JPH0587468B2 - - Google Patents

Info

Publication number
JPH0587468B2
JPH0587468B2 JP62154324A JP15432487A JPH0587468B2 JP H0587468 B2 JPH0587468 B2 JP H0587468B2 JP 62154324 A JP62154324 A JP 62154324A JP 15432487 A JP15432487 A JP 15432487A JP H0587468 B2 JPH0587468 B2 JP H0587468B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
weight
thermal conductivity
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62154324A
Other languages
Japanese (ja)
Other versions
JPS63319266A (en
Inventor
Akira Yamakawa
Masaya Myake
Hitoshi Sakagami
Hisao Takeuchi
Koichi Sogabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62154324A priority Critical patent/JPS63319266A/en
Publication of JPS63319266A publication Critical patent/JPS63319266A/en
Publication of JPH0587468B2 publication Critical patent/JPH0587468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高熱伝導性の窒化アルミニウム焼結体
の製造方法に関する。 [従来の技術] エレクトロニクスの分野における急激な技術の
発達は、半導体デバイスの小型化ばかりでなく、
高出力化、高集積度化をも同時に可能なものとし
てきている。また、単一の基板上に、半導体デバ
イスの高密度な実装方法も研究されている。例え
ばパワーダイオード、パワートランジスタ、半導
体レーザー、LSIさらにはVLSIなどである。 高出力化、高集積度化あるいは高密度実装化す
る半導体デバイスは、単位面積、単位体積当りの
発熱量が大きくなるという問題がある。現在のと
ころ、半導体デバイスから発生する熱は、熱伝導
率の良いダイヤモンド、立方晶窒化ホウ素、酸化
ベリリウム、絶縁性炭化ケイ素などを、ヒートシ
ンクやパツケージ材料の一部として用いて散逸さ
せる方法がとられている。しかし、上記の良熱伝
導性材料には安全性、製造に要するコスト、生産
の絶対値などの観点から見た場合、必ずしも十分
とは言えない。 発熱量の大きい半導体デバイスの実用化に対し
て低コストで供給量の大きな高熱伝導性材料が必
要となつてきている。 [発明が解決しようとする問題点] そこで、本発明者らは低コストで供給量の大き
な高熱伝導性材料として窒化アルミニウムに着目
した。 素材としての窒化アルミニウムは、その結晶構
造から、サフアイヤの8倍近くの熱伝導率を有す
るものと考えられていたが、測定値は50W/mk
程度のものであつた。窒化アルミニウムの焼結体
の熱伝導率が、理論値(320W/mk)の1/6程度
の値を示す。この原因としては、結晶粒界や不純
物あるいは格子欠陥が影響するためと考えられて
いる。特に窒化アルミニウム結晶粒中の酸素の存
在が、熱伝導率の低下に大きな影響を与えてい
る。この問題を解決する一つの方法として、各種
の化合物例えばa族元素の酸化物、フツ化物等
を添加し、焼結を行い、主に粉末表面に存在する
酸素を添加剤によりトラツプする方法(特開昭58
−55377号公報参照)が行われている。しかしこ
の方法においても未だ不十分であり、熱伝導率が
100W/mk程度の焼結体しか得られていないのが
現状である。 本発明は熱伝導率が100W/mkを超える窒化ア
ルミニウム焼結体を得ることを目的とするもので
ある。 [問題点を解決するための手段] 本発明は、より高伝導性の窒化アルミニウムを
安価に生産すべく検討した結果なされたもので、
酸素含有量1.0重量パーセント以下、かつ金属不
純物の含有量が0.2重量パーセント以下で、かつ
粉末の比表面積が1m2/g以上の窒化アルミニウ
ム粉末と、周期律a族元素のアルコキシド化合
物を酸化物換算で0.01〜20重量%添加、混合した
後、1500〜2200℃の非酸化雰囲気で焼結すること
を特徴とする熱伝導率が100W/mk以上の窒化ア
ルミニウム焼結体の製造方法である。 ここでa族元素はBe,Mg,Ca,Sr,Ba,
Raの中の少くとも1つである。 本発明で用いる窒化アルミニウム粉末は、でき
るだけ高純度の微粒であることが良く、比表面積
1m2/g、金属不純物 0.2重量パーセント以下、
酸素含有量1.0重量パーセント以下のものを用い
る。特に1600℃以上の窒素ガス下で加熱処理した
高純度AIN粉が望ましい。 添加物としてのa族アルコキシド化合物は、
M(OR)oであらわされ、ここでMはa族元素、
Rはアルキル基である。アルコキシド化合物はア
ルコールに溶解あるいは粉末状態で用いる。アル
コキシド添加量は、a族酸化物に換算して、
0.01〜20重量パーセントとする。0.01重量パーセ
ント未満では緻密な焼結体が得難く、20重量パー
セントを越えるとAINの熱伝導率の低下が著し
いからである。ここで公知のa族元素の酸化
物、フツ化物等を添加する場合とアルコキシド化
合物として添加する場合との差異は、理由は明ら
かではないが、アルコキシド化合物が均一に分散
し、少量で焼結助剤として作用し、さらにAIN
の酸素を効果的に吸着すること、またアルコキシ
ド中の炭素が脱酸に作用することも考えられる。 なお、得られた混合物は乾式プレス、ドクター
ブレード、押出し等の常法により成形したのち、
非酸化性雰囲気で1500〜2200℃で焼結、緻密化さ
れる。 [実施例] 実施例 1 酸素含量が1.0重量パーセントの高純度窒化ア
ルミニウム粉末、(比表面積4m2/g、金属不純
物0.19重量パーセント)に、酸化物換算で30重量
パーセント以下のCaエトキシドを表1に示す各
割合で添加し、エタノール中に10時間ボールミル
にて混合したのち、加水分解し、乾燥の後、1900
℃で窒素気流中で焼結した。得られた焼結体の相
対密度と熱伝導率を表1に示す。なお表1中No.8
〜10は比較例である。
[Industrial Application Field] The present invention relates to a method for producing a highly thermally conductive aluminum nitride sintered body. [Conventional technology] The rapid development of technology in the field of electronics has not only led to the miniaturization of semiconductor devices, but also
It has become possible to achieve higher output and higher integration at the same time. Additionally, research is also being conducted on methods for high-density packaging of semiconductor devices on a single substrate. Examples include power diodes, power transistors, semiconductor lasers, LSIs, and even VLSIs. 2. Description of the Related Art Semiconductor devices that have higher output, higher integration, or higher density packaging have a problem in that the amount of heat generated per unit area or unit volume increases. Currently, the heat generated by semiconductor devices is dissipated by using materials with good thermal conductivity such as diamond, cubic boron nitride, beryllium oxide, and insulating silicon carbide as part of the heat sink or package material. ing. However, the above-mentioned materials with good thermal conductivity are not necessarily sufficient from the viewpoint of safety, cost required for manufacturing, absolute value of production, etc. For the practical application of semiconductor devices that generate a large amount of heat, there is a need for high thermal conductivity materials that are low cost and can be supplied in large quantities. [Problems to be Solved by the Invention] Therefore, the present inventors focused on aluminum nitride as a highly thermally conductive material that is low cost and available in large quantities. Aluminum nitride as a material was thought to have a thermal conductivity nearly eight times that of saphire due to its crystal structure, but the measured value was 50W/mk.
It was only moderate. The thermal conductivity of the aluminum nitride sintered body is about 1/6 of the theoretical value (320W/mk). This is thought to be caused by the effects of grain boundaries, impurities, or lattice defects. In particular, the presence of oxygen in aluminum nitride crystal grains has a large effect on the decrease in thermal conductivity. One method to solve this problem is to add various compounds such as oxides and fluorides of group A elements, perform sintering, and trap oxygen mainly present on the powder surface with additives (especially 1978
-Refer to Publication No. 55377). However, this method is still insufficient, and the thermal conductivity is
Currently, only sintered bodies of about 100W/mk have been obtained. The object of the present invention is to obtain an aluminum nitride sintered body having a thermal conductivity exceeding 100 W/mk. [Means for Solving the Problems] The present invention was made as a result of studies to produce aluminum nitride with higher conductivity at a lower cost.
Aluminum nitride powder with an oxygen content of 1.0% by weight or less, a metal impurity content of 0.2% by weight or less, and a powder specific surface area of 1m 2 /g or more, and an alkoxide compound of an element in Group A of the Periodic Table in terms of oxide. This is a method for producing an aluminum nitride sintered body having a thermal conductivity of 100 W/mk or more, which is characterized by adding and mixing 0.01 to 20% by weight of aluminum nitride, followed by sintering in a non-oxidizing atmosphere at 1500 to 2200°C. Here, group a elements are Be, Mg, Ca, Sr, Ba,
At least one of Ra. The aluminum nitride powder used in the present invention is preferably fine particles with as high purity as possible, with a specific surface area of 1 m 2 /g, metal impurities of 0.2% by weight or less,
Use one with an oxygen content of 1.0% by weight or less. High-purity AIN powder heat-treated under nitrogen gas at 1600°C or higher is particularly desirable. The group a alkoxide compound as an additive is
It is expressed as M (OR) o , where M is a group a element,
R is an alkyl group. The alkoxide compound is dissolved in alcohol or used in powder form. The amount of alkoxide added is converted to group a oxide,
0.01-20% by weight. This is because if it is less than 0.01 weight percent, it is difficult to obtain a dense sintered body, and if it exceeds 20 weight percent, the thermal conductivity of AIN is significantly reduced. The difference between the case of adding known oxides, fluorides, etc. of Group A elements and the case of adding them as alkoxide compounds is that, although the reason is not clear, the alkoxide compound disperses uniformly and helps sintering with a small amount. Acts as an agent and further AIN
It is also thought that the carbon in the alkoxide acts on deoxidation. The obtained mixture is molded by conventional methods such as dry pressing, doctor blade, extrusion, etc.
Sintered and densified at 1500-2200℃ in a non-oxidizing atmosphere. [Example] Example 1 High-purity aluminum nitride powder with an oxygen content of 1.0 weight percent (specific surface area 4 m 2 /g, metal impurities 0.19 weight percent) was added with Ca ethoxide of 30 weight percent or less in terms of oxide in Table 1 The mixture was added in the proportions shown in ethanol, mixed in a ball mill for 10 hours, hydrolyzed, dried,
Sintered in a nitrogen stream at ℃. Table 1 shows the relative density and thermal conductivity of the obtained sintered body. In addition, No. 8 in Table 1
~10 are comparative examples.

【表】【table】

【表】 実施例 2 酸素含量が0.5重量パーセントの高純度窒化ア
ルミニウム粉末(比表面積2m2/g、金属不純物
0.10重量パーセント)に酸化物換算で2重量パー
セントのMg,Ba,Srエトキシドをそれぞれ添加
し、実施例1と同様の焼結体を得た。焼結体はい
ずれも相対密度98%以上、熱伝導率150W/mk以
上を得た。 実施例 3 酸素含量が0.5重量パーセントの高純度窒化ア
ルミニウム粉末(比表面積2m2/g、金属不純物
0.10重量パーセント)に、酸化物換算で2重量パ
ーセントのCaOに相当するCaメトキシド、Caブ
トキシドをそれぞれ添加し、実施例1と同様の条
件で焼結体を得た。焼結体はいずれも相対密度97
%以上、熱伝導率150W/mk以上を示した。 [発明の効果] 以上説明したように、本発明は高純度の窒化ア
ルミニウム粉末に、周期律表a族のアルコキシ
ド化合物を添加し、焼結することによつて、高熱
伝導性の窒化アルミニウム焼結体が得られる。こ
の窒化アルミニウム焼結体は、IC基板、放熱板、
構造材料等に秀れた性能をもち、実用性の高いも
のである。
[Table] Example 2 High purity aluminum nitride powder with an oxygen content of 0.5% by weight (specific surface area 2 m 2 /g, metal impurities
A sintered body similar to that in Example 1 was obtained by adding 2 weight percent (calculated as oxide) of Mg, Ba, and Sr ethoxides to 0.10 weight percent (0.10 weight percent). All sintered bodies achieved relative density of 98% or higher and thermal conductivity of 150W/mk or higher. Example 3 High purity aluminum nitride powder with an oxygen content of 0.5% by weight (specific surface area 2 m 2 /g, metal impurities
A sintered body was obtained under the same conditions as in Example 1 by adding Ca methoxide and Ca butoxide corresponding to 2 weight percent of CaO in terms of oxide. All sintered bodies have a relative density of 97
% or more, and the thermal conductivity was 150W/mk or more. [Effects of the Invention] As explained above, the present invention produces highly thermally conductive aluminum nitride sintered material by adding an alkoxide compound of group A of the periodic table to high-purity aluminum nitride powder and sintering it. You get a body. This aluminum nitride sintered body is used for IC substrates, heat sinks,
It has excellent performance as a structural material and is highly practical.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素含有量1.0重量パーセント以下、かつ金
属不純物の含有量が0.2重量パーセント以下で、
かつ粉末の比表面積が1m2/g以上の窒化アルミ
ニウム粉末と、周期律表a族元素のアルコキ
シド化合物を酸化物換算で0.01〜20重量パーセン
ト添加混合した後、1500〜2200℃の非酸化雰囲気
で焼結することを特徴とする熱伝導率が100w/
m・k以上の窒化アルミニウム焼結体の製造方
法。
1 Oxygen content is 1.0% by weight or less and metal impurity content is 0.2% by weight or less,
After adding and mixing aluminum nitride powder with a powder specific surface area of 1 m 2 /g or more and an alkoxide compound of an element of group A of the periodic table in an amount of 0.01 to 20 percent by weight in terms of oxide, the mixture was heated in a non-oxidizing atmosphere at 1500 to 2200°C. Thermal conductivity is 100w/characterized by sintering.
A method for producing an aluminum nitride sintered body having a size of m.k or more.
JP62154324A 1987-06-23 1987-06-23 Production of aluminum nitride sintered body Granted JPS63319266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154324A JPS63319266A (en) 1987-06-23 1987-06-23 Production of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154324A JPS63319266A (en) 1987-06-23 1987-06-23 Production of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS63319266A JPS63319266A (en) 1988-12-27
JPH0587468B2 true JPH0587468B2 (en) 1993-12-16

Family

ID=15581651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154324A Granted JPS63319266A (en) 1987-06-23 1987-06-23 Production of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS63319266A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023411A (en) * 1973-06-30 1975-03-13
JPS6221764A (en) * 1985-07-18 1987-01-30 住友電気工業株式会社 Manufacture of aluminum nitride
JPS63242972A (en) * 1987-03-31 1988-10-07 株式会社東芝 Manufacture of aluminum nitride sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023411A (en) * 1973-06-30 1975-03-13
JPS6221764A (en) * 1985-07-18 1987-01-30 住友電気工業株式会社 Manufacture of aluminum nitride
JPS63242972A (en) * 1987-03-31 1988-10-07 株式会社東芝 Manufacture of aluminum nitride sintered body

Also Published As

Publication number Publication date
JPS63319266A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
US5529962A (en) Aluminum nitride sintered body and method of producing the same
JPH0587468B2 (en)
JPS63134570A (en) Manufacture of aluminum nitride sintered body
JP2678213B2 (en) Manufacturing method of aluminum nitride sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
KR960001429B1 (en) Process for producing sintered bodies of aluminium nitromal
JPH0566904B2 (en)
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JPH01179765A (en) Aluminum nitride sintered body and production thereof
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JPS61205670A (en) Aluminum nitride sintered body and manufacture
JPS61201669A (en) Aluminum nitride sintered body and manufacture
JPH01111776A (en) Aluminum nitride sintered body and production thereof
KR100310549B1 (en) Ceramic bodies, methods for manufacturing the same, and electrical members comprising the same
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JPH01179764A (en) Aluminum nitride sintered body and production thereof
JPS61286266A (en) Manufacture of aluminum nitride base sintered body
JP2541150B2 (en) Aluminum nitride sintered body
JP2547786B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6236066A (en) Silicon carbide base sintered body and manufacture
JPH0969594A (en) Silicon nitride heat sink for compression and compression structure parts using it
JPS61201670A (en) Aluminum nitride sintered body and manufacture
JPH0566905B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071216

Year of fee payment: 14