JPS616104A - Manufacture of aluminum nitride powder - Google Patents

Manufacture of aluminum nitride powder

Info

Publication number
JPS616104A
JPS616104A JP59124458A JP12445884A JPS616104A JP S616104 A JPS616104 A JP S616104A JP 59124458 A JP59124458 A JP 59124458A JP 12445884 A JP12445884 A JP 12445884A JP S616104 A JPS616104 A JP S616104A
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
carbon
fine
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59124458A
Other languages
Japanese (ja)
Other versions
JPH0454612B2 (en
Inventor
Kazuya Takada
和哉 高田
Toshihiko Nagata
俊彦 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP59124458A priority Critical patent/JPS616104A/en
Publication of JPS616104A publication Critical patent/JPS616104A/en
Publication of JPH0454612B2 publication Critical patent/JPH0454612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture high purity AlN powder by mixing a hydrolyzate of an organoaluminum compound with fine C powder in a liq. dispersion medium in a proper ratio, calcining the mixture in an atmosphere of N2, and removing the unreacted C by burning. CONSTITUTION:The hydrolyzable organoaluminum compound such as aluminum alkoxide is brought into contact with water or an org. solvent contg. water such as alcohol, and it is hydrolyzed optionally under heating. During or after the hydrolysis, the resulting hydrolyzate is mixed with fine C powder in a liq. dispersion medium such as alcohol in (1:0.36)-(1:2) weight ratio of Al2O3:C when expressed in terms of Al2O3. The mixtue is calcined at 1,400-1,800 deg.C in an atmosphere of N2 or NH3, and the unreacted C is removed from the resulting fine powder by heating at 600-900 deg.C in an atmosphere contg. O2 to obtain high purity fine AlN powder giving a sintered body having high heat conductivity, high light transmittance and high corrosion resistance.

Description

【発明の詳細な説明】 本発明は高純度窒化アルミニウム微粉末の製造方法に閂
する。特にその焼結体が高1−ずぺ導性、高透光性、高
耐食f[管の性状を一1iえる高純度窒化アルミニウム
tt粉末の製造方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for producing high purity aluminum nitride fine powder. In particular, this is a method for producing high-purity aluminum nitride TT powder whose sintered body has high conductivity, high light transmittance, and high corrosion resistance.

従来、9化アルミニウノ・微粉末の製造方法としては次
の2つの方法が知られている。、第1の方法は金用アル
ミニウム粉末を窒素又はアンモニアの雰囲気下、高温度
でつ素化し得られた窒化物を粉砕して窒化アルミニウム
粉末とする直接窒素化法といわれろ方法である。
Conventionally, the following two methods are known as methods for producing aluminum 9ide UNO fine powder. The first method is a direct nitriding method in which gold-grade aluminum powder is carbonized at high temperature in a nitrogen or ammonia atmosphere, and the resulting nitride is pulverized to obtain aluminum nitride powder.

第2の方法はアルミナとカーボン粉末とf−’4素又は
アンモニアの雰囲気下圧焼成し、得C)れた窒化物を酸
素を含む雰囲気下圧加熱し未反応カーボンを除去するア
ルミナ還元法といわれる方法である。前者の直接窒化法
は扮砕工稈をさけることが出来ないため得られる窒化ア
ルミニウム粉末は均一にならない欠点がある。また後者
は比較的粒度の揃った窒化アルSニウム粉末を巧える点
で直接窒化法よりも伜ねている。賛だ特閉昭59−50
008号忙よハげその焼結体VC透光性を与える窒化ア
ルミニウム粉末がアルミナ還元法で得られることが報告
されている。
The second method is an alumina reduction method in which alumina and carbon powder are calcined under pressure in an atmosphere of f-4 or ammonia, and the resulting nitride is heated under pressure in an atmosphere containing oxygen to remove unreacted carbon. This is the way to be exposed. The former direct nitriding method has the disadvantage that the resulting aluminum nitride powder is not uniform because it is not possible to avoid crushing. Furthermore, the latter method is superior to the direct nitriding method in that it can produce aluminum sulfur nitride powder with relatively uniform particle size. Special closure in 1988-1985
It has been reported that aluminum nitride powder, which provides VC translucency, can be obtained by an alumina reduction method.

本発明は特定の製造方法を選択することで熱伝導性、透
光性等の性状を更忙改良出来る高純度窒化アルSニウム
微粉末の製法を提供するものである。
The present invention provides a method for producing high-purity aluminum sulfur nitride fine powder, in which properties such as thermal conductivity and translucency can be further improved by selecting a specific production method.

[71ち、本発明は加水分解可能な有機アルミニウム化
合物を水又は含水有機溶媒と接触させ加水分解を行い、
該加水分解と同時に又は加水分解に次いで該加水分解物
をアルミナに換算してアルミナ対カーボンの重量比が1
=0.36〜1:2となるように液体分散媒体中でカー
ボン微粉末を混合し、該混合物を窒素又はアンモニアの
雰囲気中で焼成し、次いで得られた微粉末を酸素を含む
雰囲気下に600〜900℃の温度で加熱し未反応カー
ボンを除去する高純度窒化アルミニウム微粉末の製造方
法である。
[71] First, the present invention involves contacting a hydrolyzable organoaluminum compound with water or a water-containing organic solvent to hydrolyze it,
Simultaneously with the hydrolysis or subsequent to the hydrolysis, the hydrolyzate is converted into alumina and the weight ratio of alumina to carbon is 1.
Carbon fine powder is mixed in a liquid dispersion medium so that the ratio is 0.36 to 1:2, the mixture is fired in a nitrogen or ammonia atmosphere, and the obtained fine powder is then placed in an oxygen-containing atmosphere. This is a method for producing high-purity aluminum nitride fine powder by heating at a temperature of 600 to 900°C to remove unreacted carbon.

本発明で使用する加水分解可能な有機アルミニウム化合
物は特に限定されず公知の有機アルミニウム化合物、例
ズーげトリメチルアルミニウム、トリエチルアルミニウ
ム、ジエチルモノハロアルミニウム等のアルキルアルミ
ニウム;特にアルミニウムプロポキシド、アルミニウム
ブトギシド、アルミニウノ、千ノフ゛トキシジイノブロ
ポキシド等のアルミニウムアルコキシドが好適に使用出
来る。特にアルミニウムアルコキシドは後述する加水分
解反応2分散処置等の操作が容易1c実が1出来るだけ
でなく、得られる窒化アルミニウムう末の性状の改良が
特に良好であるのでエフ的にやも好適である。上記加水
分解可能な有機アルミニウム化合物けTKn水と反応さ
せても1いが、一般には有様溶媒に溶解又は分子7′1
.シて用いられる。、核有機溶専は有?グーアルミニウ
ム化合物を溶解又は分散するものでムねげ特に限定され
ず作用出来るが通常は石油エーテル。
The hydrolyzable organoaluminum compound used in the present invention is not particularly limited, and may be any known organoaluminum compound, such as alkylaluminum such as trimethylaluminum, triethylaluminum, diethylmonohaloaluminum; in particular, aluminum propoxide, aluminum butoxide. Aluminum alkoxides such as , aluminopropoxide, and 1,000-butoxydiinopropoxide can be suitably used. In particular, aluminum alkoxide is very suitable from a technical standpoint because it not only facilitates operations such as the hydrolysis reaction and dispersion treatment described below, but also improves the properties of the resulting aluminum nitride powder. . The above-mentioned hydrolyzable organoaluminum compound can be reacted with TKn water, but generally it is dissolved in a specific solvent or the molecules 7'1
.. It is used in various ways. , Do you have a nuclear organic solution specialty? It is a substance that dissolves or disperses aluminum compounds, and can act without particular limitation, but it is usually petroleum ether.

ヘキサン、ベンゼン、トルエン等の炭化水素類:メタノ
ール、エタノール、プロパツール。
Hydrocarbons such as hexane, benzene, toluene, etc.: methanol, ethanol, propatool.

インプロパツール等の脂肪族アルコール類等;四塩化炭
素等の塩素系溶剤等り″−好適である。
Aliphatic alcohols such as Impropatol; chlorinated solvents such as carbon tetrachloride are preferred.

特に上記アルコール類は後述する加水分解反応、カーボ
ンの分散処理等の操作が容易に実施出来るので好適であ
る。寸た有機アルミニウム化合物を溶解又は分散した有
機溶媒の濃度は有機アルミニウム化合物の種類、有機溶
媒の極部、後述する加水分解φ件等によって異なり一概
忙限定出来ないが一般にはアルミニウム化合物の濃度は
低い方が好ましい。しかしながら、アルミニウム化合物
の濃度b′−あまりに低くすぎると溶媒の使用量が著し
く増大するし、濃度が高すぎると反応の制御が難しくな
ったり取扱いが不便になる。従って通常はこれらを勘案
して適宜決定すればよいが一般にけ有機アルミニウム化
合物の濃度が50重量%以下、好−rしくは5〜40重
景%の範囲の濃度として使用するのが最も好ましい。
In particular, the above-mentioned alcohols are suitable because operations such as hydrolysis reaction and carbon dispersion treatment, which will be described later, can be carried out easily. The concentration of the organic solvent in which the small-sized organoaluminum compound is dissolved or dispersed varies depending on the type of the organoaluminum compound, the polarity of the organic solvent, the hydrolysis φ described below, etc., and cannot be absolutely determined, but in general, the concentration of the aluminum compound is low. is preferable. However, if the concentration b' of the aluminum compound is too low, the amount of solvent used will increase significantly, and if the concentration is too high, it will be difficult to control the reaction and it will be inconvenient to handle. Therefore, the concentration of the organoaluminum compound may be determined as appropriate in consideration of these factors, but it is generally most preferable to use the organoaluminum compound at a concentration of 50% by weight or less, preferably in the range of 5 to 40% by weight.

有機アルミニウム化合物は水兄Z−よ含水有機溶媒と混
合して加水分解を行う。該有機溶8け前記の本のが/F
!FK限定されず使用出来るが最も奸才しいのけアルコ
ール溶液である。上記含水アルコール溶液を用いるとき
け、アルコールとしては前記脂肪族アルコール類が好適
に使mされる。寸をアルゴール着液釦含まれろ水の台は
有機アルミニラj・化合?″′Iシ加水分解するに十分
な量であJlげよく、1+!】水分痘条件、その他の8
ft−笠1て応じて予め決定して用い+1げよい。オた
必要に応[ソ+:I’!’:外f、了ヤ促進すせるtめ
アソ把ニア、アミン−ゞのア戸・プ7り性化合物或いは
硝ρ、塩r1勺、F1ρ′、)の矧、j−テ等の加水分
解促進剤を用いることもできろ。
The organic aluminum compound is mixed with a water-containing organic solvent to perform hydrolysis. The organic solution 8 is from the above book /F
! Although it can be used without being limited to FK, it is the most clever alcohol solution. When using the above-mentioned hydroalcoholic solution, the above-mentioned aliphatic alcohols are preferably used as the alcohol. Is the algol liquid contact button included and the water stand made of organic alumina/compound? ``'It's enough to hydrolyze it, 1+!] Varicella conditions, other 8
+1 is determined in advance and used according to ft-kasa1. Ota as needed [S+:I'! ':Hydrolysis of external compounds, amines, salts, salts, F1ρ', etc. You can also use accelerators.

上記加水分解は一帥に如ハする秤!1水分解反応が早い
ので加温状倶で実雄するのう−fj−f 4しく例えば
25℃〜浬合溶がtのrb小の口1“1:がらSべげよ
い。壕だ加水分解反応けしげし番−v、1合溶、Mtを
41を打丁に実ハすへC萌鍾T1しく、4!?に粒子径
をJ/1−に換えるにはiへ度な12拌が有効な場合が
多い。更にまた加水分解によって得られる粒子の粒子径
は有機アルミニウム化合物の濃度、溶媒の種類等によっ
ても影響をうけるので、これらのφ件は必要な粒子径に
応じて予め実験室的に決定しておくと好適である。
The above hydrolysis is a scale that can be done in one step! 1 The water decomposition reaction is fast, so it can be done in a heated state. Reaction number - v, 1 mixture, Mt to 41 to 41 to 1, C moejo T1, 4!? To change the particle size to J/1-, i should be stirred 12 times. Furthermore, the particle size of the particles obtained by hydrolysis is also affected by the concentration of the organoaluminum compound, the type of solvent, etc., so these parameters should be determined in advance in the laboratory according to the required particle size. It is preferable to decide on this in advance.

以ド余白 前記方法によって得られる有機アルミニウム化合物の加
水分解物は直接窒化法或いはアルミナ還元法等の公知の
方法で得られる窒化アルミニウム中の不純物が原料に基
因して不可避的に含呼れて来るのに比べて著しく不純物
の少ないものとなる。またその粒子径は051Im以下
で1μm以下の粒子のものが全体の少くとも90容量%
を占める非常圧粒子径が揃ったものを得ることも出来る
。このような性状は窒化アルミニウム焼結体を得る場合
の焼結性の向上、焼結体に与える性状例えば熱伝導性、
透光性等の改良に大きな影響を有する。
The hydrolyzate of an organoaluminum compound obtained by the above method inevitably contains impurities in aluminum nitride obtained by a known method such as a direct nitriding method or an alumina reduction method due to the raw material. It has significantly less impurities than the original. In addition, the particle size is 051Im or less, and particles with a particle size of 1μm or less account for at least 90% by volume of the total.
It is also possible to obtain particles in which the extreme pressure particle diameters occupying the entire range are uniform. Such properties improve the sinterability when obtaining an aluminum nitride sintered body, and improve the properties imparted to the sintered body, such as thermal conductivity,
It has a great influence on improving translucency etc.

本発明にあっては前記加水分解と同時に又は加水分解反
応いで前記加水分解物とカーボンとを混合することが必
須の工程である。この場合カーボンの混合割合は前記加
水分解物をアルミナ圧換算しアルミナ対カーボンが重量
比で1 : 0.36〜1:2、好ましくは1:0.4
〜1:1の範囲から選ぶのが好適である。
In the present invention, it is an essential step to mix the hydrolyzate and carbon simultaneously with the hydrolysis or during the hydrolysis reaction. In this case, the mixing ratio of carbon is such that the weight ratio of alumina to carbon is 1:0.36 to 1:2, preferably 1:0.4 when the hydrolyzate is converted to alumina pressure.
It is preferable to select from the range of ~1:1.

カーボンの使用量が上記範囲より少ない場合は後述する
還元反応が十分に進行しないし、多すぎると未反応のカ
ーボンを除去するために必要以上の時間がかかるので好
プしくない。
If the amount of carbon used is less than the above range, the reduction reaction described below will not proceed sufficiently, and if it is too large, it will take more time than necessary to remove unreacted carbon, which is not preferred.

上記カーボンを有機アルミニウム化合物の加水分解物と
出来るだけ均−VCffi合する手段としては前記有機
アルミニウム化合物の煽水分解反応系にカーボン粉末を
存在させて加水分解物が沈澱すると同時にカーボンが共
沈するようにするのが好ましい。この場合は液体分散媒
体として前記加水分解反応系の有機溶媒、アルコール、
水又はこれらの温合溶液がそのまま使用出来る。また前
記加水分解反応に次いで該加水分解物とカーボンを混合
するときは、該加水分解反応が終了した反応系に必要量
のカーボンを添加し混合するか、該加水分解物を濾別後
側に用意した液体分散媒体中で両者を混合すればよい。
As a means of combining the above-mentioned carbon with the hydrolyzate of the organoaluminum compound as uniformly as possible, carbon powder is present in the agitated water decomposition reaction system of the organoaluminum compound, and at the same time as the hydrolyzate is precipitated, carbon is co-precipitated. It is preferable to do so. In this case, as the liquid dispersion medium, the organic solvent of the hydrolysis reaction system, alcohol,
Water or a warm solution of these can be used as is. In addition, when mixing the hydrolyzate and carbon after the hydrolysis reaction, the required amount of carbon is added to the reaction system after the hydrolysis reaction is completed, or the hydrolyzate is added to the side after filtration. Both may be mixed in a prepared liquid dispersion medium.

後者の態様忙於ける液体分散媒体としては特に限定され
ず公知の液体分散0体例えば水、炭化水素、脂肪族アル
コール又はこれらのm合物等が使用出来る。
The liquid dispersion medium used in the latter embodiment is not particularly limited, and any known liquid dispersion medium such as water, hydrocarbons, aliphatic alcohols, or mixtures thereof can be used.

本発明においては前記有機アルミニウム化合物の加水分
解反応及び加水分解物とカーボンの混合をいずれも液状
で実施することが極めて重要なことである。特忙後者の
混合形態を液状で実施することはアルミニウム成分とカ
ーボン成分とが極めて均質に混合され、窒化アルミニウ
ムの反応性に大きな影響を勾えるだけでなく、窒化アル
ミニウム中の不紳物の混入を最小限にとどめることが出
来る利点を与える。しかも上記液状での混合即ち湿式混
合方式を採用することにより、原料粒子が凝集して粗大
化する傾向を防ぐことが出来るので後述する窒素化によ
って得られる窒化アルミニウム粉末はそれ自体細粒子で
、粒子の揃ったものとなるため得られる窒化アルミニウ
ムを粉砕する必要はなく、そのit焼結することが出来
るのである。この粉砕工程を省くことが出来る利点は工
業的に貴重な役割をはたす。例えば本発明に於いては粉
砕中Kff1人する不純物を完全忙阻止出来、粉砕中に
窒化アルミニウムの表面が酸化されて酸素含有量が増加
することを完全に防ぐことが出来るので窒化アルミニウ
ム中の不紳物の量も極めて少な(なるのである。
In the present invention, it is extremely important that the hydrolysis reaction of the organoaluminum compound and the mixing of the hydrolyzate and carbon are both carried out in liquid form. If the latter mixing form is carried out in liquid form, the aluminum component and carbon component will be mixed extremely homogeneously, which will not only greatly affect the reactivity of aluminum nitride, but also cause the contamination of undesirable substances in aluminum nitride. This gives the advantage of being able to minimize the Moreover, by adopting the above-mentioned mixing in liquid form, that is, the wet mixing method, it is possible to prevent the raw material particles from agglomerating and becoming coarse. Therefore, the aluminum nitride powder obtained by nitrification, which will be described later, itself has fine particles. Since the resulting aluminum nitride has uniform properties, it is not necessary to crush the obtained aluminum nitride, and it can be sintered. The advantage of being able to omit this pulverization step plays a valuable role industrially. For example, in the present invention, it is possible to completely prevent impurities from occurring during grinding, and it is possible to completely prevent the surface of aluminum nitride from being oxidized and the oxygen content to increase during grinding, so that impurities in aluminum nitride can be completely prevented. The amount of gentleman's clothing is also extremely small.

本発明に於ける前記湿式混合を実施する際は、窒化アル
ミニウムに焼成したのちにも残存する不純物成分の混入
を避けることが出来る材質の装置中で実施するのがよい
。一般忙該湿式混合は常温、常圧下で実施することがで
き、温度及び圧力によって悪影響をうけることはない。
When carrying out the wet mixing in the present invention, it is preferable to carry out the wet mixing in an apparatus made of a material that can avoid mixing of impurity components that remain even after aluminum nitride is fired. In general, wet mixing can be carried out at normal temperature and pressure, and is not adversely affected by temperature and pressure.

寸た混合装置としては材質から焼成後においても残存す
る不純物成分を生じないものを選ぶ限り公知の装置2手
段を採用しつる。例えば温合装置として球状物又は棒状
物を内臓したミルを使用するのが一般的であるが、ミル
の内壁、球状物又は棒状物等の材質は、得られる窒化ア
ルミニウム中に焼成後においても残存する不純物成分が
混入するのを避けるために、窒化アルミニウド自身ある
いは99.9重量%以上の高純度アルミナとするのが好
ましい。また温合装置の原料と接する面を全てプラスチ
ックス製とするかプラスチックスでコーティングとする
こともでき−る。該プラスチックスとしては特に限定さ
れず例えばポリエチレン、ポリプロピレン、ナイロン、
ポリエステル、ポリウレタン等が使用出来る。この場合
、プラスチックス中には安定剤として種々の金属成分を
含む場合があるので、予めチェックして使用するよう忙
すべきである。
As long as a small mixing device is selected that does not produce any impurity components remaining even after firing, considering the material, two known devices are employed. For example, it is common to use a mill with built-in spheres or rods as a warming device, but the inner walls of the mill, the materials of the spheres or rods, etc. remain in the resulting aluminum nitride even after firing. In order to avoid contamination with impurity components, it is preferable to use aluminum nitride itself or high purity alumina of 99.9% by weight or more. Furthermore, all surfaces of the warming device that come into contact with the raw material may be made of plastic or may be coated with plastic. The plastics are not particularly limited, and include, for example, polyethylene, polypropylene, nylon,
Polyester, polyurethane, etc. can be used. In this case, plastics may contain various metal components as stabilizers, so be sure to check them before use.

本発明釦於いて原料として使用するカーボン微粉末は灰
分の含有−歌が置火0.2賞賛%、好寸しくけ最大0.
1重量%の純度のものとして用いるのが好ましい。また
該カーボンの平均粒子径1d得られる窒化アルミニウム
の粒子径(で影響を与えるので、平均粒子径が1μm以
下の微粒子として用いるのが好すしい。該カーボンとし
てはカーボンブラック、黒鉛化カーボンブラック等が使
用されつるh−1−4にはカーボンブラックが最も好貫
しい。
The fine carbon powder used as a raw material in the button of the present invention has an ash content of 0.2%, and a maximum of 0.2%.
It is preferable to use it with a purity of 1% by weight. In addition, since the average particle size of the carbon (1d) affects the particle size of the aluminum nitride obtained, it is preferable to use fine particles with an average particle size of 1 μm or less. Examples of the carbon include carbon black, graphitized carbon black, etc. Carbon black is most preferred for h-1-4.

前記湿式#1合された原料は必要により濾別及び/又は
乾燥又は加熱脱水を経て、窒素又はアンモニアの雰囲気
下に1400〜1800Cの温度で焼成する。該焼成温
度が上記温度より低い場合は工業的に十分な還元窒素化
反応が進行しないので好ましくない。また該焼成温度が
前記温度より高くなると得られる窒化アルミニウムの一
部が焼結を起し、粒子間の凝集が起るため目的の粒子径
の窒化アルミニウムが得られ難くなるので好ましくない
The wet #1 combined raw materials are filtered and/or dried or dehydrated by heating if necessary, and then fired at a temperature of 1400 to 1800 C in a nitrogen or ammonia atmosphere. If the calcination temperature is lower than the above temperature, the reduction and nitrogenation reaction will not proceed industrially sufficiently, which is not preferable. Furthermore, if the firing temperature is higher than the above temperature, a portion of the aluminum nitride obtained will sinter, causing agglomeration between particles, making it difficult to obtain aluminum nitride having the desired particle size, which is not preferable.

焼成により得られた窒化物微粒子は、本発明によれば次
いで酸素を含む雰囲気下で600〜900 ℃の温度で
加熱処理され、該窒化物微粒子に含まれる未反応のカー
ボンを酸化して除去にする工程に付される。上記酸化温
度が上記下限値より低い場合は未反応カーボンの除去に
長時間を要するので工業的に不利となり、逆に上記温度
が上限値を越えると窒化アルミニウムの表面が酸化され
、得られる窒化アルミニウム中の酸素含有量が多くなり
、種々の性状を悪化させる原因となるので好ましくない
According to the present invention, the nitride fine particles obtained by firing are then heat-treated at a temperature of 600 to 900°C in an oxygen-containing atmosphere to oxidize and remove unreacted carbon contained in the nitride fine particles. It is subjected to a process of If the oxidation temperature is lower than the lower limit, it will take a long time to remove unreacted carbon, which is industrially disadvantageous; if the temperature exceeds the upper limit, the surface of the aluminum nitride will be oxidized, resulting in aluminum nitride. This is not preferable because the oxygen content increases, causing deterioration of various properties.

このようにして得られた窒化アルミニウムは従来の窒化
アルミニウムに比べると不純物の含有量が極めて少なく
窒化アルミニウム焼結体の種々の物性例えば熱伝導性、
透光性等を箸しく改良することが出来る。例えば本発明
で得られる窒化アルミニウム中のAtN含有景は97重
重景以上、結合酸素含有量は1.5重量%以下、アルミ
ニウム以外の他の金属成分の含有量は金属として0.1
重量%以下好ましくけ0.05重重景以下となる。
The aluminum nitride obtained in this way has an extremely low content of impurities compared to conventional aluminum nitride, and has various physical properties of the aluminum nitride sintered body, such as thermal conductivity,
Translucency etc. can be significantly improved. For example, the AtN content in aluminum nitride obtained in the present invention is 97% or more, the combined oxygen content is 1.5% by weight or less, and the content of other metal components other than aluminum is 0.1% by weight as a metal.
It is preferably less than 0.05% by weight.

また、本発明で得られる窒化アルミニウム徽粉末は平均
粒子径が211m以下である。平均粒子径htこれより
大きいと焼結性が低下する傾向が大きくなる。本発明の
窒化アルミニウム徽粉末は好寸しくは平均粒子径が2μ
m以下で且つ粒径511m以下の粒子を80容量%以上
の割合で含有する。
Further, the aluminum nitride powder obtained in the present invention has an average particle diameter of 211 m or less. If the average particle diameter ht is larger than this, there is a greater tendency for sinterability to deteriorate. The aluminum nitride powder of the present invention preferably has an average particle size of 2 μm.
Contains particles with a diameter of 511 m or less in a proportion of 80% or more by volume.

本発明の窒化アルミニウムは上記のhn<極めて高純度
であり、例えば結合酸素含量は好ましくけ最大1.0重
量%である。従来、結合酸素含量が2重量%より小ない
窒化アルミニウム微粉末は焼結性h″−−充分く、良好
な悸結性を得るためには結合酸素含量が少くとも2重量
%必要であると信じらねていた技術水準を考慮すると、
本発明の高密度窒化アルミニウム倣粉末が優れた焼結性
を示すことは真に意外なことである。
The aluminum nitride of the present invention has a very high purity, hn<the above, for example, the combined oxygen content is preferably at most 1.0% by weight. Conventionally, fine aluminum nitride powders with a combined oxygen content of less than 2% by weight have been found to have sufficient sintering properties, and in order to obtain good sinterability, a combined oxygen content of at least 2% by weight is required. Considering the level of technology that I didn't believe in,
It is truly surprising that the high density aluminum nitride mimic powder of the present invention exhibits excellent sinterability.

本発明によれば、本発明の高純度窒化アルミニウム徽粉
末から高純度且つ高密度の窒化アルミニウム焼結体が提
供される。そのような窒化アルミニウムの焼結体は、本
発明の高純度窒化アルミニウム倣粉末を成形し、得られ
た成形体を1700〜2100℃の温度で不活性雰囲気
下で暁結し、窒化アルミニウム焼結体を生成せしめるこ
とによって製造される。
According to the present invention, a high-purity and high-density aluminum nitride sintered body is provided from the high-purity aluminum nitride powder of the present invention. Such a sintered body of aluminum nitride is produced by molding the high-purity aluminum nitride imitation powder of the present invention and sintering the resulting molded body in an inert atmosphere at a temperature of 1700 to 2100°C. Manufactured by making the body generate.

上記窒化アルミニウム焼結体は焼結助剤を存在させて焼
結を実施する方法によっても製造することが出来る。上
記焼結助剤は特に限定的ではなく公知のものが使用出来
る。一般に好適忙採用される代表的り焼結助剤はアルカ
リ土類金属、ランタン族金汽およびイツト17ウムより
なる群から選ばれた少くともIF!の金属のホ体又けそ
の酸化物で、−膜圧け0.01〜5重量%を添加すると
よい。上記焼結助剤社本発明の窒化アルミニウム粉末を
製造するときの、有機アルミニウム化合物の加水分解工
程、カーボンの添加工程等の工程で添加し、得られる9
化アルミニウム粉末中に焼結助剤が含量れた製品とする
ことも出来る。
The aluminum nitride sintered body can also be manufactured by a method in which sintering is performed in the presence of a sintering aid. The above-mentioned sintering aid is not particularly limited, and known ones can be used. Typical sintering aids that are commonly employed are at least IF selected from the group consisting of alkaline earth metals, lanthanum metals, and metals. It is preferable to add 0.01 to 5% by weight of the metal matrix or oxide of the metal. The above-mentioned sintering aid is added in the steps such as the hydrolysis step of the organic aluminum compound and the addition step of carbon when producing the aluminum nitride powder of the present invention.
It is also possible to produce a product containing a sintering aid in the aluminum chloride powder.

上記焼結助剤を含んだ窒化アルミニウム粉末は不活性雰
囲気下に1600〜2100℃の温度で焼結することに
より、前記の優れた窒化アルミニウム焼結体となる。
The aluminum nitride powder containing the above-mentioned sintering aid is sintered at a temperature of 1600 to 2100°C in an inert atmosphere to produce the above-mentioned excellent aluminum nitride sintered body.

壕だ前記焼結方法は特に限定されず公知焼結方法が採用
出来る。例えば20〜400Kf/Caの加圧下に実施
されるホットプ1/ス暁結法、1〜10気圧程度の3塁
ガス圧下で焼結されるガス圧焼結法、或いは実質的忙非
加圧下で実施される常圧焼結法が必要忙応じて採用され
うる。
The sintering method described above is not particularly limited, and any known sintering method can be employed. For example, the hot-press sintering method is carried out under a pressure of 20 to 400 Kf/Ca, the gas pressure sintering method is sintered under a third base gas pressure of about 1 to 10 atm, or the sintering method is performed under substantially no pressure. Pressureless sintering methods may be employed as needed.

このようにして得られた窒化アルミニウム焼結体はその
密度が3.LP/Cl11以上、好ましくけ3.2f/
−以上の優れた高密度焼結体となる。また該焼結体は熱
伝導度がすぐれており例えば100 W/m−K、好ま
しくは110W/m−に以上のものとなる。更に該焼結
体の透光性も例えば焼結体を厚さ0.5門に加工研摩し
たものの光透過率は6μmの波長に対して65%以上と
なる。
The aluminum nitride sintered body thus obtained has a density of 3. LP/Cl11 or more, preferably 3.2f/
- The result is an excellent high-density sintered body. Further, the sintered body has excellent thermal conductivity, for example, 100 W/m-K, preferably 110 W/m-K or more. Further, the light transmittance of the sintered body is, for example, a sintered body processed and polished to a thickness of 0.5 mm, and the light transmittance is 65% or more for a wavelength of 6 μm.

このようにして得られた焼結体は例えば高伝熱性セラミ
ックとして熱放出板、熱交換器材料、ステレオやビデオ
アンプ用の基板。
The sintered body thus obtained can be used, for example, as a highly heat conductive ceramic for heat dissipation plates, heat exchanger materials, and substrates for stereo and video amplifiers.

IC基板などとして利用される。プたその優れた透光性
を利用してランプの発光管や紫外線〜赤外線を用いるセ
ンサーの窓材料さらにけ電波遭遇性を利用した1/−ダ
ー用窓材料9高温での透光性を要求される特殊窓材料と
しての利用が可捕である。
Used as IC boards, etc. Utilizing its excellent translucency, it can be used as a window material for arc tubes of lamps and sensors that use ultraviolet to infrared rays.It can also be used as a window material for 1/- dars that utilizes radio wave encounterability.9 Translucency at high temperatures is required. It can be used as a special window material.

iだ本発明の窒化アルミニウム鉛末はサイアロン系材料
の原料として好逍忙イウ用され、α−8iQlon、β
−8ialon r AtNポリタイプの原料として従
来のAtNを用いては達成できなかった高純度で特性の
優れにサイアロン化合物を与える。
The aluminum lead nitride powder of the present invention has been successfully used as a raw material for sialon-based materials, including α-8iQlon, β
-8ialon r Provides a sialon compound with high purity and excellent properties that could not be achieved by using conventional AtN as a raw material for AtN polytype.

また本発明の窒化アルミニウム粉末は分散性の良い均一
な微粉末であるため、例えば炭化ケイ素などの各種セラ
ミフクスへの添加助削として、あるいけシリコーンゴム
等のポリマーとの複合体用粉末として効果的な作用シ有
する。
In addition, since the aluminum nitride powder of the present invention is a uniform fine powder with good dispersibility, it is effective as an additive to various ceramic materials such as silicon carbide, and as a powder for composites with polymers such as silicone rubber. It has a powerful effect.

」ゾ下木発明を実施例により詳細に説明する。” The invention will be explained in detail with reference to examples.

なお以下の実施例および比較例で用いた各種の分析法又
は分析装置は以下のものである。
The various analytical methods and analytical devices used in the following Examples and Comparative Examples are as follows.

炭素分析:金屑中炭素分析装置(葡場與作所製 FJ4
IA−3200) (2二分析:金へ中酸素分析装置(ル’y、254作所
5J  FMGA−150rl  ) 窒素分析:融解分所中和滴定法 X線回折装置:l:1本電子與JRX−12VB走査柳
責子顕徴璋:日本電子別jJsNイーT2o。
Carbon analysis: Carbon analysis device in gold scraps (manufactured by Yoba Yo Seisakusho, FJ4)
IA-3200) (22 analysis: Oxygen analyzer for gold (Le'y, 254 Works 5J FMGA-150rl) Nitrogen analysis: Melting fraction neutralization titration method X-ray diffraction device: 1 electron JRX -12VB scan Ryu Jianzi Hyeonchang: JEOL JJsN E T2o.

平均粒子径および粒度分布6!It定器:葡場製作所製
 CAPA−500 熱伝導搭(111宇装置:理学電e1/−ザー法熱穴a
列定装置 Ps−7 光透過¥、中11定装置:日立」作所製自記分光光度計
 330型 赤外分光光度計 2/>0−30型 プた、焼結体の光透過率は次の式で算出した。
Average particle size and particle size distribution 6! It measuring device: CAPA-500 made by Baeba Seisakusho Heat conduction tower (111 u) Equipment: Rigakuden e1/-ther method heat hole a
Column determination device Ps-7 Light transmission ¥, medium 11 Determination device: Hitachi Seisakusho self-recording spectrophotometer 330 type infrared spectrophotometer 2/>0-30 type Ps, the light transmittance of the sintered body is as follows Calculated using the formula.

ここで工。け入射光の強さ、1け透過光の強さ、Rは反
射率、tFi焼結体の厚み、μけ吸収係数である。lR
け焼結体の屈折率忙よって決オるもので屈折率をnとす
れば空気中のI11定でけRけ次式で表わされる。
Engineering here. R is the intensity of incident light, R is the intensity of transmitted light, R is the reflectance, thickness of the tFi sintered body, and μ is the absorption coefficient. lR
The refractive index of the sintered body is determined by the refractive index, and if n is the refractive index, it is expressed by the following formula with I11 constant in air.

(1)式中のμが焼結体の透光性を表す指標となるもの
で、後述の実施例において示したμの@け(1)式1(
従って計算した。
μ in the formula (1) is an index representing the translucency of the sintered body, and μ in the example below is shown in formula (1).
Therefore, it was calculated.

実施例 1 アルミニウムトリインプロポキシド (A t−(o−
iso 03H7)、 ) 20 Ofを1tのインプ
ロパツールに溶解した溶液を攪拌しつつ、2tの蒸留水
を添加し、1時間加水分解反応を行なうことにより、白
色の沈澱物を得た。尚、反応中の溶液温度は90℃に保
持した。得られた沈澱物を濾別後、80°Cで減圧乾燥
して得た粉体物201と、灰分0.08重量%で平均粒
子径が0.4571mのカーボンブラック10tとを、
ナイロン製ポットとナイロンコーティングしたボールを
用い、エタノールを液体分散媒として均一にボールミル
温合したう得られた混合物を乾燥後、高純度黒鉛製平皿
に入れ、電気炉内に窒素ガスを3t/minで連続的に
供給しながら1600℃の温度で6時間加熱した。、得
られた反応混合物を空気中で750℃の温度で4時間加
熱し、未反応のカーボンを酸化除去した。
Example 1 Aluminum triynepropoxide (A t-(o-
ISO 03H7), ) 20 Of was dissolved in 1 t of Improper Tool, and while stirring, 2 t of distilled water was added and a hydrolysis reaction was carried out for 1 hour to obtain a white precipitate. Note that the solution temperature during the reaction was maintained at 90°C. After filtering the obtained precipitate, powder material 201 obtained by drying under reduced pressure at 80 ° C. and 10 tons of carbon black with an ash content of 0.08% by weight and an average particle size of 0.4571 m,
Using a nylon pot and a nylon-coated ball, the resulting mixture was heated uniformly in a ball mill using ethanol as a liquid dispersion medium. After drying, the resulting mixture was placed in a high-purity graphite flat plate, and nitrogen gas was fed into an electric furnace at 3 t/min. The mixture was heated at a temperature of 1600° C. for 6 hours while being continuously supplied with water. The resulting reaction mixture was heated in air at a temperature of 750° C. for 4 hours to oxidize and remove unreacted carbon.

得られた白色の粉末はxM回折分析(Xraydiff
raction analysi6)  の結果、単相
(single phaSe )のAtNであった。寸
た該粉末の平均粒子径は1.20 thmであり、31
℃m以下が95容景%を占めた。走査型電子顕fa鏡に
よる観察ではこの粉末は平均CJ、7ttm程度の均一
な粒子であった。またこの粉末の分析の結果、不純物と
してcr + 81 、 Nl 。
The obtained white powder was subjected to xM diffraction analysis (Xraydiff
As a result of reaction analysis6), it was found to be single-phase (single phaSe) AtN. The average particle size of the powder was 1.20 thm, and 31
℃m or less accounted for 95% of the total. When observed using a scanning electron microscope, this powder was found to be uniform particles with an average CJ of about 7 ttm. Analysis of this powder also revealed impurities such as cr + 81 and Nl.

Fe等の金属が微量含まれる他に酸素が1.0重量%及
びCが0.05重素置含まれる極めて高純度の窒化アル
ミニウム粉末であった。
It was an extremely high purity aluminum nitride powder that contained trace amounts of metals such as Fe, as well as 1.0% by weight of oxygen and 0.05 weight percent of C.

このようにして得られた窒化アルミニウム粉末1.0グ
ラムを直径20門のBN(窒化ホウ素)でコーティング
した愚鉛ダイスに入れ高周波誘導加熱炉を用い1気圧の
窒素ガス中100に:i/−の圧力下で、2000℃の
温度で2時間ホットプレスした。得られた焼結体はやや
黄味を帯びたち密な半透明体であった。
1.0 g of the aluminum nitride powder thus obtained was placed in a lead die coated with BN (boron nitride) with a diameter of 20 and heated to 100 g in nitrogen gas at 1 atm using a high frequency induction heating furnace: i/- Hot pressing was carried out at a temperature of 2000°C for 2 hours under a pressure of . The obtained sintered body was a slightly yellowish, dense, semi-transparent body.

この焼結体の密度はろ、26t/cy4であり、又X線
回折分析によれは卑相(single phas’e)
のA /−Nであった。咬だこの焼結体の熱伝導率け1
10 W/m−にであり、この焼結体を厚さ0.5鯛に
加工研摩したものの光透過率F′!r、6μmの波長に
対して65%であった。また上記と同条件でホットプレ
スした直径401゜厚さ約5tP@の円相から切り出し
た約2.8X3×65朋の角柱状試料の6点曲は強度を
クロスヘッドスピード0.5間/min、スパン60−
q 、 1200℃の条件で同定した結果、平均48.
5にり/、−1纏であった。
The density of this sintered body is 26t/cy4, and X-ray diffraction analysis reveals that it is a single phase.
It was A/-N. Thermal conductivity of the sintered body of the bite is 1
10 W/m-, and the light transmittance of this sintered body processed and polished to a thickness of 0.5 mm is F'! r, 65% for a wavelength of 6 μm. In addition, 6-point bending of a prismatic sample measuring approximately 2.8 x 3 x 65 mm was cut from a circle with a diameter of 401° and a thickness of approximately 5 tP @ hot-pressed under the same conditions as above, and the strength was measured at a crosshead speed of 0.5 min/min. , span 60-
q, as a result of identification under the condition of 1200°C, the average was 48.
It was 5 years/, -1 piece.

実施例12 実施例1と同様な方法で得た窒化アルミニウム粉末(1
0f)lccaoとして0.2wt%となるよう(”a
(NOx )2 ・4 N20をエタノールを液体媒体
として加え、ポリエチレン刺の乳鉢中でポリエチレン製
の乳棒を用い溶合した。
Example 12 Aluminum nitride powder (1
0f) 0.2wt% as lccao ("a
(NOx)2.4N20 was added to ethanol as a liquid medium and mixed using a polyethylene pestle in a polyethylene mortar.

この混合物を乾燥後、実施例1と同条件でホットプレス
して直径20閂の焼結体を得た。
After drying this mixture, it was hot pressed under the same conditions as in Example 1 to obtain a sintered body with a diameter of 20 bars.

この焼結体の密度は5.27t/−であり、X線回折分
析によれば単相のAtNであった。
The density of this sintered body was 5.27 t/-, and according to X-ray diffraction analysis, it was single-phase AtN.

この焼結体の熱伝導率は95t/m−にであった。咬た
この焼結体を厚さ0.5−MIC加工研崖したものの光
透消宅は(5zrmの波長の光に対して42%であった
The thermal conductivity of this sintered body was 95 t/m-. The light transmission of a sintered body of octopus processed and polished to a thickness of 0.5-MIC was 42% for light with a wavelength of 5 zrm.

実施例 3 アルミニウムトリインプロポキシド2002を1tのイ
ンプロパツールに溶解した溶液圧、灰分0.08重重量
で平均粒子径が0.45ttmのカーボンブラック50
fを分散させ、これを攪拌しつつ、2tの蒸留水を添加
し、1時間加水分解反応を行なうことにより、アルミニ
ウム水和物とカーボンブラックの混合物スラリーを得た
。尚、反応中の溶液温度け90℃に保持した。
Example 3 Aluminum triimpropoxide 2002 was dissolved in 1 t of impropat tool at a solution pressure, carbon black 50 having an ash content of 0.08 weight and an average particle size of 0.45 ttm.
f was dispersed, 2 tons of distilled water was added while stirring, and a hydrolysis reaction was carried out for 1 hour to obtain a slurry of a mixture of aluminum hydrate and carbon black. The solution temperature during the reaction was maintained at 90°C.

以後の操作は焼成雰囲気をN2ガスに代えてNH3ガス
を用いた他は実施例1と同様にして窒化アルミニウム粉
末を得た。該粉末を実施例2と同様の条件で焼結した焼
結体の熱伝導率および5.5μmの光の透過率は各々1
08W/m−K 、 46%であった。
The subsequent operations were the same as in Example 1 except that NH3 gas was used instead of N2 gas for the firing atmosphere to obtain aluminum nitride powder. The thermal conductivity and the transmittance of light at 5.5 μm of the sintered body obtained by sintering the powder under the same conditions as in Example 2 were 1.
08W/m-K, 46%.

実施例 4 アルミニウムブトキシド°25n?を1Lのブタノール
忙ン容消した溶液を攪拌しつつ、j無酸によって。N2
に調整した蒸留水2tを添加し、室温で2時間加水分解
反応を行なうことにより、白色の沈澱物を得た。
Example 4 Aluminum butoxide °25n? Add 1 L of butanol to the solution with stirring and add no acid. N2
A white precipitate was obtained by adding 2 t of distilled water adjusted to 2 t and carrying out a hydrolysis reaction at room temperature for 2 hours.

咳沈澱物より、実施例1と同様の方法で、実施例1と同
様の性状を有する窒化アルミニウム粉末を得た。該粉末
を実施例2と同様の条件で焼結した焼結体の!伝導率お
よび5.5/Imの光の透過率は各々112 W/m−
K  。
Aluminum nitride powder having the same properties as in Example 1 was obtained from the cough precipitate in the same manner as in Example 1. A sintered body obtained by sintering the powder under the same conditions as in Example 2. The conductivity and the light transmission of 5.5/Im are each 112 W/m−
K.

徳山曹達株式会社Tokuyama Soda Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)加水分解可能な有機アルミニウム化合物を水又は
含水有機溶媒と接触させ加水分解を行い、該加水分解と
同時に又は加水分解に次いで該加水分解物をアルミナに
換算してアルミナ対カーボンの重量比が1:0.36〜
1:2となるように液体分散媒体中でカーボン微粉末を
混合し、該混合物を窒素又はアンモニアの雰囲気中で焼
成し、次いで得られた微粉末を酸素を含む雰囲気下に6
00〜900℃の温度で加熱し未反応カーボンを除去す
ることを特徴とする高純度窒化アルミニウム粉末の製造
方法。
(1) A hydrolyzable organoaluminum compound is brought into contact with water or a water-containing organic solvent to perform hydrolysis, and the weight ratio of alumina to carbon is determined by converting the hydrolyzate into alumina simultaneously with or after the hydrolysis. 1:0.36~
Fine carbon powder is mixed in a liquid dispersion medium at a ratio of 1:2, the mixture is fired in an atmosphere of nitrogen or ammonia, and the resulting fine powder is heated in an atmosphere containing oxygen for 6 hours.
A method for producing high-purity aluminum nitride powder, which comprises heating at a temperature of 00 to 900°C to remove unreacted carbon.
(2)加水分解可能な有機アルミニウム化合物がアルミ
ニウムアルコキシドである特許請求の範囲(1)記載の
製造方法。
(2) The production method according to claim (1), wherein the hydrolyzable organoaluminum compound is an aluminum alkoxide.
(3)有機溶媒がアルコールである特許請求の範囲(1
)記載の製造方法。
(3) Claims (1) in which the organic solvent is alcohol
) manufacturing method described.
(4)液体分散媒体がアルコールである特許請求の範囲
(1)記載の製造方法。
(4) The manufacturing method according to claim (1), wherein the liquid dispersion medium is alcohol.
(5)焼成が1400〜1800℃の温度で実施する特
許請求の範囲(1)記載の製造方法。
(5) The manufacturing method according to claim (1), wherein the firing is performed at a temperature of 1400 to 1800°C.
JP59124458A 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder Granted JPS616104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124458A JPS616104A (en) 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124458A JPS616104A (en) 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS616104A true JPS616104A (en) 1986-01-11
JPH0454612B2 JPH0454612B2 (en) 1992-08-31

Family

ID=14886016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124458A Granted JPS616104A (en) 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS616104A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146769A (en) * 1984-12-07 1986-07-04 ゼネラル・エレクトリツク・カンパニイ High heat conductivity ceramic body and manufacture
JPS61155210A (en) * 1984-12-28 1986-07-14 Toshiba Corp Preparation of easily sinterable aluminum nitride powder
JPS61183108A (en) * 1985-02-09 1986-08-15 Natl Inst For Res In Inorg Mater Preparation of fine powder of aluminium nitride
JPS61219763A (en) * 1984-11-26 1986-09-30 ゼネラル・エレクトリツク・カンパニイ High heat conductivity ceramic body and manufacture
JPS63151607A (en) * 1986-12-16 1988-06-24 Toyo Alum Kk Production of fine aluminum nitride powder
US4865830A (en) * 1988-01-27 1989-09-12 E. I. Du Pont De Nemours And Company Gas phase preparation of aluminum nitride
US4923691A (en) * 1988-06-23 1990-05-08 Hoechst Aktiengesellschaft Aluminum nitride powder and a process for the preparation thereof
JP2013209259A (en) * 2012-03-30 2013-10-10 Tokuyama Corp Method for producing metal nitride powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138898A (en) * 1978-04-21 1979-10-27 Toshiba Corp Production of silicon nitride powder
JPS5737523A (en) * 1980-08-19 1982-03-01 Mitsubishi Heavy Ind Ltd Compressing packer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138898A (en) * 1978-04-21 1979-10-27 Toshiba Corp Production of silicon nitride powder
JPS5737523A (en) * 1980-08-19 1982-03-01 Mitsubishi Heavy Ind Ltd Compressing packer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219763A (en) * 1984-11-26 1986-09-30 ゼネラル・エレクトリツク・カンパニイ High heat conductivity ceramic body and manufacture
JPH075374B2 (en) * 1984-11-26 1995-01-25 ゼネラル・エレクトリツク・カンパニイ Ceramic body with high thermal conductivity and manufacturing method thereof
JPS61146769A (en) * 1984-12-07 1986-07-04 ゼネラル・エレクトリツク・カンパニイ High heat conductivity ceramic body and manufacture
JPH075375B2 (en) * 1984-12-07 1995-01-25 ゼネラル・エレクトリツク・カンパニイ Ceramic body with high thermal conductivity and its manufacturing method
JPS61155210A (en) * 1984-12-28 1986-07-14 Toshiba Corp Preparation of easily sinterable aluminum nitride powder
JPH04923B2 (en) * 1984-12-28 1992-01-09 Tokyo Shibaura Electric Co
JPS61183108A (en) * 1985-02-09 1986-08-15 Natl Inst For Res In Inorg Mater Preparation of fine powder of aluminium nitride
JPH0456767B2 (en) * 1985-02-09 1992-09-09 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPS63151607A (en) * 1986-12-16 1988-06-24 Toyo Alum Kk Production of fine aluminum nitride powder
US4865830A (en) * 1988-01-27 1989-09-12 E. I. Du Pont De Nemours And Company Gas phase preparation of aluminum nitride
US4923691A (en) * 1988-06-23 1990-05-08 Hoechst Aktiengesellschaft Aluminum nitride powder and a process for the preparation thereof
JP2013209259A (en) * 2012-03-30 2013-10-10 Tokuyama Corp Method for producing metal nitride powder

Also Published As

Publication number Publication date
JPH0454612B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
Jin et al. Highly transparent AlON pressurelessly sintered from powder synthesized by a novel carbothermal nitridation method
US4948761A (en) Process for making a silicon carbide composition
JPS63123813A (en) Yttrium oxide ceramic product
CN102180675A (en) Process for preparing gamma-AlON powder by chemical coprecipitation and carbothermal reduction method
JPS616104A (en) Manufacture of aluminum nitride powder
JPH0474302B2 (en)
JPH0428645B2 (en)
JPH0362643B2 (en)
JPS6065768A (en) Aluminum nitrogen composition and manufacture
JPH0223496B2 (en)
JPS6060910A (en) Manufacture of aluminum nitride
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
CN114685170A (en) Method for synthesizing silicon carbide by microwave flash firing
KR880002226B1 (en) Method for preparing fine aluminum nitride powder
JPS5950008A (en) Aluminum nitride powder and its manufacture
JPH0416502A (en) Production of boron nitride
JPS616110A (en) Manufacture of silicon carbide
JPS616105A (en) Manufacture of aluminum nitride powder
JP2907367B2 (en) Method for producing crystalline silicon nitride powder
JPH02120214A (en) Production of aluminum nitride powder
JPS6222952B2 (en)
JPS638265A (en) Manufacture of composite sintered body
WO1992007805A1 (en) Aluminum nitride sinter and production thereof
JPH01103960A (en) Production of boron nitride sintered compact
JPS60180906A (en) Method for removing carbon powder from aluminum nitride powder