound of a metal and an organic substance is hereinafter referred to as an organometallic compound) has an oxide content of 0. Old ~ 20% melon
The added aluminum nitride powder was heated to 1500°C to 2200°C.
An aluminum nitride sintered body and its manufacturing method characterized by back sintering in a non-oxidizing atmosphere at ℃.

し作 用] ここでITa族元素はBe、Mg、Ca、S r、Ba
、Raの中の少くとも1っである。また、IIIa族元
素はY、Sc、Ce、Pr、Sm。
Function] Here, the ITa group elements include Be, Mg, Ca, Sr, and Ba.
, Ra. Further, group IIIa elements are Y, Sc, Ce, Pr, and Sm.

Gdの中の少くとも1つである。At least one of Gd.

これらIIa族、■a族元索は、窒化アルミニウム表面
の酸化アルミニウムと結合し、複合酸化物を形成すると
共に、窒化アルミニウムの脱酸素と焼結促進を達成する
と考えられる。
It is believed that these group IIa and group IIa groups combine with aluminum oxide on the surface of aluminum nitride to form a composite oxide, and also deoxidize the aluminum nitride and promote sintering.

本発明で用いる窒化アルミニウム粉末では、できるだけ
高純度の微粒であることが望ましく、たとえば金属不純
物0.5重量%以下、比表面積1m’/gの粉末を用い
る。好ましくはさらに高純度、金属不純物0.2重量%
以下、酸素含有量0.7重量%以下のものを用いる。
The aluminum nitride powder used in the present invention is desirably fine particles with as high purity as possible; for example, a powder with metal impurities of 0.5% by weight or less and a specific surface area of 1 m'/g is used. Preferably even higher purity, 0.2% by weight of metal impurities
Hereinafter, a material having an oxygen content of 0.7% by weight or less will be used.

有機金属化合物は、有機溶媒に溶解あるいは粉末状態で
用いる。有機金属化合物の添加量は、IIa族および■
a族酸化物に換算して、0.01〜20重量%とする。
The organometallic compound is dissolved in an organic solvent or used in powder form. The amount of organometallic compound added is group IIa and
The amount is 0.01 to 20% by weight in terms of group a oxide.

01吋重量%未満では緻密な焼結体か得難く、20重量
%を超えるとAINの熱伝導率の低下か著しいからであ
る。ここで公知のIIa族、ma族元素の酸化物、フッ
化物等を添加する場合と有機金属化合物として添加する
場合との差異は、理由か明らかではないが、有機金属化
合物が均一に分散し、少量で焼結助剤として作用し、さ
らにAINの酸素を効果的に吸着すること、また有機金
属化合物中の炭素が脱酸素作用をすることも考えられる
This is because if it is less than 0.1 inch by weight, it is difficult to obtain a dense sintered body, and if it exceeds 20 weight percent, the thermal conductivity of AIN is significantly reduced. The reason for the difference between the case of adding known oxides, fluorides, etc. of group IIa and group Ma elements and the case of adding them as organometallic compounds is that the organometallic compounds are uniformly dispersed, It is also believed that a small amount acts as a sintering aid, and that it also effectively adsorbs oxygen in AIN, and that carbon in the organometallic compound acts as a deoxidizing agent.

なお、得られれた混合物は乾式プレス、ドクターブレー
ド、押出等の常法により成形した後、非酸化性雰囲気で
1500〜2200℃で焼結、緻密化される。
The obtained mixture is molded by conventional methods such as dry pressing, doctor blade, extrusion, etc., and then sintered and densified at 1500 to 2200°C in a non-oxidizing atmosphere.

特に有機金属化合物としてはステアリン酸等の脂肪酸、
アルコールとの化合物であるアルコキシドが有効であり
、また金属元素としてYが好ましい結果を得る。
In particular, organic metal compounds include fatty acids such as stearic acid,
Alkoxide, which is a compound with alcohol, is effective, and Y as the metal element gives preferable results.

[実施例] 以下、実施例によって、本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 (14均粒径か1.0μ以下で酸素含有量が1.0重量
%の高純度AIN粉(比表面積3m’ /g)に、酸化
物換算で表1に示す配合のII a % III a族
金属と何機物との化合物を添加し、エタノール中で10
時間ボールミル混合後、成形し、1900℃の窒素気流
中で2時間焼結した。
Example 1 (14) High purity AIN powder (specific surface area 3 m'/g) with an average particle size of 1.0 μ or less and an oxygen content of 1.0% by weight was mixed with II a having the composition shown in Table 1 in terms of oxides. % III Group A metal and several organic compounds were added, and 10% was added in ethanol.
After mixing in a ball mill for an hour, it was molded and sintered in a nitrogen stream at 1900°C for 2 hours.

得られた焼結体の熱伝導率、相対密度を下記表に示す。The thermal conductivity and relative density of the obtained sintered body are shown in the table below.

この表に示す結果より本発明のAIN焼結体の特性が優
れていることがわかる。
From the results shown in this table, it can be seen that the characteristics of the AIN sintered body of the present invention are excellent.

[発明の効果] 以上説明したように、本発明は高熱伝導で信頼性の高い
窒化アルミニウム焼結体であって比較的容易に製造する
ことができる。そして、本発明の窒化アルミニウム焼結
体はIC基板・放熱板・構造材料等に適した特性をもち
、実用性の旨いものである。
[Effects of the Invention] As explained above, the present invention provides a highly reliable aluminum nitride sintered body with high thermal conductivity, and can be manufactured relatively easily. The aluminum nitride sintered body of the present invention has characteristics suitable for IC substrates, heat sinks, structural materials, etc., and is highly practical.

特許出願人 住友電気工業株式会社 代理人 弁理士 小 松 秀 岳Patent applicant: Sumitomo Electric Industries, Ltd. Agent Patent Attorney Hidetake Komatsu

Claims (6)

【特許請求の範囲】[Claims] (1)周期表IIa族およびIIIa族の金属元素の有機金
属化合物のうち少くとも一つを前記金属の酸化物換算で
0.01〜20重量%添加した窒化アルミニウム粉を1
500〜2200℃の非酸化性雰囲気中で焼結したこと
を特徴とする窒化アルミニウム焼結体。
(1) Aluminum nitride powder containing 0.01 to 20% by weight of at least one organometallic compound of a metal element of group IIa or group IIIa of the periodic table, calculated as an oxide of the metal, is added to the powder.
An aluminum nitride sintered body characterized by being sintered in a non-oxidizing atmosphere at 500 to 2200°C.
(2)金属元素がイットリウム(Y)である上記特許請
求の範囲(1)記載の窒化アルミニウム焼結体。
(2) The aluminum nitride sintered body according to claim (1) above, wherein the metal element is yttrium (Y).
(3)IIa族およびIIIa族の金属と結合している酸素
以外に焼結体中に存在する酸素が1.0重量%以下であ
る特許請求の範囲(1)記載の窒化アルミニウム焼結体
(3) The aluminum nitride sintered body according to claim (1), wherein the amount of oxygen present in the sintered body other than the oxygen bonded to the IIa group and IIIa group metals is 1.0% by weight or less.
(4)周期表IIa族およびIIIa族の金属元素の有機金
属化合物のうち少くとも一つを前記金属の酸化物換算で
0.01〜20重量%添加した窒化アルミニウム粉を1
500〜2200℃の非酸化性雰囲気中で焼結すること
を特徴とする窒化アルミニウム焼結体の製造方法。
(4) Aluminum nitride powder containing 0.01 to 20% by weight of at least one organometallic compound of metal elements of Group IIa and Group IIIa of the periodic table in terms of oxide of said metal.
A method for producing an aluminum nitride sintered body, comprising sintering in a non-oxidizing atmosphere at 500 to 2200°C.
(5)金属化合物が脂肪酸塩である特許請求の範囲(4
)記載の窒化アルミニウム焼結体の製造方法。
(5) Claims (4) in which the metal compound is a fatty acid salt
) A method for producing an aluminum nitride sintered body.
(6)金属化合物がステアリン酸イットリウムである特
許請求の範囲(4)記載の窒化アルミニウム焼結体の製
造方法。
(6) The method for producing an aluminum nitride sintered body according to claim (4), wherein the metal compound is yttrium stearate.
JP63002538A 1988-01-11 1988-01-11 Aluminum nitride sintered body and production thereof Pending JPH01179764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002538A JPH01179764A (en) 1988-01-11 1988-01-11 Aluminum nitride sintered body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002538A JPH01179764A (en) 1988-01-11 1988-01-11 Aluminum nitride sintered body and production thereof

Publications (1)

Publication Number Publication Date
JPH01179764A true JPH01179764A (en) 1989-07-17

Family

ID=11532156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002538A Pending JPH01179764A (en) 1988-01-11 1988-01-11 Aluminum nitride sintered body and production thereof

Country Status (1)

Country Link
JP (1) JPH01179764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587106A2 (en) * 1992-09-09 1994-03-16 VECTORPHARMA INTERNATIONAL S.p.A. Lipophilic salts containing neutron activable isotopes and compositions containing them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246866A (en) * 1986-04-15 1987-10-28 株式会社村田製作所 Manufacture of aluminum nitride sintered body
JPS632860A (en) * 1986-06-20 1988-01-07 ティーディーケイ株式会社 Aluminum nitride sintered body
JPS6317263A (en) * 1986-07-10 1988-01-25 旭硝子株式会社 Manufacture of aluminum nitride sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246866A (en) * 1986-04-15 1987-10-28 株式会社村田製作所 Manufacture of aluminum nitride sintered body
JPS632860A (en) * 1986-06-20 1988-01-07 ティーディーケイ株式会社 Aluminum nitride sintered body
JPS6317263A (en) * 1986-07-10 1988-01-25 旭硝子株式会社 Manufacture of aluminum nitride sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587106A2 (en) * 1992-09-09 1994-03-16 VECTORPHARMA INTERNATIONAL S.p.A. Lipophilic salts containing neutron activable isotopes and compositions containing them
EP0587106A3 (en) * 1992-09-09 1994-05-25 Vectorpharma Int Lipophilic salts containing neutron activable isotopes and compositions containing them

Similar Documents

Publication Publication Date Title
JPS6346032B2 (en)
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
JP2943275B2 (en) High thermal conductive colored aluminum nitride sintered body and method for producing the same
JP2547767B2 (en) High thermal conductivity aluminum nitride sintered body
JPH01179764A (en) Aluminum nitride sintered body and production thereof
JPS61201668A (en) High heat conducting aluminum nitride sintered body and manufacture
JP2678213B2 (en) Manufacturing method of aluminum nitride sintered body
CN108395257B (en) Silicon nitride-based composite material and preparation method thereof
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JPS6217076A (en) Aluminum nitride powder composition
JPS63134570A (en) Manufacture of aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JPH01179765A (en) Aluminum nitride sintered body and production thereof
JP3231822B2 (en) Semiconductor device and method of manufacturing the same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JP2000044351A (en) Silicon nitride-based heat radiating member and its production
KR102299212B1 (en) High Strength Aluminum Nitride Sintered Body
JPS63319265A (en) Production of aluminum nitride sintered body
JP2620260B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0587468B2 (en)
JP2901135B2 (en) Semiconductor device
JPH0684265B2 (en) Aluminum nitride sintered body