JPH04923B2 - - Google Patents

Info

Publication number
JPH04923B2
JPH04923B2 JP59274481A JP27448184A JPH04923B2 JP H04923 B2 JPH04923 B2 JP H04923B2 JP 59274481 A JP59274481 A JP 59274481A JP 27448184 A JP27448184 A JP 27448184A JP H04923 B2 JPH04923 B2 JP H04923B2
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
weight
compound
easily sinterable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274481A
Other languages
Japanese (ja)
Other versions
JPS61155210A (en
Inventor
Hiroshi Inoe
Akihiko Tsuge
Katsutoshi Yoneya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59274481A priority Critical patent/JPS61155210A/en
Publication of JPS61155210A publication Critical patent/JPS61155210A/en
Publication of JPH04923B2 publication Critical patent/JPH04923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、緻密な焼結体を得ることが可能な易
焼結性窒化アルミニウム粉末の製造方法に関す
る。 [発明の技術的背景とその問題点] 窒化アルミニウム(AlN)は常温から高温ま
での強度が高く、化学的耐性にも優れているた
め、耐熱材料として用いられる一方、その高熱伝
導性、高電気絶縁性を利用して半導体装置の放熱
板材料としても有望視されている。こうした
AlNは、通常、融点を持たず、2200℃以上の高
温で分解するため、薄膜などの用途を除いては焼
結体として用いられる。 かかるAlN焼結体は、通常、AlN粉末を成形、
焼結して製造されるが、焼結体の高密度化を目的
として、AlN粉末に焼結助剤を添加することが
一般的である。 又、得られたAlN焼結体の特性は、出発原料
であるAlN粉末の性質並びに添加される焼結助
剤に大きく影響されることが知られている。すな
わち、AlN粉末の平均粒径が小さく、かつ、粒
径並びに粒形のバラツキが少なく、しかも、焼結
助剤がAlN粉末に均一に分散していることが、
緻密なAlN焼結体を得る上で望ましい。 AlN粉末、従来、アルミニウムの直接窒化法
又はアルミナの炭素還元法等を適用して製造され
ているが、かかる方法では、粒径を小さくするこ
と、並びに、粒径および粒形のバラツキを小さく
することができない。しかも、かかるAlN粉末
に焼結助剤を添加混合する場合、如何なる方法を
適用しても、所詮粉末同士の混合であるため、焼
結助剤の理想的な分散状態を実現することが困難
である。 [発明の目的] 本発明は、従来のかかる問題を解消し、平均粒
径が小さく粒径および粒形のバラツキが少なく、
しかも焼結助剤を均一に分散することができる易
焼結性窒化アルミニウム粉末の製造方法の提供を
目的とする。 [発明の概要] 本発明者らは、AlN粉末の製造工程において、
出発原料として水酸化アルミニウム粉末を使用
し、このAlN粉末を製造する段階で、従来、
AlN粉末製造後に添加していた焼結助剤を、添
加したのち焼成すれば、得られた焼成粉は予め焼
結助剤を含有したAlN粉末となるがゆえに、上
記目的を達成しうることを確認して本発明を完成
するに至つた。 すなわち、本発明の易焼結性窒化アルミニウム
粉末の製造方法は、水酸化アルミニウム粉末と、
炭素粉末又は高温で炭素粉末を生成する物質との
混合物に、希土類元素化合物の少なくとも1種の
粉末を添加し、次いで、窒素を含む非酸化性雰囲
気中で焼成することを特徴とする。 本発明方法で使用する炭素粉末としては、カー
ボンブラツク、グラフアイトなどがあげられ、高
温で炭素粉末を生成する物質としては、パラフイ
ン化合物、ノボラツク、スチレンなどの各種樹脂
系物質があげられる。 本発明方法においては、水酸化アルミニウム粉
末と上記炭素粉末に、後述するように焼結助剤と
して機能する化合物、すなわち、希土類元素化合
物の少なくとも1種の粉末を添加混合する。希土
類元素としては、Y、La、Ce、Sm、Dy、Nd、
Gd、Pr、Ho、Er、Ybなどがあげられ、とくに
Y、Sm、La、Ceは好適である。また、これらの
元素の化合物としては、炭酸塩、酸化物、ホウ化
物又はハロゲン化物であることが好ましい。本発
明方法にあつては、これらの化合物粉末を添加す
るにあたり、希土類元素化合物に加えさらにアル
カリ土類元素化合物粉末を添加して使用すると好
ましい。 そのようなアルカリ土類元素としては、Mg、
Ca、Sr、Baなどがあげられ、とくに、Ca、Sr、
Baは好ましいものである。両者を一緒に添加す
ると、後述するように、得られたAlN粉末の粒
径や粒形および焼結体の相対密度比は、両者をそ
れぞれ単独で使用した場合に比べて更に向上す
る。 上記した各粉末、すなわち、水酸化アルミニウ
ム粉末、炭素粉末および添加化合物粉末の純度は
いずれも99%以上であることが好ましいが、これ
らは工業的に容易に製造することが可能である。
更に、各粉末の粒度はできるだけ小さいことが好
ましく、とくに炭素粉末および添加化合物粉末の
平均粒径は1.0μm以下であることが好ましい。 これらの粉末の配合量は、水酸化アルミニウム
粉末1重量部に対して、炭素粉末が好ましくは
0.2〜2.0重量部、更に好ましくは0.35〜1.0重量
部、添加化合物粉末が合計で好ましくは0.005〜
1.0重量部、更に好ましくは、0.005〜0.1重量部と
なるようにそれぞれ設定される。炭素粉末の配合
量が、水酸化アルミニウム粉末1重量部に対して
0.2重量部未満ではアルミナ粉末が未反応のまま
多量に残留してしまい、2.0重量部を超えると
AlN粉末の生成な可能であるものの収率が低下
するので好ましくない。一方、添加化合物粉末の
配合量が、水酸化アルミニウム粉末1重量部に対
して0.005重量部未満では粉末焼結時に焼結助剤
としての効果がほとんど発揮されず、1.0重量部
を超えると窒化アルミニウム粉末自体の特性が変
化してしまうため好ましくない。 本発明方法においては、上記所定量の各粉末を
ボールミルなど通常の方法を適用して混合したの
ち、焼成する。焼成工程は窒素を含む非酸化性雰
囲気中で行なう。この焼成雰囲気としては、具体
的には、窒素ガスやアンモニアガス単独でも、或
いはこれらのガスと不活性ガスとの混合ガス系で
もよい。焼成温度は、好ましくは1300〜1850℃、
更に好ましくは1400〜1550℃である。この焼成温
度が1300℃未満ではAlN粉末が生成し難く、
1850℃を超えると粒成長等が生じてグレイン化し
ていくので好ましくない。 かかる焼成工程において、先ず、水酸化アルミ
ニウム粉末が分解して、微細な活性アルミナ粉末
が生成する。続いて、反応開始温度に到達する
と、還元窒化反応により生成した窒化アルミニウ
ムが上記焼結助剤として機能する添加化合物を核
として成長する。その結果、焼結助剤を内包し、
かつ、粒径が小さく、粒形および粒径のバラツキ
の小さい窒化アルミニウム粉末が得られるのであ
る。こうして得られた窒化アルミニウム粉末の平
均粒径は2.0μm以下、更には1.0μm以下であり、
そのバラツキも±0.3μm以下と極めて小さい。 尚、炭素粉末の添加量が多い場合には、未反応
の炭素が一部残留することがあるが、これは酸化
性雰囲気中、600〜850℃で加熱することにより酸
化除去することができる。 また、添加化合物粉末は、上記反応工程におい
て一部還元窒化されることがあるが、窒化アルミ
ニウム粉末を合成する際の核としての機能並び
に、焼結助剤としての機能が損なわれることは全
くない。 以上のように、本発明方法においては、反応の
際、窒化アルミニウムが生成する以前から反応系
にのちに焼結助剤として機能する添加化合物粉末
が存在し、これを核として微細な窒化アルミニウ
ム粉末が生成していくため、結果的には、焼結助
剤が均一に分散した窒化アルミニウム粉末が得ら
れる。この窒化アルミニウム粉末は、状況によつ
てはそのまま成形し、焼結しうるという利点を有
し、得られた焼結体は極めて緻密なものとなる。 [発明の実施例] 実施例 1〜13 水酸化アルミニウム粉末、炭素粉末および表示
した添加化合物粉末をそれぞれ表示した重量部で
混合して得た混合粉末100gをカーボントレーに
入れて、表示した雰囲気中、温度および時間で焼
成した。得られた生成物を空気中、700℃で3時
間処理して残留カーボンを除去した。 上記により得られた各粉末の構成相をX線回折
法により調べた。さらに、これらの粉末を軽く粉
砕した後、30×30×5mmの形状となるように金型
成形し、しかるのち窒素雰囲気中、表示した温度
で2時間焼結して窒化アルミニウム焼結体を得
た。得られた各焼結体の相対密度比を測定した。
以上の結果を表に示した。 尚、上記実施例で使用した添加化合物の平均粒
径は、a族化合物が、1.2〜1.8μm、a族化
合物が0.8〜1.2μmであつた。 更に、得られたAlN粉末の平均粒径はいずれ
も0.9〜1.2μmであり、その粒度分布はいずれも
0.6〜1.6μmであつた。
[Technical Field of the Invention] The present invention relates to a method for producing easily sinterable aluminum nitride powder, which makes it possible to obtain a dense sintered body. [Technical background of the invention and its problems] Aluminum nitride (AlN) has high strength from room temperature to high temperature and excellent chemical resistance, so it is used as a heat-resistant material. Due to its insulating properties, it is also seen as a promising material for heat sinks in semiconductor devices. These
AlN usually does not have a melting point and decomposes at high temperatures of 2200°C or higher, so it is used as a sintered body except for applications such as thin films. Such AlN sintered bodies are usually made by molding AlN powder,
Although it is manufactured by sintering, it is common to add a sintering aid to the AlN powder for the purpose of increasing the density of the sintered body. Further, it is known that the properties of the obtained AlN sintered body are greatly influenced by the properties of the AlN powder as a starting material and the sintering aid added. In other words, the average particle size of the AlN powder is small, there is little variation in particle size and particle shape, and the sintering aid is uniformly dispersed in the AlN powder.
This is desirable for obtaining a dense AlN sintered body. AlN powder has conventionally been manufactured by applying the direct nitriding method of aluminum or the carbon reduction method of alumina, etc., but with such methods, it is necessary to reduce the particle size and reduce the variation in particle size and particle shape. I can't. Moreover, when adding and mixing a sintering aid to such AlN powder, no matter what method is applied, it is difficult to achieve an ideal dispersion state of the sintering aid because it is a mixture of powders. be. [Object of the Invention] The present invention solves the conventional problems, and has a small average particle size, less variation in particle size and particle shape, and
Moreover, it is an object of the present invention to provide a method for producing easily sinterable aluminum nitride powder in which a sintering aid can be uniformly dispersed. [Summary of the invention] In the manufacturing process of AlN powder, the present inventors
Conventionally, aluminum hydroxide powder is used as a starting material, and at the stage of producing this AlN powder,
If the sintering aid that was added after AlN powder production is added and then fired, the obtained fired powder will be AlN powder that already contains the sintering aid, so the above purpose can be achieved. After confirming this, we have completed the present invention. That is, the method for producing easily sinterable aluminum nitride powder of the present invention includes aluminum hydroxide powder,
It is characterized in that at least one powder of a rare earth element compound is added to carbon powder or a mixture with a substance that produces carbon powder at high temperatures, and then fired in a non-oxidizing atmosphere containing nitrogen. Examples of the carbon powder used in the method of the present invention include carbon black and graphite, and examples of substances that produce carbon powder at high temperatures include various resinous substances such as paraffin compounds, novolac, and styrene. In the method of the present invention, at least one powder of a compound functioning as a sintering aid, that is, a rare earth element compound, is added to and mixed with the aluminum hydroxide powder and the carbon powder. Rare earth elements include Y, La, Ce, Sm, Dy, Nd,
Examples include Gd, Pr, Ho, Er, Yb, etc., and Y, Sm, La, and Ce are particularly suitable. Moreover, as compounds of these elements, carbonates, oxides, borides, or halides are preferable. In the method of the present invention, when adding these compound powders, it is preferable to use an alkaline earth element compound powder in addition to the rare earth element compound. Such alkaline earth elements include Mg,
Examples include Ca, Sr, Ba, etc., especially Ca, Sr,
Ba is preferred. When both are added together, as will be described later, the particle size and shape of the obtained AlN powder and the relative density ratio of the sintered body are further improved compared to when both are used alone. The purity of each of the above-mentioned powders, that is, the aluminum hydroxide powder, the carbon powder, and the additive compound powder, is preferably 99% or more, and these can be easily produced industrially.
Further, the particle size of each powder is preferably as small as possible, and it is particularly preferable that the average particle size of the carbon powder and additive compound powder is 1.0 μm or less. The blending amount of these powders is preferably carbon powder per 1 part by weight of aluminum hydroxide powder.
0.2 to 2.0 parts by weight, more preferably 0.35 to 1.0 parts by weight, and the total amount of additive compound powder is preferably 0.005 to 0.005 parts by weight.
The amount is set to 1.0 part by weight, more preferably 0.005 to 0.1 part by weight. The blending amount of carbon powder is 1 part by weight of aluminum hydroxide powder.
If it is less than 0.2 parts by weight, a large amount of alumina powder will remain unreacted, and if it exceeds 2.0 parts by weight,
Although it is possible to produce AlN powder, it is not preferable because the yield decreases. On the other hand, if the amount of additive compound powder blended is less than 0.005 parts by weight per 1 part by weight of aluminum hydroxide powder, it will hardly be effective as a sintering aid during powder sintering, and if it exceeds 1.0 parts by weight, aluminum nitride This is not preferable because the properties of the powder itself change. In the method of the present invention, a predetermined amount of each powder is mixed using a conventional method such as a ball mill, and then fired. The firing step is performed in a non-oxidizing atmosphere containing nitrogen. Specifically, the firing atmosphere may be nitrogen gas or ammonia gas alone, or a mixed gas system of these gases and an inert gas. The firing temperature is preferably 1300-1850℃,
More preferably it is 1400-1550°C. If this firing temperature is less than 1300℃, it is difficult to generate AlN powder,
If the temperature exceeds 1850°C, grain growth etc. will occur and grains will form, which is not preferable. In this firing process, first, the aluminum hydroxide powder is decomposed to produce fine activated alumina powder. Subsequently, when the reaction initiation temperature is reached, aluminum nitride produced by the reductive nitriding reaction grows using the additive compound functioning as the sintering aid as a nucleus. As a result, it contains a sintering aid,
Moreover, aluminum nitride powder having a small particle size and small variations in particle shape and particle size can be obtained. The average particle size of the aluminum nitride powder thus obtained is 2.0 μm or less, further 1.0 μm or less,
The variation is also extremely small, less than ±0.3 μm. Note that when a large amount of carbon powder is added, some unreacted carbon may remain, but this can be oxidized and removed by heating at 600 to 850° C. in an oxidizing atmosphere. In addition, although the additive compound powder may be partially reduced and nitrided in the above reaction process, its function as a core when synthesizing aluminum nitride powder and its function as a sintering aid is never impaired. . As described above, in the method of the present invention, there is an additive compound powder that functions as a sintering aid in the reaction system even before aluminum nitride is produced, and this is used as a core to form fine aluminum nitride powder. As a result, aluminum nitride powder in which the sintering aid is uniformly dispersed is obtained. This aluminum nitride powder has the advantage that it can be molded and sintered as it is, depending on the situation, and the resulting sintered body will be extremely dense. [Examples of the Invention] Examples 1 to 13 100 g of mixed powder obtained by mixing aluminum hydroxide powder, carbon powder, and powder of the indicated additive compound in the indicated parts by weight was placed in a carbon tray and placed in the indicated atmosphere. , temperature and time. The resulting product was treated in air at 700° C. for 3 hours to remove residual carbon. The constituent phases of each powder obtained above were examined by X-ray diffraction. Furthermore, after lightly pulverizing these powders, they were molded into a shape of 30 x 30 x 5 mm, and then sintered in a nitrogen atmosphere at the indicated temperature for 2 hours to obtain an aluminum nitride sintered body. Ta. The relative density ratio of each obtained sintered body was measured.
The above results are shown in the table. Incidentally, the average particle size of the additive compounds used in the above examples was 1.2 to 1.8 μm for the a group compound and 0.8 to 1.2 μm for the a group compound. Furthermore, the average particle size of the obtained AlN powders was 0.9 to 1.2 μm, and the particle size distribution was
It was 0.6 to 1.6 μm.

【表】 +++++>++++>+++>++>+> <+
[発明の効果] 以上の説明から明らかなように、本発明方法を
適用すれば、粒径が小さく、かつ粒形および粒径
のバラツキが小さい易焼結性窒化アルミニウム粉
末を得ることができ、しかも、得られた窒化アル
ミニウム粉末は、焼結時に焼結助剤として機能す
る添加化合物が均一に分散された状態となつてい
るため、非常に緻密な焼結体を製造することが可
能となり、その工業的価値は大である。
[Table] +++++>++++>+++>++>+> <+
[Effects of the Invention] As is clear from the above description, by applying the method of the present invention, easily sinterable aluminum nitride powder having a small particle size and small variations in particle shape and particle size can be obtained. Moreover, the resulting aluminum nitride powder has an additive compound that functions as a sintering aid during sintering that is uniformly dispersed, making it possible to produce a very dense sintered body. Its industrial value is great.

Claims (1)

【特許請求の範囲】 1 水酸化アルミニウム粉末と、炭素粉末又は高
温で炭素粉末を生成する物質との混合物に、希土
類元素化合物の少なくとも1種の粉末を添加し、
次いで、 窒素を含む非酸化性雰囲気中で焼成することを
特徴とする易焼結性窒化アルミニウム粉末の製造
方法。 2 希土類元素化合物に加えさらにアルカリ土類
元素化合物を添加した特許請求の範囲第1項記載
の易焼結性窒化アルミニウム粉末の製造方法。 3 該化合物が、炭酸塩、酸化物、窒化物、ホウ
化物又はハロゲン化物である特許請求の範囲第1
項記載の易焼結性窒化アルミニウム粉末の製造方
法。 4 水酸化アルミニウム粉末1重量部に対して、
炭素粉末が0.2〜2.0重量部、かつ、添加化合物粉
末が0.005〜1.0重量部である特許請求の範囲第1
項記載の易焼結性窒化アルミニウム粉末の製造方
法。 5 焼成温度が1300〜1850℃である特許請求の範
囲第1項記載の易焼結性窒化アルミニウム粉末の
製造方法。 6 炭素粉末および添加化合物粉末の平均粒径が
ともに1.0μm以下である特許請求の範囲第1項記
載の易焼結性窒化アルミニウム粉末の製造方法。
[Claims] 1. Adding at least one powder of rare earth element compound to a mixture of aluminum hydroxide powder and carbon powder or a substance that produces carbon powder at high temperature,
Next, a method for producing easily sinterable aluminum nitride powder, which comprises firing in a non-oxidizing atmosphere containing nitrogen. 2. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein an alkaline earth element compound is further added in addition to the rare earth element compound. 3. Claim 1, wherein the compound is a carbonate, oxide, nitride, boride, or halide
A method for producing easily sinterable aluminum nitride powder as described in 1. 4 For 1 part by weight of aluminum hydroxide powder,
Claim 1, wherein the carbon powder is 0.2 to 2.0 parts by weight and the additive compound powder is 0.005 to 1.0 parts by weight.
A method for producing easily sinterable aluminum nitride powder as described in 1. 5. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the firing temperature is 1300 to 1850°C. 6. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the carbon powder and the additive compound powder both have an average particle size of 1.0 μm or less.
JP59274481A 1984-12-28 1984-12-28 Preparation of easily sinterable aluminum nitride powder Granted JPS61155210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274481A JPS61155210A (en) 1984-12-28 1984-12-28 Preparation of easily sinterable aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274481A JPS61155210A (en) 1984-12-28 1984-12-28 Preparation of easily sinterable aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS61155210A JPS61155210A (en) 1986-07-14
JPH04923B2 true JPH04923B2 (en) 1992-01-09

Family

ID=17542290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274481A Granted JPS61155210A (en) 1984-12-28 1984-12-28 Preparation of easily sinterable aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS61155210A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651561B2 (en) * 1986-04-11 1994-07-06 住友電気工業株式会社 Aluminum nitride powder
CA1329461C (en) * 1987-04-14 1994-05-17 Alcan International Limited Process of producing aluminum and titanium nitrides
US5080879A (en) * 1988-12-01 1992-01-14 Alcan International Limited Process for producing silicon carbide platelets and the platelets so produced
DE4020905A1 (en) * 1990-06-30 1992-03-05 Hoechst Ag METHOD FOR PRODUCING ALUMINUM NITRIDE
US5190738A (en) * 1991-06-17 1993-03-02 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616104A (en) * 1984-06-19 1986-01-11 Tokuyama Soda Co Ltd Manufacture of aluminum nitride powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616104A (en) * 1984-06-19 1986-01-11 Tokuyama Soda Co Ltd Manufacture of aluminum nitride powder

Also Published As

Publication number Publication date
JPS61155210A (en) 1986-07-14

Similar Documents

Publication Publication Date Title
EP0176737B1 (en) Process for production of readily sinterable aluminum nitride powder
US4073845A (en) High density high strength S13 N4 ceramics prepared by pressureless sintering of partly crystalline, partly amorphous S13 N4 powder
JPH0244787B2 (en)
EP0166073B1 (en) Aluminum nitride sintered body
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
JP3290686B2 (en) Method for producing aluminum nitride powder
US5055432A (en) Process for preparing a nitridable silicon-containing material having at least one densification aid including alumina, and the material resulting therefrom
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JPH04923B2 (en)
US5166106A (en) Silicon-containing material having at least one densification aid including alumina
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2962466B2 (en) Aluminum nitride sintered body
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0512287B2 (en)
JPH0575688B2 (en)
JPS62270468A (en) Aluminum nitride base sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPS6110073A (en) Aluminum nitride sintered body
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63147867A (en) Manufacture of silicon nitride sintered body