JP2547786B2 - Manufacturing method of aluminum nitride sintered body - Google Patents

Manufacturing method of aluminum nitride sintered body

Info

Publication number
JP2547786B2
JP2547786B2 JP62212940A JP21294087A JP2547786B2 JP 2547786 B2 JP2547786 B2 JP 2547786B2 JP 62212940 A JP62212940 A JP 62212940A JP 21294087 A JP21294087 A JP 21294087A JP 2547786 B2 JP2547786 B2 JP 2547786B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
weight
carbon
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62212940A
Other languages
Japanese (ja)
Other versions
JPS6456372A (en
Inventor
晃 山川
仁之 坂上
久雄 竹内
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62212940A priority Critical patent/JP2547786B2/en
Priority to CA000575852A priority patent/CA1318691C/en
Priority to KR1019880010985A priority patent/KR960006248B1/en
Priority to EP88114051A priority patent/EP0305948B1/en
Priority to DE8888114051T priority patent/DE3873663T2/en
Publication of JPS6456372A publication Critical patent/JPS6456372A/en
Priority to US07/588,475 priority patent/US5036026A/en
Application granted granted Critical
Publication of JP2547786B2 publication Critical patent/JP2547786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱伝導性のすぐれた窒化アルミニウム焼結
体の新規な製造法に関し、詳しくは、緻密質で熱伝導
率、絶縁性、誘電率にすぐれた窒化アルミニウム焼結体
を得ることができ、しかもそれを低コストで製造するこ
とを可能にする窒化アルミニウム焼結体の製造法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a novel method for producing an aluminum nitride sintered body having excellent thermal conductivity, and more specifically, it is dense and has a high thermal conductivity, an insulating property and a dielectric property. TECHNICAL FIELD The present invention relates to a method for producing an aluminum nitride sintered body, which makes it possible to obtain an aluminum nitride sintered body having an excellent rate, and at the same time, to produce it at low cost.

[従来の技術] 最近のLSIの進歩はめざましく、集積度の向上が著し
い。これには、ICチップサイズの向上も寄与しており、
ICチップサイズの向上に伴ってパッケージ当りの発熱量
が増大している。このため基板材料の放熱性が重要視さ
れるようになってきた。また、従来IC基板として用いら
れていたアルミナ焼結体の熱伝導率では放熱性が不十分
であり、ICチップの発熱量の増大に対応できなるなりつ
つある。このためアルミナ基板に代わるものとして、高
熱伝導性のベリリア基板が検討されているが、ベリリア
は毒性が強く取扱いが難しいという欠点がある。
[Prior Art] Recent advances in LSI are remarkable, and the degree of integration is remarkable. The improvement of IC chip size also contributes to this,
The heat generation amount per package is increasing with the improvement of IC chip size. For this reason, importance has been placed on the heat dissipation of the substrate material. In addition, the heat conductivity of the alumina sintered body that has been conventionally used as an IC substrate has insufficient heat dissipation, and it is becoming difficult to cope with an increase in the heat generation amount of the IC chip. For this reason, a high thermal conductivity beryllia substrate has been studied as an alternative to the alumina substrate, but has the disadvantage that beryllia is highly toxic and difficult to handle.

窒化アルミニウム(AIN)は、本来、材質的に高熱伝
導性、高絶縁性を有し、毒性もないため、半導体工業に
おいて絶縁材料あるいはパッケージ材料として注目を集
めている。
Aluminum nitride (AIN) is originally attracting attention as an insulating material or a package material in the semiconductor industry because it has a high thermal conductivity and a high insulating property and has no toxicity.

そして、窒化アルミニウムのもつ高熱伝導、高絶縁性
の特性を発揮する焼結体を得るためには、高純度、高密
度の焼結体とすることが不可欠であり、このための方法
も種々提案されている。たとえば、特開昭59−5008号公
報に示されるように、高純度、微粉の窒化アルミニウム
粉末を合成した後、常法により成形焼結することで、10
0w/mk程度の熱伝導率をもつ焼結体が得られている。ま
た、窒化アルミニウム粉末にY2O3とカーボンを添加し、
150w/mkを得ている(特開昭60−279421号公報など)。
In order to obtain a sintered body that exhibits the high thermal conductivity and high insulating properties of aluminum nitride, it is essential to make a sintered body of high purity and high density, and various methods have been proposed for this purpose. Has been done. For example, as disclosed in Japanese Patent Laid-Open No. 59-5008, after synthesizing a high-purity, fine aluminum nitride powder, it is molded and sintered by a conventional method to obtain 10
A sintered body having a thermal conductivity of about 0 w / mk has been obtained. Also, adding Y 2 O 3 and carbon to aluminum nitride powder,
150 w / mk has been obtained (JP-A-60-279421, etc.).

[発明が解決しようとする問題点] しかしながら、これら従来の方法によって得られた窒
化アルミニウムの熱伝導率は、その理論値320w/mkには
程遠いばかりか、一旦高密度の窒化アルミニウム粉末を
合成したのち成形、焼結するために高コストであり、従
来からのアルミナ基板の100倍近い価格となっていた。
[Problems to be Solved by the Invention] However, the thermal conductivity of aluminum nitride obtained by these conventional methods is far from its theoretical value of 320 w / mk, and a high-density aluminum nitride powder was once synthesized. The cost is high because it is molded and sintered later, and the price was nearly 100 times that of conventional alumina substrates.

そこで、本発明の目的は、高密度、高純度で高熱伝導
率、高絶縁性の窒化アルミニウム焼結体を低コストで生
産することを可能にする新規な製造法を提供することに
ある。
Therefore, it is an object of the present invention to provide a novel manufacturing method which makes it possible to produce a high-density, high-purity, high thermal conductivity, highly insulating aluminum nitride sintered body at low cost.

[問題点を解決するための手段] 本発明者は、従来より上記の課題を解決するため研究
を重ねてきたが、このためにはアルミナ粉末に特定量の
炭素および窒化アルミニウムを添加した後、成形、焼結
することが有効であることを見出し、本発明に至った。
[Means for Solving the Problems] The inventors of the present invention have repeatedly conducted research to solve the above problems. To this end, after adding a specific amount of carbon and aluminum nitride to alumina powder, The present invention has been found out that it is effective to carry out molding and sintering.

すなわち、本発明は、純度が99.0%以上で平均粒径2
μ以下のアルミナ粉末に、炭素または加熱により遊離炭
素を発生する炭素化合物を炭素換算重量比でアルミナ1
重量部に対し1:0.2〜1:1の範囲で混合しさらに窒化アル
ミニウム粉末をアルミナ粉末100重量部に対して0.1〜50
重量部添加、混合した後、成形して得たセラミックス成
形体を窒化を含む雰囲気中で1600〜2200℃で加熱するこ
とを特徴とする緻密質窒化アルミニウム焼結体の製造法
である。
That is, the present invention has a purity of 99.0% or more and an average particle size of 2
Alumina powder having a particle size of not more than μ is mixed with carbon or a carbon compound that generates free carbon by heating at a weight ratio of carbon of alumina 1
1 part by weight to 0.2 parts by weight to 1 part by weight, and 0.1 to 50 parts by weight of aluminum nitride powder per 100 parts by weight of alumina powder.
A method for producing a dense aluminum nitride sintered body is characterized in that after adding and mixing parts by weight, a ceramic molded body obtained by molding is heated at 1600 to 2200 ° C. in an atmosphere containing nitriding.

本発明に使用するアルミナ粉末の純度は、99.0%以上
であることが必要である。純度がこれ以下の場合には得
られる窒化アルミニウム焼結体の純度が低く、良好な焼
結体特性を得難いからである。
The purity of the alumina powder used in the present invention needs to be 99.0% or more. This is because when the purity is less than this, the purity of the obtained aluminum nitride sintered body is low and it is difficult to obtain good sintered body characteristics.

また、アルミナ粉末の平均粒径は2μ以下でなければ
ならない。これは、2μを越えた場合には加熱による窒
化および緻密化が困難となるからである。
Also, the average particle size of the alumina powder must be 2 μ or less. This is because if it exceeds 2 μ, nitriding and densification by heating become difficult.

本発明において、アルミナ粉末と炭素の配合比は1:0.
2〜1:1の範囲である。
In the present invention, the compounding ratio of alumina powder and carbon is 1: 0.
It is in the range of 2 to 1: 1.

アルミナと炭素の反応は、模式的には Al2O3+3C→2Al+3CO で表わされる。ここで得られた金属アルミニウムがさら
に雰囲気中の窒素と反応し、窒化アルミニウムとなると
考えれば、上記の配合比は1:0.35程度となるが、本発明
者らの研究によれば、アルミニウムの低級酸化物の生成
等により、1:0.2〜1:1の範囲内で大部分が窒化アルミニ
ウムからなる焼結体が得られることが見出された。とく
に好ましくは1:0.25〜1:0.35の範囲である。
The reaction between alumina and carbon is schematically represented by Al 2 O 3 + 3C → 2Al + 3CO. Considering that the metal aluminum obtained here further reacts with nitrogen in the atmosphere to form aluminum nitride, the above mixing ratio is about 1: 0.35. It has been found that a sintered body mainly composed of aluminum nitride is obtained within the range of 1: 0.2 to 1: 1 due to the formation of oxides. Particularly preferably, it is in the range of 1: 0.25 to 1: 0.35.

本発明においては、上記アルミナと炭素の混合物にさ
らに窒化アルミニウム粉末を混合する。窒化アルミニウ
ム粉末の粒径は2μ以下が好ましい。窒化アルミニウム
の配合量は、アルミナ粉末100重量部に対して0.1〜50重
量部、好ましくは1〜10重量部である。この範囲で窒化
アルミニウムを添加することにより、アルミナの還元窒
化を制御することができると考えられ、反応率の向上、
焼結体特性の向上に寄与することができる。焼結粉末は
公知の成形方法(たとえば、乾式プレス、ドクターブレ
ード、押し出し、スリップキャスト等)で成形すること
ができる。
In the present invention, aluminum nitride powder is further mixed with the above mixture of alumina and carbon. The particle size of the aluminum nitride powder is preferably 2 μm or less. The blending amount of aluminum nitride is 0.1 to 50 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of alumina powder. It is considered that the reduction nitriding of alumina can be controlled by adding aluminum nitride within this range, and the reaction rate is improved.
It can contribute to the improvement of the characteristics of the sintered body. The sintered powder can be molded by a known molding method (for example, dry pressing, doctor blade, extrusion, slip casting, etc.).

次いで、得られた成形体を1600〜2200℃で窒素を含む
雰囲気下で加熱することにより窒化アルミニウムに変換
させ、かつ緻密な焼結体とすることができる。1600℃以
下では窒化アルミニウムへの変換、緻密化が不十分であ
り、2200℃を越えると粒成長が著しくなる。
Then, the obtained molded body is heated at 1600 to 2200 ° C. in an atmosphere containing nitrogen to be converted into aluminum nitride, and a dense sintered body can be obtained. Below 1600 ° C, conversion to aluminum nitride and densification are insufficient, and above 2200 ° C, grain growth becomes remarkable.

また、上記の炭素に代えて、加熱により遊離炭素を発
生する炭素化合物を用いることもできる。このような化
合物としては、たとえばフェノール樹脂、炭化水素化合
物などを挙げることができる。
Further, instead of the above carbon, a carbon compound that generates free carbon by heating can be used. Examples of such a compound include a phenol resin and a hydrocarbon compound.

本発明においては、必要に応じて焼結助剤等、他の添
加剤も使用することができる。
In the present invention, other additives such as a sintering aid can be used if necessary.

[実施例] 以下に実施例を挙げ、本発明をさらに詳細に説明す
る。
[Examples] The present invention will be described in more detail with reference to the following examples.

実施例1 純度99.9%、平均粒径0.4μのアルミナ100重量部に粒
径0.1μのカーボンブラック25重量部と粒径0.6μの窒化
アルミニウム粉末20重量部をトルエンを溶媒として、ま
たPVBをバインダーとしてスラリーを調整後ドクターブ
レード法にてシートに成形し、打ち抜きで30×0.8T
成形体を得た。
Example 1 100 parts by weight of alumina having a purity of 99.9% and an average particle size of 0.4 μ, 25 parts by weight of carbon black having a particle size of 0.1 μ and 20 parts by weight of aluminum nitride powder having a particle size of 0.6 μ were used as a solvent, and PVB was used as a binder. After adjusting the slurry, it was formed into a sheet by the doctor blade method and punched to obtain a molded body of 30 × 0.8 T.

成形体を1℃/分で窒素気流中で昇温し、1900℃にて
3時間焼結した。得られた焼結体は透光性を示し、熱伝
導率は220W/mkであった。
The compact was heated in a nitrogen stream at 1 ° C / min and sintered at 1900 ° C for 3 hours. The obtained sintered body was translucent and had a thermal conductivity of 220 W / mk.

なお、×線回折によれば、窒化アルミニウム単相で、
比重は3.23であった。
According to x-ray diffraction, in the aluminum nitride single phase,
The specific gravity was 3.23.

実施例2 表に示す組成に配合し、実施例1と同様の条件にて、
焼結体を得た。本発明の方法による焼結体の特性がすぐ
れていることがわかる。
Example 2 The composition shown in the table was added, and under the same conditions as in Example 1,
A sintered body was obtained. It can be seen that the characteristics of the sintered body produced by the method of the present invention are excellent.

[発明の効果] 以上の説明から明らかなように、本発明の構成によれ
ば、高純度、高密度で熱伝導率、絶縁性にもすぐれた窒
化アルミニウム焼結体を従来のように一旦高純度の窒化
アルミニウムを合成した後成形、焼結する方法にくらべ
て安価に製造することが可能であり、またこの窒化アル
ミニウムは、とくに放熱基板、ICパッケージ等に有用で
ある。
[Effects of the Invention] As is clear from the above description, according to the configuration of the present invention, an aluminum nitride sintered body having high purity, high density, excellent thermal conductivity, and excellent insulating property can be obtained by a conventional method. It can be manufactured at a lower cost than a method of synthesizing pure aluminum nitride and then molding and sintering it. This aluminum nitride is particularly useful for heat dissipation substrates, IC packages, and the like.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】純度が99.0%以上で平均粒径2μ以下のア
ルミナ粉末に、炭素または加熱により遊離炭素を発生す
る炭素化合物を炭素換算重量比でアルミナ1重量部に対
し1:0.2〜1:1の範囲で混合し、さらに窒化アルミニウム
粉末をアルミナ粉末100重量部に対して0.1〜50重量部添
加、混合した後、成形して得たセラミックス成形体を窒
素を含む雰囲気中で1600〜2200℃で加熱することを特徴
とする緻密質窒化アルミニウム焼結体の製造法。
1. Alumina powder having a purity of 99.0% or more and an average particle size of 2 μm or less is added to carbon or a carbon compound which generates free carbon by heating in a carbon conversion weight ratio of 1: 0.2 to 1: 1 with respect to 1 part by weight of alumina. Mixing in the range of 1, further 0.1 to 50 parts by weight of aluminum nitride powder to 100 parts by weight of alumina powder, after mixing, the ceramic molded body obtained by molding is 1600 ~ 2200 ℃ in an atmosphere containing nitrogen. A method for producing a dense aluminum nitride sintered body, which comprises heating at.
JP62212940A 1987-08-28 1987-08-28 Manufacturing method of aluminum nitride sintered body Expired - Fee Related JP2547786B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62212940A JP2547786B2 (en) 1987-08-28 1987-08-28 Manufacturing method of aluminum nitride sintered body
CA000575852A CA1318691C (en) 1987-08-28 1988-08-26 Sintered body of aluminum nitride and method for producing the same
KR1019880010985A KR960006248B1 (en) 1987-08-28 1988-08-29 Sintered body of aluminium nitride and the method for producing the same
EP88114051A EP0305948B1 (en) 1987-08-28 1988-08-29 Sintered body of aluminum nitride and method for producing the same
DE8888114051T DE3873663T2 (en) 1987-08-28 1988-08-29 ALUMINUM NITRIDE SINTER BODY AND METHOD FOR THE PRODUCTION THEREOF.
US07/588,475 US5036026A (en) 1987-08-28 1990-09-25 Sintered body of aluminum nitride and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62212940A JP2547786B2 (en) 1987-08-28 1987-08-28 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS6456372A JPS6456372A (en) 1989-03-03
JP2547786B2 true JP2547786B2 (en) 1996-10-23

Family

ID=16630813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62212940A Expired - Fee Related JP2547786B2 (en) 1987-08-28 1987-08-28 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2547786B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151006A (en) * 1984-12-24 1986-07-09 Toshiba Corp Production of aluminum nitride powder
JPS6278103A (en) * 1985-09-30 1987-04-10 Toshiba Corp Production of aluminum nitride powder
JPS62182164A (en) * 1986-02-07 1987-08-10 三菱マテリアル株式会社 Manufacture of aluminum nitride sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151006A (en) * 1984-12-24 1986-07-09 Toshiba Corp Production of aluminum nitride powder
JPS6278103A (en) * 1985-09-30 1987-04-10 Toshiba Corp Production of aluminum nitride powder
JPS62182164A (en) * 1986-02-07 1987-08-10 三菱マテリアル株式会社 Manufacture of aluminum nitride sintered body

Also Published As

Publication number Publication date
JPS6456372A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
US5077245A (en) Aluminum nitride-based sintered body and process for the production thereof
EP0166073B1 (en) Aluminum nitride sintered body
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
JPH0717453B2 (en) Aluminum nitride sintered body and method for manufacturing the same
JP2547786B2 (en) Manufacturing method of aluminum nitride sintered body
EP0064264B1 (en) Silicon carbide powder mixture and process for producing sintered bodies therefrom
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPS638069B2 (en)
JPH0832597B2 (en) Method for manufacturing aluminum nitride sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH0319163B2 (en)
KR960001429B1 (en) Process for producing sintered bodies of aluminium nitromal
JPH0512300B2 (en)
JP2541150B2 (en) Aluminum nitride sintered body
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JP2518409B2 (en) Method for producing aluminum nitride powder
JPH0686330B2 (en) High thermal conductivity aluminum nitride sintered body
JPH0678195B2 (en) Aluminum nitride sintered body
JPH075378B2 (en) Black aluminum nitride sintered body and manufacturing method thereof
KR100310549B1 (en) Ceramic bodies, methods for manufacturing the same, and electrical members comprising the same
JPS63117966A (en) Manufacture of boron nitride base sintered body
JPS61201669A (en) Aluminum nitride sintered body and manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees