JPS6278103A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPS6278103A
JPS6278103A JP60216534A JP21653485A JPS6278103A JP S6278103 A JPS6278103 A JP S6278103A JP 60216534 A JP60216534 A JP 60216534A JP 21653485 A JP21653485 A JP 21653485A JP S6278103 A JPS6278103 A JP S6278103A
Authority
JP
Japan
Prior art keywords
powder
particle size
average particle
alumina
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60216534A
Other languages
Japanese (ja)
Other versions
JPH0647447B2 (en
Inventor
Hiroshi Inoue
寛 井上
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60216534A priority Critical patent/JPH0647447B2/en
Publication of JPS6278103A publication Critical patent/JPS6278103A/en
Publication of JPH0647447B2 publication Critical patent/JPH0647447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce AlN powder having fine particle size, high purity and low impuritya and oxygen contents, by calcining granules containing alumina powder or Al(OH)3 powder and carbon powder in N2 or NH3 atmosphere. CONSTITUTION:Alumina powder or Al(OH)3 powder having an average particle diameter of <=5mum and a purity of >=99.0wt% is mixed with carbon powder having an average particle diameter of <=1mum and a purity of >=95wt% at a weight ratio of 1:(0.34-0.37) and the mixture is dispersed in the presence of an aqueous medium to obtain a slurry mixture, which is spray-dried to form granules. The granules are calcined at 1,400-1,700 deg.C in N2 or NH3 atmosphere.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、窒化アルミニウム粉末の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for producing aluminum nitride powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化アルミニウム(AtN)の焼結体は、高い熱伝導性
、耐食性、高強度等の特性を有するため各種高温材料と
して注目されている物質である。
Sintered bodies of aluminum nitride (AtN) are attracting attention as various high-temperature materials because they have properties such as high thermal conductivity, corrosion resistance, and high strength.

ところで、上記AtN焼結体の原料となるAtN粉末の
合成方法としては、従来よシ次の2つの代表的方法が知
られている。即ち、金属At粉末を直接窒化する方法と
、アルミナとカーボンの混合粉末を窒素ガス含有雰囲気
で焼成する方法である。
By the way, the following two typical methods are conventionally known as methods for synthesizing AtN powder, which is a raw material for the above-mentioned AtN sintered body. That is, there are two methods: one is to directly nitride metallic At powder, and the other is to sinter a mixed powder of alumina and carbon in a nitrogen gas-containing atmosphere.

しかしながら前者の方法では窒化率をあげるために原料
のAtを粉砕する工程と、生成したAtNを焼成用原料
として適合させるために数μm以下の粒径に粉砕する工
程において不純物が混入する、いわゆる二次汚染を避け
ることができない。また、klが残存するため、散型i
%近い金属不純物を含有するAtN粉末となる。一方、
後者の方法によれば比較的細かくて粒径の揃ったAtN
粉末を合成できる。しかしながら、窒化反応を完全に行
なうことが難しく、未反応のアルミナが散型]1%残存
する。しかも、かかる方法によっても数μm以下の細か
い粉末を得るには多くの場合、粉砕を必要とし、この際
に金属系不純物や酸素の混入等の二次汚染を招く・した
がって、上述した合成法によシ得られたAtN粉末は金
属系酸化物や酸素含有量が多く1これらのAtN粉末を
原料として製造されたAtN焼結体は純度が低(AtN
本来の特性を十分に発揮されないという問題があった。
However, in the former method, impurities are mixed in in the process of pulverizing the raw material At to increase the nitriding rate and in the process of pulverizing the produced AtN to a particle size of several μm or less in order to make it suitable as a raw material for firing. Secondary contamination cannot be avoided. Also, since kl remains, the scattered form i
The result is an AtN powder containing metal impurities of close to 50%. on the other hand,
According to the latter method, AtN is relatively fine and has uniform particle size.
Can synthesize powder. However, it is difficult to carry out the nitriding reaction completely, and 1% of unreacted alumina remains. Moreover, even with this method, in many cases pulverization is required to obtain fine powder of several μm or less, which leads to secondary contamination such as metal impurities and oxygen. The AtN powder obtained has a high content of metal oxides and oxygen, and the AtN sintered body produced using these AtN powders as raw materials has a low purity (AtN
There was a problem in that the original characteristics were not fully exhibited.

また、これらAtN粉末は焼結性にも難点があるため、
焼結助剤の添加や高温高圧の焼結条件を必要としていた
。このため、AtN焼結体を必ずしも工業的に満足する
方法で得るのが困難でありた。
In addition, these AtN powders have difficulty in sinterability, so
This required the addition of sintering aids and high temperature and high pressure sintering conditions. For this reason, it has been difficult to obtain an AtN sintered body in an industrially satisfactory manner.

〔発明の目的〕    “ 本発明は、超微粉状で不純物や酸素含有量の少ない高純
度のAtN粉末の製造方法を提供しようとするものであ
る。
[Object of the Invention] “The present invention aims to provide a method for producing high-purity AtN powder that is ultrafine and has a low content of impurities and oxygen.

〔発明の概要〕[Summary of the invention]

本発明は、平均粒径5μm以下のアルミナ粉末又は水酸
化アルミ−ニウム粉末と平均粒径1μm以下のカーメン
粉末とを水媒体の存在下で混合してスラリー状混合物と
し、この混合物を噴霧乾燥して顆粒状とした後、素素又
はアンモニアの雰囲気下で1400〜1700℃の温度
にて焼成することを特徴とするものである。
In the present invention, alumina powder or aluminum hydroxide powder with an average particle size of 5 μm or less and carmen powder with an average particle size of 1 μm or less are mixed in the presence of an aqueous medium to form a slurry mixture, and this mixture is spray-dried. It is characterized in that it is made into granules and then fired at a temperature of 1,400 to 1,700° C. in an atmosphere of elementary or ammonia.

上記アルミナ粉末又は水酸化アルミニウム粉末は、純度
が99.0重量−以上、好ましくは99.9重量−以上
のものを用いることが望ましい。また、カーボン粉末は
純度が95重量%以上、好ましくは99重fjks以上
のものを用いることが望ましい。
The alumina powder or aluminum hydroxide powder preferably has a purity of 99.0 weight or more, preferably 99.9 weight or more. Further, it is desirable to use carbon powder having a purity of 95% by weight or more, preferably 99 weight fjks or more.

上記アルミナ粉末又は水酸化アルミニウム粉末の平均粒
径を5μm以下に、カーボン粉末の粒径を1μm以下に
夫々限定した理由は、それらの粒径が5μm、1μmを
越えると、水媒体の存在下での混合分散性が低下し、焼
成時の反応性の低下やカーがンの残留等を招(からであ
る。
The reason why the average particle size of the alumina powder or aluminum hydroxide powder is limited to 5 μm or less and the particle size of the carbon powder to 1 μm or less is that if the particle size exceeds 5 μm or 1 μm, it will not work in the presence of an aqueous medium. This is because the mixing and dispersibility of the resin decreases, resulting in decreased reactivity during firing and cargane residue.

上記アルミナ粉末又は水酸化アルミニウムとカー♂ンと
の混合比は1:0.35〜0.37 (但し、水酸化ア
ルミニウムはアルミナ換算)の範囲に規定することが望
ましい。この理由は、それらの混合比が上記範囲を逸脱
すると、焼成により得られたAtN粉末中にアルミナや
カー?ンが残留して高純度化を阻害する恐れがあるから
である。なお、水酸化アルミニウム粉末とカーボン粉末
との混合比では1:0.22〜0.24の範囲となる。
It is desirable that the mixing ratio of the alumina powder or aluminum hydroxide and carbon is set in the range of 1:0.35 to 0.37 (aluminum hydroxide is equivalent to alumina). The reason for this is that if the mixing ratio of these components deviates from the above range, alumina and carbon may be present in the AtN powder obtained by firing. This is because there is a risk that the particles may remain and impede high purity. The mixing ratio of aluminum hydroxide powder and carbon powder is in the range of 1:0.22 to 0.24.

本発明の最大の特徴はアルミナ粉末又は水酸化アルミニ
ウム粉末とカーボン粉末を水媒体の存在下で分散させる
ことにある。即ち、水媒体中で画素原料を混合1分散さ
せるに際し、画素原料の水中における粒子表面の特性を
制御する表面改質剤の使用により粒径の大きいアルミナ
又は水酸化アルミニウム粉末の表面に微細なカーボン粉
末を凝集せしめ、その状態で噴霧乾燥して顆粒状にでき
る。このため、かかる顆粒状物を焼成することによりア
ルミナ又は水酸化アルミニウムから変換したアルミナの
還元が必要最小限のカーボン粉末で完全に進行する。そ
の結果カー2ン粉末の必要量がほとんど理論量で済むた
め、焼成後のAtN粉末中に不純物となるカーーンがほ
とんど存在せず、酸素量の増大を招(と共に繁雑な工程
でらる脱炭処理を不要とまる。
The most important feature of the present invention is that alumina powder or aluminum hydroxide powder and carbon powder are dispersed in the presence of an aqueous medium. That is, when mixing and dispersing the pixel raw material in an aqueous medium, fine carbon particles are added to the surface of the large particle size alumina or aluminum hydroxide powder by using a surface modifier that controls the characteristics of the particle surface of the pixel raw material in water. The powder can be agglomerated and then spray-dried into granules. Therefore, by firing such granules, the reduction of alumina or alumina converted from aluminum hydroxide can proceed completely with the minimum necessary amount of carbon powder. As a result, the required amount of carbon powder is almost the theoretical amount, so there is almost no carbon that becomes an impurity in the AtN powder after firing, leading to an increase in the amount of oxygen (as well as decarburization that requires a complicated process). No processing required.

上記水媒体による分散混合時において、後の顆粒状とさ
せるのに都合のよい粘結剤を用いても製造上の利点は損
なわれない。また、混合。
During the dispersion mixing using the aqueous medium, the manufacturing advantages are not impaired even if a binder that is convenient for forming the product into granules is used. Also mixed.

分散、乾燥工程では素原料の純度を低下させないような
配慮が必要なことは言うまでもない。
Needless to say, care must be taken not to reduce the purity of the raw materials during the dispersion and drying steps.

上記顆粒状の混合物は1400〜1700℃。The temperature of the granular mixture is 1400-1700°C.

好ましくは1450〜1650℃の範囲で焼成される。Preferably, the temperature is 1450 to 1650°C.

焼成温度を1400℃未満にすると、反応が円滑に進ま
ず、かといってその温度が1700℃を越えると生成し
たAtN粉末の粒径が粗大化する。
If the firing temperature is lower than 1400°C, the reaction will not proceed smoothly, but if the temperature exceeds 1700°C, the particle size of the AtN powder produced will become coarse.

〔発明の実施例〕[Embodiments of the invention]

以上、本発明の詳細な説明する。 The present invention will now be described in detail.

実施例1 純度99.9重量%、平均粒径0.5μmのアルミす粉
末100.Fと灰分0.1重量%以下、平均粒径0.0
2μmのカー?ン粉末35.4gとをプラスチックが一
ルの入ったグラスチックポットに収容した後、このポッ
ト内に純水と界面活性剤及び粘結剤を加え、1時間混合
1分散した。つづいて、得られたスラリーをスプレード
ライヤにより噴霧乾燥して平均粒径70μmの顆粒状物
を調製した。次いで、この顆粒状物を黒鉛トレイ、に装
填し、窒素ガス中にて1550℃、5時間焼成して白色
粉末を得た。
Example 1 100% aluminum powder with a purity of 99.9% by weight and an average particle size of 0.5 μm. F and ash content 0.1% by weight or less, average particle size 0.0
2μm car? After placing 35.4 g of the powder in a plastic pot containing 1 bottle of plastic, pure water, a surfactant, and a binder were added to the pot, and the mixture was mixed and dispersed for 1 hour. Subsequently, the obtained slurry was spray-dried using a spray dryer to prepare granules having an average particle size of 70 μm. Next, this granular material was loaded into a graphite tray and calcined in nitrogen gas at 1550° C. for 5 hours to obtain a white powder.

実施例2 実施例1と同様なアルミナ粉末とカーがン粉末とを、下
記第1表に示す混合比でプラスチックは−ルの入りたプ
ラスチックポットに収容し、以下、実施例と同様な方法
により5種の顆粒状物を調製した。次いで、これら顆粒
状物を黒鉛トレイに装填し、同第1表に示す条件で焼成
して5種の白色粉末を得た。
Example 2 The same alumina powder and carbon powder as in Example 1 were placed in a plastic pot containing a plastic container at the mixing ratio shown in Table 1 below, and the following procedure was carried out in the same manner as in Example. Five types of granules were prepared. Next, these granules were loaded into a graphite tray and fired under the conditions shown in Table 1 to obtain five types of white powder.

比較例1 実施例1と同様なアルミナ粉末とカーデン粉末をl:o
、353の比率(重量比率)にて混合し、これを黒鉛ト
レイに装填した後窒素ガス中にて1550℃、5時間焼
成して粉末を得た。
Comparative Example 1 The same alumina powder and carden powder as in Example 1 were mixed in l:o
, 353 (weight ratio), loaded onto a graphite tray, and fired in nitrogen gas at 1550° C. for 5 hours to obtain a powder.

しかして本実施例1〜6及び比較例1の粉末について酸
素含有量、炭素含有量、平均粒径及び構成相を調べた。
Therefore, the oxygen content, carbon content, average particle size, and constituent phases of the powders of Examples 1 to 6 and Comparative Example 1 were examined.

その結果を下記第1表に併記した。なお、粉末中の酸素
、炭素含有量は機器分析装置によシ求め構成相について
は粉末のX線回折法により求めた。
The results are also listed in Table 1 below. The oxygen and carbon contents in the powder were determined using an instrumental analyzer, and the constituent phases were determined by X-ray diffraction of the powder.

S1例7 純度99重量%、平均粒径0.8μmの水酸化アルミニ
ウム(AA(OH)3)粉末100Iと灰分0.2重量
−以下、平均粒径0.02μmのカーデン粉末23gと
をプラスチックが一ルの入ったプラスチックポットに収
納した後、このポット内に純水と界面活性剤及び粘結剤
を加え、1時間混合。
S1 Example 7 100 I of aluminum hydroxide (AA(OH)3) powder with a purity of 99% by weight and an average particle size of 0.8 μm and 23 g of carden powder with an ash content of 0.2 weight or less and an average particle size of 0.02 μm were made into plastic. After storing the mixture in a plastic pot containing a bottle, pure water, surfactant, and binder were added to the pot and mixed for 1 hour.

分散した。つづいて、得られたスラリーをスプレードラ
イヤによシ噴霧乾燥して平均粒径80μmの顆粒状物を
調製した。次いで、この顆粒状物を黒鉛トレイに装填し
窒素ガス中にて1550℃5時間焼成して白色粉末を得
た。
Dispersed. Subsequently, the obtained slurry was spray-dried using a spray dryer to prepare granules having an average particle size of 80 μm. Next, this granular material was loaded into a graphite tray and calcined in nitrogen gas at 1550° C. for 5 hours to obtain a white powder.

実施例8〜12 実施例7と同様な水酸化アルミニウム粉末とカーデン粉
末とを、下記第2表に示す混合比でグラスチックボール
の入ったプラスチックポットに収容し、以下、実施例7
と同様な方法によ95種の顆粒状物を調製した。次いで
、これら顆粒状物を黒鉛トレイに装填し、同第2表に示
す条件で焼成して5種の白色粉末を得た。
Examples 8 to 12 Aluminum hydroxide powder and carden powder similar to those in Example 7 were placed in a plastic pot containing a plastic ball at the mixing ratio shown in Table 2 below.
Ninety-five types of granules were prepared in a similar manner. Next, these granules were loaded into a graphite tray and fired under the conditions shown in Table 2 to obtain five types of white powder.

比較例2 実施例7と同様々水酸化アルミニウム粉末とカーデン粉
末を1:0.23の比率(重量比率)で混合し、これを
黒鉛トレイに装填した後、窒素ガス中にて1550℃、
5時間焼成して粉末を得た。
Comparative Example 2 As in Example 7, aluminum hydroxide powder and carden powder were mixed at a ratio of 1:0.23 (weight ratio), and after loading this into a graphite tray, the mixture was heated at 1550°C in nitrogen gas.
A powder was obtained by firing for 5 hours.

しかして、本実施例7〜12及び比較例2の粉末につい
て酸素含有量、炭素含有量、平均粒径及び構成相を調べ
た。その結果を下記第2表に併記した。
Therefore, the oxygen content, carbon content, average particle size, and constituent phases of the powders of Examples 7 to 12 and Comparative Example 2 were examined. The results are also listed in Table 2 below.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如(、本発明によれば超微粉状で不純物や
酸素含有量の少ない高純度の窒化アルミニウム粉末を簡
単な工程で製造でき、ひいては該窒化アルミニウム粉末
を原料として成形。
As described in detail above, according to the present invention, ultrafine, highly pure aluminum nitride powder with low impurities and oxygen content can be produced in a simple process, and the aluminum nitride powder can then be molded as a raw material.

焼成を行なうことにより焼結性が高く、窒化アルミニウ
ム本来の優れた特性を持つ窒化アルミニウム焼結体を得
ることができる等顕著な効果を有する。
Firing has remarkable effects such as being able to obtain an aluminum nitride sintered body with high sinterability and excellent properties inherent to aluminum nitride.

Claims (2)

【特許請求の範囲】[Claims] (1)平均粒径5μm以下のアルミナ粉末又は水酸化ア
ルミニウム粉末と平均粒径1μm以下のカーボン粉末と
を水媒体の存在下で混合してスラリー状混合物とし、こ
の混合物を噴霧乾燥して顆粒体とした後、窒素又はアン
モニアの雰囲気下で1400〜1700℃の温度にて焼
成することを特徴とする窒化アルミニウム粉末の製造方
法。
(1) Alumina powder or aluminum hydroxide powder with an average particle size of 5 μm or less and carbon powder with an average particle size of 1 μm or less are mixed in the presence of an aqueous medium to form a slurry mixture, and this mixture is spray-dried to form granules. 1. A method for producing aluminum nitride powder, which comprises baking at a temperature of 1400 to 1700° C. in an atmosphere of nitrogen or ammonia.
(2)アルミナ粉末又は水酸化アルミニウム粉末(アル
ミナ換算)とカーボン粉末とを重量比で1:0.34〜
0.37の割合で混合することを特徴とする特許請求の
範囲第1項記載の窒化アルミニウム粉末の製造方法。
(2) Alumina powder or aluminum hydroxide powder (alumina equivalent) and carbon powder in a weight ratio of 1:0.34~
The method for producing aluminum nitride powder according to claim 1, characterized in that the aluminum nitride powder is mixed at a ratio of 0.37.
JP60216534A 1985-09-30 1985-09-30 Method for producing aluminum nitride powder Expired - Lifetime JPH0647447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216534A JPH0647447B2 (en) 1985-09-30 1985-09-30 Method for producing aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216534A JPH0647447B2 (en) 1985-09-30 1985-09-30 Method for producing aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS6278103A true JPS6278103A (en) 1987-04-10
JPH0647447B2 JPH0647447B2 (en) 1994-06-22

Family

ID=16689941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216534A Expired - Lifetime JPH0647447B2 (en) 1985-09-30 1985-09-30 Method for producing aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH0647447B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207703A (en) * 1986-03-06 1987-09-12 Tokuyama Soda Co Ltd Production of powdery aluminum nitride
US4780299A (en) * 1986-11-28 1988-10-25 Kawasaki Steel Corporation Method for producing aluminum nitride powder
JPS6456374A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456371A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456376A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456372A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6461361A (en) * 1987-09-01 1989-03-08 Sumitomo Electric Industries Aluminum nitride sintered compact having high heat conductivity
JPH01203271A (en) * 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd High-thermal conductivity circuit board
WO1991000842A1 (en) * 1989-07-06 1991-01-24 The Carborundum Company Manufacture of aluminium nitride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562804A (en) * 1979-10-09 1980-05-12 Sumitomo Electric Ind Ltd Production of nitride
JPS6077111A (en) * 1983-10-05 1985-05-01 Tokuyama Soda Co Ltd Production of aluminum nitride powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562804A (en) * 1979-10-09 1980-05-12 Sumitomo Electric Ind Ltd Production of nitride
JPS6077111A (en) * 1983-10-05 1985-05-01 Tokuyama Soda Co Ltd Production of aluminum nitride powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207703A (en) * 1986-03-06 1987-09-12 Tokuyama Soda Co Ltd Production of powdery aluminum nitride
JPH0583482B2 (en) * 1986-03-06 1993-11-26 Tokuyama Soda Kk
US4780299A (en) * 1986-11-28 1988-10-25 Kawasaki Steel Corporation Method for producing aluminum nitride powder
JPS6456374A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456371A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456376A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456372A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JP2547786B2 (en) * 1987-08-28 1996-10-23 住友電気工業株式会社 Manufacturing method of aluminum nitride sintered body
JPS6461361A (en) * 1987-09-01 1989-03-08 Sumitomo Electric Industries Aluminum nitride sintered compact having high heat conductivity
JPH01203271A (en) * 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd High-thermal conductivity circuit board
WO1991000842A1 (en) * 1989-07-06 1991-01-24 The Carborundum Company Manufacture of aluminium nitride

Also Published As

Publication number Publication date
JPH0647447B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US4778778A (en) Process for the production of sintered aluminum nitrides
EP0187431B1 (en) Process for producing silicon aluminum oxynitride
EP0186144B1 (en) Process for preparing aluminum nitride powder
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
JPS6278103A (en) Production of aluminum nitride powder
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
KR20220166805A (en) Silicon nitride powder for sintering
JPH05254830A (en) Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof
JPH0952704A (en) Aluminum nitride granule and its production
JP2516295B2 (en) Aluminum nitride powder
JPS5950008A (en) Aluminum nitride powder and its manufacture
US7314593B2 (en) Process for preparing improved silicon carbide powder
JPH0226871A (en) Production of aluminum nitride sintered compact having excellent transparency
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP2680681B2 (en) Method for producing aluminum nitride powder
EP0481563B1 (en) Process for preparing fine aluminium nitride powder.
KR840008789A (en) High purity aluminum nitride fine powder, compositions thereof and sintered bodies thereof, and methods for producing them
JPS62100405A (en) Aluminium nitride powder and production thereof
JPH0563406B2 (en)
JPS62167208A (en) Production of aluminum nitride powder
JPS63139008A (en) Production of powdery aluminum nitride
JPS6183606A (en) Production of easily sinterable aluminum nitride powder
JPH03177308A (en) High-purity aluminum nitride powder and its production
JPH0465307A (en) Production of aluminum nitride powder
IE902433A1 (en) Improvements in or relating to the manufacture of aluminium¹nitride