JP3636370B2 - Aluminum nitride powder and method for producing the same - Google Patents

Aluminum nitride powder and method for producing the same Download PDF

Info

Publication number
JP3636370B2
JP3636370B2 JP09608892A JP9608892A JP3636370B2 JP 3636370 B2 JP3636370 B2 JP 3636370B2 JP 09608892 A JP09608892 A JP 09608892A JP 9608892 A JP9608892 A JP 9608892A JP 3636370 B2 JP3636370 B2 JP 3636370B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
particle size
alumina
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09608892A
Other languages
Japanese (ja)
Other versions
JPH05270809A (en
Inventor
行彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP09608892A priority Critical patent/JP3636370B2/en
Publication of JPH05270809A publication Critical patent/JPH05270809A/en
Application granted granted Critical
Publication of JP3636370B2 publication Critical patent/JP3636370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Description

【0001】
【産業上の利用分野】
本発明は高熱伝導性の窒化アルミニウム粉末及びその製造方法に関するものである。
【0002】
【従来の技術】
窒化アルミニウムは優れた熱伝導性のため、高熱伝導性基板、放熱部品、放熱用フィラーなどとして注目されている。
しかし、従来の窒化アルミニウム粉末は平均粒径が約2μm未満程度の微粒で酸素量が1wt%以上の粉末がほとんどであり、微粒になるほど大気中の水分や酸素によって一部分解を生じやすく、また成形時等のハンドリングがあまり良くないという問題があった。また充填性が悪いため成形嵩密度が小さくなり、結果として焼結時の収縮率が大きく、寸法制御が困難で焼結体の歩留りが悪くなるという欠点があった。
こうした耐湿性やハンドリング、充填性の点から、窒化アルミニウム粉末は平均粒子径が約2μm以上程度と比較的大きい方が好ましい。特に、フィラー用途の場合はより単一粒子径が大きい方が、充填性がよくなり、またハンドリング中の吸湿分解が少ないので、より窒化アルミニウムの高熱伝導性を発揮できることは言うまでもない。
【0003】
また、窒化アルミニウム原料粉末の製造方法としては(I)アルミナ質化合物の炭素粉末による還元窒化法、(II)アルミニウムの直接窒化法、(III )プラズマ等による気相合成法等がある。
【0004】
【発明が解決しようとする課題】
しかしながら、上記(I)の方法では通常、高純度で分散性の良い平均粒子径2μm未満程度の微粒の窒化アルミニウム粉末を得るケースがほとんどである。この方法では余剰の炭素を除去するための酸化雰囲気での脱炭工程が不可欠であるため、微粒になるほど酸素増加が顕著となり、通常0.7wt%以上程度の比較的高い酸素量となってしまい熱伝導率を低下させる。また、平均粒子径2μm以上の粗粒の窒化アルミニウム粉末は合成温度を高くすることによって得ることが可能であるが、粒径が不揃いになったり、合成温度が1700℃以上になると熱伝導率が低い酸窒化アルミニウムスピネルAlON等の中間体を生じ、熱伝導率を低下させてしまう。
【0005】
また、上記(II)の方法では、アルミニウムの融点以上の反応温度が必要であり、粗粒のものが得られるが粒径の揃ったものが得られない。また、(I)の様な脱炭工程がなく、粉末表面が酸化しやすいため、ハンドリング中に酸素量が1wt%以上程度に増加してしまうという問題がある。(III )の方法では、気相反応であるため1μm以下程度の微粒は得られるが、2μm以上程度の粗粒は得られない。
【0006】
本発明は、かかる現状に鑑み鋭意研究を行った結果なされたものであり、反応制御することにより従来の方法では得られなかった低酸素で平均粒子径が大きく、粒径の揃った、分散性、耐湿性のよい窒化アルミニウム及びその製造方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、平均粒子径が2μmより大きく20μm以下で、かつ酸素含有量が0.6重量%以下であることを特徴とする窒化アルミニウム粉末、及びこの窒化アルミニウム粉末の製造方法を提供し、この製造方法はアルミナ粉末と炭素粉末又は炭素含有物質の混合物を、最初に、窒素を含む非酸化性雰囲気中でアルミナの反応率が100%未満となるように1400〜1700℃の温度範囲内で焼成し(第1段階)、次いで窒素を含まない非酸化性雰囲気中で反応を進行させずに1600〜2000℃の温度範囲内で焼成し(第2段階)、それから再び窒素を含む非酸化性雰囲気中で1700〜2000℃の温度範囲内で焼成して反応を完結させる(第3段階)ことを特徴とする。
【0008】
窒化アルミニウム粉末の平均粒径は、粉末を超音波分散により凝集をほぐして得られる粒子について、回折式粒度分析計で測定した重量平均径である。この粒子は超音波分散によるので一次粒子近くまでほぐれているが、SEM観察による完全な一次粒子と比べると分散(ほぐれ)が不十分であると思われるものである。
【0009】
本発明の窒化アルミニウム粉末の平均粒子径は2μmより大きく20μm以下である。平均粒径が2μm以下では脱炭、ハンドリング中の酸素増加によって、最終的に酸素量が0.6wt%以下とならず、また平均粒径が20μmを越えると反応時の未反応酸素が増加し、最終的に酸素量が0.6wt%以下とならない。好ましい平均粒径は3〜10μmの範囲内である
【0010】
また、本発明の窒化アルミニウム粉末は酸素含有量が0.6wt%、好ましくは0.3〜0.6wt%である。窒化アルミニウムの熱伝導率は不純物に大きく依存しており、中でも特に酸素は影響が大きく、酸素含有量を小さくすれば本来の窒素アルミニウムの熱伝導性を発揮できる。酸素含有量が0.6wt%以下であることによって焼結体やフイラーと充填したものは本来の窒化アルミニウムの熱伝導性を引出し、高熱伝導率となることはいうまでもない。酸素以外の不純物も熱伝導率への寄与は小さいものの影響を及ぼすため、酸素を除いた純度99.9wt%以上であることが望ましい。これは原料であるアルミナ及び、炭素あるいは炭素含有物質に純度99.8wt%以上程度のものを用いることによって容易に達成される。
【0011】
この様に本発明の窒化アルミニウム粉末は平均粒子経が大きく、酸素含有量が小さいため窒化アルミニウム本来の熱伝導率が発揮しやすい。また平均粒子経が大きいため、表面積が小さく耐湿性に優れており、従来不可能であった水系でのハンドリングも可能となる。更に平均粒子経が大きいことで充填性、成形性も向上し、焼結時の収縮率低下による歩留まり向上にもつながる。
【0012】
次に、本発明の窒化アルミニウム粉末の製造方法について説明する。
使用するアルミナ粉末は純度99.8wt%以上が好ましく、さらに99.9wt%以下が好ましい。また、炭素粉末等と均一に混合するために平均粒径が10μm以下が好ましく、さらには5μm以下がより好ましい。
【0013】
使用する炭素粉末としてはカーボンブラック、グラファイト、活性炭等の従来用いられている炭素粉末でよいが、灰分0.02wt%以下のものが好ましく、アルミナ粉末と均一に混合し、反応性を大きくするために平均粒子径は1μm以下が好ましい。また、炭素粉末のほかに炭素含有物質を用いてもよく、例えば炭化水素、樹脂類、その他の有機物質等の粉末を利用できる。
【0014】
アルミナ粉末と炭素粉末又は炭素含有粉末は均一に混合するが、好ましくは反応を均一かつ定常的に進行させるために直径3〜20mm程度のペレットにしておくことが望ましい。
【0015】
こうして得た混合粉末あるいはペレットをガスを流通できる容器に入れ、電気炉で第一段階として窒素を含む非酸化性雰囲気(例えば窒素、アンモニアなど非酸化性のガス雰囲気)中、1400℃〜1700℃で焼成する。これは、焼成温度が1400℃未満だと窒化反応がおこらず、1700℃より高温になると一部が熱伝導率の低い酸窒化アルミニウムスピネルAlON等の中間体を生じてしまうからである。また、還元窒化反応を完結させないために保持時間を、例えば5時間未満とする事が好ましい。
【0016】
ここに、アルミナの反応率はアルミナが窒化アルミニウムに転化したパーセント割合をいい、X線回折のピーク強度比より次式で算出される。
【0017】
【数1】

Figure 0003636370
【0018】
第一段階の焼成ではアルミナの反応率は100%未満として、第二段階の焼成時にアルミナを残す必要がある。第二段階の焼成時にアルミナが残ることによってAlNの粒成長が可能になる。反応が完結した場合は第二段階以降でAlNの粒成長が生じず、単一粒子の大きさが2μm超とならない。この機構ははっきりわからないが、未反応酸素がAlNの粒成長を促進するものと思われる。好ましいアルミナの反応率は0〜99%、さらには50〜99%の範囲内である。反応率が99%を超えると粒成長が生じにくくなり、0〜50%だと後の段階で未反応酸素を低減しにくくなる。
【0019】
続いて第二段階として、窒素を含まない非酸化性雰囲気中(例えば真空中、アルゴン、ヘリウム等の不活性ガス雰囲気)、1600℃〜2000℃でこの混合粉末あるいはペレットを焼成する。このアルミナを残存する窒化アルミニウム粉末の焼成により窒化アルミニウム粉末の粒径が増大し、かつ窒化されるべきアルミナは少量であるので、次の第三段階の焼成で完全に窒化され酸素含有率の少ない窒化アルミニウム粉末が2μm超の大きい粒径で得ることが可能になる。焼成温度が1600℃より低いと、窒化アルミニウムの粒径が2μm以上とならず、また2000℃より高いと、粒径が20μm以上となったり、窒化アルミニウムの揮発が一部生じてしまう。焼成時間は、平均粒径が大略2μm以上になるまでとし、一般的には1〜10時間程度である。
【0020】
更に第三段階として再び窒素を含む非酸化性雰囲気中、1700〜2000℃でこの混合粉末あるいはペレットを焼成する。この焼成により、粒径が略2μm越にされた窒化アルミニウム粉末中に残存するアルミナを最終的に完全な窒化アルミニウムに転換される。焼成温度が1700℃より低いと未反応の酸素が0.6wt%以上となり、また2000℃より高いと、窒化アルミニウムの揮発が一部生じてしまう。
【0021】
【作用】
アルミナの炭素還元窒化の途中で、窒素を含まない非酸化性雰囲気中で焼成して粒成長させることにより、酸素含有量の少ない粒径2μm〜20μmの窒化アルミニウム粉末を得ることができる。
【0022】
本発明によって得られる窒化アルミニウムは、粒子の平均径が2〜20μmと大きく、粒径が揃っており、また酸素量が0.6wt%以下と少ないため、従来の微粒の窒化アルミニウムと比べて放熱性、充填性、耐湿性に優れたものである。
次に実施例により、本発明の内容をさらに詳しく説明する。
【0023】
【実施例】
(実施例1)
平均粒子径0.5μmのアルミナ100重量部に平均粒子径0.3μmのカーボンブラック60重量部を加えボールミルで混合した。この混合粉末を造粒するため、ポリビニルアルコールの水溶液を加えパン型造粒機で粒子径が5mmになる様に造粒した。造粒物を乾燥した後、2リットルの黒鉛ルツボに500g充填し、まず第一段階として窒素を流速20リットル/min で導入しながら1450℃にて1時間焼成した。この時点での反応率は42%であった。続いて第二段階としてガスを同じ流速のアルゴンに切り替え、1800℃にて4時間焼成した。次に第三段階として、ガスを同じ流速の窒素に切り替え、1900℃にて10時間焼成した。この時点で酸素量を測定(LECO社製酸素窒素同時分析装置TC−436を使用)したところAlN換算で0.18wt%であった。得られた粉末を650℃、4時間空気中で焼成して残留炭素の除去(脱炭)を行った。
こうして得られた粉末は、X線回折からAlN単相であり、平均粒径はレーザー回折方式の粒度分析計で測定したところ4.1μmであった。(AlN粉末0.02gをエタノール200ccに投入し、超音波分散器で15分間分散させ凝集をほぐした後、Leeds & Northrup社製のレーザー回折式の粒度分析計マイクロトラックにて、粒度を測定した。)SEMによる観察(図1)から、単一粒子の大きさが約2.5μmで、粒径の揃った粉末であった。酸素量は0.41wt%であり、脱炭前と比べると0.3wt%増加していた。
【0024】
また、得られた粉末を30℃の水(イオン交換水)中に分散し、スターラー攪拌しながらpHの経時変化を調べた。結果を図3に示す。さらに、得られた粉末を500 kgf/cm2 の圧力でプレス成形した時の成形嵩密度は2.01g/cm3 であった。
【0025】
(実施例2〜3)
実施例1と同じ組成、方法で作製したアルミナとカーボンブラックの混合ペレットを、2リットルの黒鉛ルツボに充填し、表1に示す様な条件で焼成した後、実施例1と同じ条件にて脱炭しAlNを得た。結果もあわせて表1及び図3に示す。
【0026】
(比較例1)
実施例1と同じ組成、方法で作製したアルミナとカーボンブラックの混合ペレットを、2リットルの黒鉛ルツボに500g充填し、窒素を流速20リットル/min で導入しながら、1600℃、4時間で焼成した。この時点での反応率は100%であった。続いて第二段階としてガスを同じ流速のアルゴンに切り替え、1800℃にて4時間焼成した。次に第三段階として、ガスを同じ流速の窒素に切り替え、1900℃にて10時間焼成した。この時点で実施例1と同様の方法で酸素量を測定したところAlN換算で0.1wt%であった。得られた粉末を650℃、4時間空気中で焼成して脱炭を行った。
得られた粉末を実施例1と同様の方法で測定したところ、平均粒子径は1.7μmであった。SEMによる観察(図2)から、単一粒子の大きさが約0.7μmで、粒径の揃った粉末であった。酸素量は1.0wt%であり、脱炭前と比較して0.9wt%増加していた。また、実施例1と同様にして耐湿性試験した結果を図3に示す。また実施例1と同様にプレス成形した時の成形嵩密度は1.71g/cm3 であった。
【0027】
(比較例2〜3)
比較例1と同じ混合ペレットを、2リットル黒鉛ルツボに500g充填し、表1に示す様な条件で焼成した後、実施例1と同じ条件にて脱炭しAlNを得た。結果もあわせて表1に示す。
【0028】
(比較例4〜5)
従来のアルミナ還元法による窒化アルミニウム粉末として徳山曹達(株)製Type F(平均粒径2.0μm、酸素含有量1.2wt%)、また従来の直接窒化法粉末として東洋アルミ(株)製UF(平均粒径2.2μm、酸素含有量1.1wt%)を選び、これらの粒子について実施例1と同様に耐湿性試験を行なった結果を図3に併せて示す。
【0029】
【表1】
Figure 0003636370
【0030】
【発明の効果】
上述の実施例から明らかなように、本発明により、単一粒子の平均径が2〜20μm以上と大きく、酸素量も0.6wt%以下と非常に低く、充填性、耐湿性に優れた窒化アルミニウム粉末が得られるようになった。
この窒化アルミニウム粉末は、高熱伝導焼結体原料、放熱用フィラー等として放熱部品、IC基板等広い分野ですぐれた原料として利用できる。
【図面の簡単な説明】
【図1】実施例1の製造方法によって得られた窒化アルミニウム粉末の粒子構造を示すSEM写真である。
【図2】比較例2によって得られた窒化アルミニウム粉末の粒子構造を示すSEM写真である。
【図3】実施例及び比較例の窒化アルミニウム粉末の耐湿性試験結果を示すグラフ図である。[0001]
[Industrial application fields]
The present invention relates to a high thermal conductivity aluminum nitride powder and a method for producing the same.
[0002]
[Prior art]
Aluminum nitride is attracting attention as a high thermal conductivity substrate, a heat dissipation component, a heat dissipation filler, and the like because of its excellent thermal conductivity.
However, the conventional aluminum nitride powder is mostly fine particles with an average particle size of less than about 2μm and oxygen content of 1wt% or more, and the finer the particles, the easier it is to cause partial decomposition by moisture and oxygen in the atmosphere. There was a problem that handling at times was not so good. Further, since the filling density is poor, the molding bulk density is reduced, and as a result, there is a disadvantage that the shrinkage rate during sintering is large, the dimensional control is difficult, and the yield of the sintered body is deteriorated.
In view of such moisture resistance, handling, and filling properties, the aluminum nitride powder preferably has a relatively large average particle size of about 2 μm or more. In particular, in the case of filler applications, the larger the single particle size, the better the filling property and the less the hygroscopic decomposition during handling, so it goes without saying that the higher thermal conductivity of aluminum nitride can be exhibited.
[0003]
Examples of the method for producing the aluminum nitride raw material powder include (I) a reduction nitriding method using an alumina compound carbon powder, (II) a direct nitriding method of aluminum, and (III) a gas phase synthesis method using plasma or the like.
[0004]
[Problems to be solved by the invention]
However, in the method (I), in most cases, a fine aluminum nitride powder having an average particle diameter of less than 2 μm with high purity and good dispersibility is usually obtained. In this method, a decarburization step in an oxidizing atmosphere for removing excess carbon is indispensable, so that the oxygen increase becomes more remarkable as the particles become finer, and a relatively high oxygen amount of about 0.7 wt% or more is usually obtained. Reduces thermal conductivity. A coarse aluminum nitride powder having an average particle size of 2 μm or more can be obtained by increasing the synthesis temperature. However, when the particle size becomes uneven or the synthesis temperature is 1700 ° C. or more, the thermal conductivity is increased. This produces intermediates such as low aluminum oxynitride spinel AlON and reduces thermal conductivity.
[0005]
In the method (II), a reaction temperature higher than the melting point of aluminum is required, and a coarse particle is obtained, but a particle having a uniform particle size cannot be obtained. Moreover, since there is no decarburization process like (I) and the powder surface is easy to oxidize, there exists a problem that oxygen amount will increase to about 1 wt% or more during handling. In the method (III), since it is a gas phase reaction, fine particles of about 1 μm or less can be obtained, but coarse particles of about 2 μm or more cannot be obtained.
[0006]
The present invention was made as a result of diligent research in view of the present situation, and by controlling the reaction, low oxygen, which has not been obtained by the conventional method, the average particle size is large, the particle size is uniform, dispersibility An object of the present invention is to provide aluminum nitride with good moisture resistance and a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an aluminum nitride powder having an average particle size of greater than 2 μm and not greater than 20 μm and an oxygen content of not greater than 0.6% by weight, and the aluminum nitride powder It provides a method of manufacturing, 1400 to a mixture of the manufacturing method of alumina powder and carbon powder or carbon-containing material, so that the first, the reaction rate of the alumina in a non-oxidizing atmosphere is less than 100% containing nitrogen Calcination in a temperature range of 1700 ° C. (first stage) and then calcination in a temperature range of 1600-2000 ° C. without proceeding the reaction in a non-oxidizing atmosphere without nitrogen (second stage); The reaction is completed by firing again in a temperature range of 1700 to 2000 ° C. in a non-oxidizing atmosphere containing nitrogen (third stage).
[0008]
The average particle diameter of the aluminum nitride powder is a weight average diameter measured with a diffraction particle size analyzer for particles obtained by loosening the aggregation of the powder by ultrasonic dispersion. Since these particles are due to ultrasonic dispersion, they are loosened to near the primary particles, but they are considered to be insufficiently dispersed (unraveled) compared to the complete primary particles by SEM observation.
[0009]
The average particle diameter of the aluminum nitride powder of the present invention is greater than 2 μm and not greater than 20 μm. If the average particle size is 2 μm or less, the amount of oxygen will not eventually become 0.6 wt% or less due to an increase in oxygen during decarburization and handling, and if the average particle size exceeds 20 μm, unreacted oxygen during the reaction will increase. Finally, the amount of oxygen does not become 0.6 wt% or less. The preferred average particle size is in the range of 3-10 μm.
The aluminum nitride powder of the present invention has an oxygen content of 0.6 wt%, preferably 0.3 to 0.6 wt%. The thermal conductivity of aluminum nitride depends greatly on impurities, and oxygen is particularly significant, and the original thermal conductivity of nitrogen aluminum can be achieved by reducing the oxygen content. Needless to say, when the oxygen content is 0.6 wt% or less, a material filled with a sintered body or filler draws out the original thermal conductivity of aluminum nitride and has a high thermal conductivity. Since impurities other than oxygen also have a small contribution to the thermal conductivity, but have a purity of 99.9 wt% or more excluding oxygen . This is easily achieved by using alumina as a raw material and carbon or a carbon-containing substance having a purity of about 99.8 wt% or more.
[0011]
Thus, since the aluminum nitride powder of the present invention has a large average particle size and a low oxygen content, the original thermal conductivity of aluminum nitride tends to be exhibited. Further, since the average particle size is large, the surface area is small and the moisture resistance is excellent, and handling in an aqueous system, which has been impossible in the past, is also possible. Further, the large average particle size improves the filling property and moldability, and leads to an improvement in yield due to a reduction in shrinkage during sintering.
[0012]
Next, the manufacturing method of the aluminum nitride powder of this invention is demonstrated.
The alumina powder used preferably has a purity of 99.8 wt% or more, more preferably 99.9 wt% or less. Moreover, in order to mix with carbon powder etc. uniformly, an average particle diameter is preferable 10 micrometers or less, Furthermore, 5 micrometers or less are more preferable.
[0013]
Conventionally used carbon powder such as carbon black, graphite, activated carbon or the like may be used as the carbon powder, but those having an ash content of 0.02 wt% or less are preferable, in order to increase the reactivity by mixing uniformly with the alumina powder. The average particle size is preferably 1 μm or less. In addition to carbon powder, a carbon-containing material may be used. For example, powders of hydrocarbons, resins, and other organic materials can be used.
[0014]
The alumina powder and the carbon powder or the carbon-containing powder are mixed uniformly, but it is preferable to form pellets having a diameter of about 3 to 20 mm in order to allow the reaction to proceed uniformly and constantly.
[0015]
Mixing powder or pellets placed in a container capable of flowing gas thus obtained, in a non-oxidizing atmosphere containing nitrogen as a first step in an electric furnace (e.g. nitrogen, ammonia, etc. nonoxidizing gas atmosphere), 1400 ° C. to 1700 ° C. Bake with. This is because a nitriding reaction does not occur when the firing temperature is lower than 1400 ° C., and an intermediate such as aluminum oxynitride spinel AlON having a low thermal conductivity is partially generated when the temperature is higher than 1700 ° C. In order not to complete the reductive nitridation reaction, the holding time is preferably set to less than 5 hours, for example.
[0016]
Here, the reaction rate of alumina refers to the percentage of alumina converted to aluminum nitride, and is calculated from the peak intensity ratio of X-ray diffraction by the following formula.
[0017]
[Expression 1]
Figure 0003636370
[0018]
In the first stage firing, the reaction rate of alumina is less than 100%, and it is necessary to leave alumina during the second stage firing. Alumina remains during the second stage firing, which enables AlN grain growth. When the reaction is completed, AlN grain growth does not occur after the second stage, and the size of a single particle does not exceed 2 μm. Although this mechanism is not clearly understood, it is considered that unreacted oxygen promotes the grain growth of AlN. The reaction rate of alumina is preferably 0 to 99%, more preferably 50 to 99%. When the reaction rate exceeds 99%, grain growth is difficult to occur, and when it is 0 to 50%, it becomes difficult to reduce unreacted oxygen at a later stage.
[0019]
Subsequently, as the second stage, the mixed powder or pellet is fired at 1600 ° C. to 2000 ° C. in a non-oxidizing atmosphere containing no nitrogen (for example, in an inert gas atmosphere such as argon or helium in a vacuum). Due to the firing of the aluminum nitride powder with the alumina remaining, the particle size of the aluminum nitride powder is increased, and the amount of alumina to be nitrided is small, so that it is completely nitrided and has a low oxygen content in the next third stage firing. It becomes possible to obtain aluminum nitride powder with a large particle size exceeding 2 μm. When the firing temperature is lower than 1600 ° C., the particle size of aluminum nitride does not become 2 μm or more, and when it is higher than 2000 ° C., the particle size becomes 20 μm or more, or volatilization of aluminum nitride occurs partially. The firing time is until the average particle size is approximately 2 μm or more, and is generally about 1 to 10 hours.
[0020]
Furthermore, this mixed powder or pellet is fired at 1700 to 2000 ° C. in a non-oxidizing atmosphere containing nitrogen again as a third stage. By this firing, the alumina remaining in the aluminum nitride powder having a particle size exceeding about 2 μm is finally converted into complete aluminum nitride. When the firing temperature is lower than 1700 ° C., the unreacted oxygen is 0.6 wt% or more, and when it is higher than 2000 ° C., a part of the aluminum nitride volatilizes.
[0021]
[Action]
During the carbon reductive nitridation of alumina, an aluminum nitride powder having a particle size of 2 μm to 20 μm with a low oxygen content can be obtained by firing and growing grains in a non-oxidizing atmosphere not containing nitrogen.
[0022]
The aluminum nitride obtained by the present invention has a large average particle diameter of 2 to 20 μm, uniform particle diameter, and a small amount of oxygen of 0.6 wt% or less, so that it dissipates heat compared to conventional fine aluminum nitride. It has excellent properties, filling properties and moisture resistance.
Next, the contents of the present invention will be described in more detail with reference to examples.
[0023]
【Example】
(Example 1)
60 parts by weight of carbon black having an average particle diameter of 0.3 μm was added to 100 parts by weight of alumina having an average particle diameter of 0.5 μm and mixed by a ball mill. In order to granulate this mixed powder, an aqueous polyvinyl alcohol solution was added and granulated with a bread granulator so that the particle diameter was 5 mm. After the granulated product was dried, 500 g was filled in a 2 liter graphite crucible, and first, as a first stage, it was fired at 1450 ° C. for 1 hour while introducing nitrogen at a flow rate of 20 liter / min. The reaction rate at this point was 42%. Subsequently, in the second stage, the gas was switched to argon at the same flow rate and calcined at 1800 ° C. for 4 hours. Next, as a third stage, the gas was switched to nitrogen at the same flow rate and calcined at 1900 ° C. for 10 hours. At this time, the amount of oxygen was measured (using an oxygen-nitrogen simultaneous analyzer TC-436 manufactured by LECO) and found to be 0.18 wt% in terms of AlN. The obtained powder was baked in air at 650 ° C. for 4 hours to remove residual carbon (decarburization).
The powder thus obtained was an AlN single phase from X-ray diffraction, and the average particle size was 4.1 μm as measured by a laser diffraction type particle size analyzer. (0.02 g of AlN powder was put in 200 cc of ethanol, dispersed for 15 minutes with an ultrasonic disperser to loosen the aggregate, and then the particle size was measured with a laser diffraction particle size analyzer Microtrac manufactured by Leeds & Northrup. .) From observation by SEM (FIG. 1), it was a powder having a single particle size of about 2.5 μm and a uniform particle size. The amount of oxygen was 0.41 wt%, an increase of 0.3 wt% compared to before decarburization.
[0024]
The obtained powder was dispersed in 30 ° C. water (ion exchange water), and the change with time of pH was examined while stirring with a stirrer. The results are shown in FIG. Further, the molding bulk density when the obtained powder was press-molded at a pressure of 500 kgf / cm 2 was 2.01 g / cm 3 .
[0025]
(Examples 2-3)
A mixed pellet of alumina and carbon black produced by the same composition and method as in Example 1 was filled in a 2 liter graphite crucible, fired under the conditions shown in Table 1, and then removed under the same conditions as in Example 1. Charcoal was obtained to obtain AlN. The results are also shown in Table 1 and FIG.
[0026]
(Comparative Example 1)
500 g of a mixed pellet of alumina and carbon black produced by the same composition and method as in Example 1 was charged into a 2 liter graphite crucible and fired at 1600 ° C. for 4 hours while introducing nitrogen at a flow rate of 20 liter / min. . The reaction rate at this point was 100%. Subsequently, in the second stage, the gas was switched to argon at the same flow rate and calcined at 1800 ° C. for 4 hours. Next, as a third stage, the gas was switched to nitrogen at the same flow rate and calcined at 1900 ° C. for 10 hours. At this time, when the amount of oxygen was measured by the same method as in Example 1, it was 0.1 wt% in terms of AlN. The obtained powder was calcined by firing in air at 650 ° C. for 4 hours.
When the obtained powder was measured by the same method as in Example 1, the average particle size was 1.7 μm. From observation by SEM (FIG. 2), it was a powder having a single particle size of about 0.7 μm and a uniform particle size. The amount of oxygen was 1.0 wt%, which was increased by 0.9 wt% compared to before decarburization. Moreover, the result of having carried out the moisture resistance test similarly to Example 1 is shown in FIG. Further, the molding bulk density when press molding was performed in the same manner as in Example 1 was 1.71 g / cm 3 .
[0027]
(Comparative Examples 2-3)
500 g of the same mixed pellet as in Comparative Example 1 was filled in a 2 liter graphite crucible, fired under the conditions shown in Table 1, and then decarburized under the same conditions as in Example 1 to obtain AlN. The results are also shown in Table 1.
[0028]
(Comparative Examples 4-5)
Type F (produced by Tokuyama Soda Co., Ltd., average particle size: 2.0 μm, oxygen content: 1.2 wt%) as conventional aluminum nitride powder by alumina reduction method, and UF made by Toyo Aluminum Co., Ltd. as conventional direct nitridation powder (Average particle size 2.2 μm, oxygen content 1.1 wt%) was selected, and the results of performing a moisture resistance test on these particles in the same manner as in Example 1 are also shown in FIG.
[0029]
[Table 1]
Figure 0003636370
[0030]
【The invention's effect】
As is clear from the above examples, according to the present invention, the average diameter of single particles is as large as 2 to 20 μm or more, the amount of oxygen is very low as 0.6 wt% or less, and nitriding is excellent in filling property and moisture resistance. Aluminum powder can be obtained.
This aluminum nitride powder can be used as an excellent raw material in a wide range of fields such as a high thermal conductive sintered material, a heat-dissipating filler, etc.
[Brief description of the drawings]
1 is an SEM photograph showing the particle structure of aluminum nitride powder obtained by the production method of Example 1. FIG.
2 is a SEM photograph showing the particle structure of aluminum nitride powder obtained in Comparative Example 2. FIG.
FIG. 3 is a graph showing the results of moisture resistance tests of aluminum nitride powders of Examples and Comparative Examples.

Claims (2)

アルミナ粉末と炭素粉末又は炭素含有物質の混合物を、最初に、窒素を含む非酸化性雰囲気中でアルミナの反応率が100%未満となるように1400〜1700℃の温度範囲内で焼成し(第1段階)、次いで窒素を含まない非酸化性雰囲気中で反応を進行させずに1600〜2000℃の温度範囲内で焼成し(第2段階)、それから再び窒素を含む非酸化性雰囲気中で1700〜2000℃の温度範囲内で焼成して反応を完結させる(第3段階)ことを特徴とする窒化アルミニウム粉末の製造方法。The mixture of the alumina powder and the carbon powder or the carbon-containing substance is first fired in a temperature range of 1400 to 1700 ° C. in a non-oxidizing atmosphere containing nitrogen so that the reaction rate of alumina is less than 100%. Step 1), followed by firing in a temperature range of 1600 to 2000 ° C. without proceeding in a non-oxidizing atmosphere containing no nitrogen (second step), and then again in a non-oxidizing atmosphere containing nitrogen in 1700 A method for producing aluminum nitride powder, characterized in that the reaction is completed by firing within a temperature range of ˜2000 ° C. (third stage). 請求項1に記載の製造方法で製造され、超音波分散で凝集をほぐして得られる粒子を回折式粒度分析計で測定した重量平均粒子径が2μmより大きく20μm以下で、かつ酸素含有量が0.6重量%以下であることを特徴とする窒化アルミニウム粉末。 The weight average particle diameter of the particles produced by the production method according to claim 1 and obtained by loosening agglomeration by ultrasonic dispersion and measured with a diffraction particle size analyzer is greater than 2 μm and less than or equal to 20 μm, and the oxygen content is 0 Aluminum nitride powder characterized by being 6% by weight or less.
JP09608892A 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same Expired - Lifetime JP3636370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09608892A JP3636370B2 (en) 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09608892A JP3636370B2 (en) 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05270809A JPH05270809A (en) 1993-10-19
JP3636370B2 true JP3636370B2 (en) 2005-04-06

Family

ID=14155649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09608892A Expired - Lifetime JP3636370B2 (en) 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3636370B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664229B2 (en) * 2006-04-19 2011-04-06 電気化学工業株式会社 Aluminum nitride powder and resin composition
JP5565729B2 (en) * 2010-08-23 2014-08-06 国立大学法人東北大学 Aluminum nitride-based particle manufacturing method and aluminum nitride-based particle manufacturing apparatus
JP5586018B2 (en) * 2010-08-23 2014-09-10 国立大学法人東北大学 Aluminum nitride particle manufacturing method and aluminum nitride particle manufacturing apparatus
WO2013122296A1 (en) * 2012-02-13 2013-08-22 영남대학교 산학협력단 Method for producing aluminum nitride powder
CN104114482B (en) * 2012-03-30 2016-06-29 德山株式会社 The manufacture method of aluminium nitride powder
WO2014118993A1 (en) * 2013-02-04 2014-08-07 株式会社トクヤマ Method for producing sintered aluminum nitride granules
JP5726279B2 (en) * 2013-12-06 2015-05-27 株式会社トクヤマ Aluminum nitride powder
JP2018044072A (en) * 2016-09-15 2018-03-22 株式会社トクヤマ Aluminum nitride-containing curable resin composition
JP7027196B2 (en) * 2018-02-27 2022-03-01 株式会社トクヤマ Manufacturing method of aluminum nitride powder
KR102139189B1 (en) * 2018-08-17 2020-07-30 (주) 존인피니티 Memufacturing method of conductivity AlN subtrate having thermal conductivity of 180 W/mk to 230 W/mk

Also Published As

Publication number Publication date
JPH05270809A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
US4778778A (en) Process for the production of sintered aluminum nitrides
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JP3290686B2 (en) Method for producing aluminum nitride powder
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH0323206A (en) Aluminum nitride powder and its production
JPS6278103A (en) Production of aluminum nitride powder
JPH0952704A (en) Aluminum nitride granule and its production
JP3731100B2 (en) Tungsten oxide sintered body, method for producing the same, and powder composition for sintering
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP3900589B2 (en) Magnesium siliconitride powder and method for producing the same
JPH0226871A (en) Production of aluminum nitride sintered compact having excellent transparency
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPH04923B2 (en)
JPS62270468A (en) Aluminum nitride base sintered body
JPS62167208A (en) Production of aluminum nitride powder
JPH06321510A (en) Production of crystalline silicon nitride powder
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JPH0524810A (en) Production of aluminum nitride powder
JPH0575688B2 (en)
JP2680681B2 (en) Method for producing aluminum nitride powder
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63139008A (en) Production of powdery aluminum nitride
JPH0597523A (en) Production of sintered aluminum nitride
JPH05330808A (en) Production of aluminum nitride powder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8