JPS63151607A - Production of fine aluminum nitride powder - Google Patents

Production of fine aluminum nitride powder

Info

Publication number
JPS63151607A
JPS63151607A JP29958786A JP29958786A JPS63151607A JP S63151607 A JPS63151607 A JP S63151607A JP 29958786 A JP29958786 A JP 29958786A JP 29958786 A JP29958786 A JP 29958786A JP S63151607 A JPS63151607 A JP S63151607A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
fine
powder
aln powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29958786A
Other languages
Japanese (ja)
Other versions
JP2521072B2 (en
Inventor
Yoshiki Hashizume
良樹 橋詰
Eikichi Uchimura
内村 栄吉
Hiroaki Ueshimo
上霜 浩昭
Yoshiteru Miyazawa
宮沢 吉輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP61299587A priority Critical patent/JP2521072B2/en
Publication of JPS63151607A publication Critical patent/JPS63151607A/en
Application granted granted Critical
Publication of JP2521072B2 publication Critical patent/JP2521072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Abstract

PURPOSE:To obtain fine AlN powder having excellent fluidity, by adsorbing a specific amount of a monohydric alcohol on the surface of the fine AlN powder. CONSTITUTION:Fine AlN powder and 0.05-3.0wt% 3-12C monohydric alcohol, e.g. isopropyl alcohol, and, if necessary, a sintering assistant, dispersing agent, etc., are dry blended or dry pulverized to adsorb the monohydric alcohol on at least the surface of the fine AlN powder. Since the fine AlN powder hardly contains residual carbon or oxygen impurity, a sintered material having a high thermal conductivity can be produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、窒化アルミニウム微粉末に関する。[Detailed description of the invention] Industrial applications The present invention relates to fine aluminum nitride powder.

従来の技術 窒化アルミニウム焼結体はアルミナの5〜10倍に達す
る高い熱伝導率を有する絶縁性セラミックスであり、I
C基板用材や高温構造材用として利用されつつある。
Conventional technology Aluminum nitride sintered bodies are insulating ceramics with high thermal conductivity reaching 5 to 10 times that of alumina.
It is being used as a material for C substrates and high-temperature structural materials.

窒化アルミニウム焼結体は、原料窒化アルミニウム粉末
を焼結助剤と混合後ホットプレス法によって焼結するか
または原料窒化アルミニウム粉末に焼結助剤、右別バイ
ンダー等を添加混合後成型し、脱バインダーを行い、次
いで不活性ガス中で常圧焼結又は加圧焼結してlyj造
される。
Aluminum nitride sintered bodies are produced by mixing raw aluminum nitride powder with a sintering aid and then sintering it using a hot press method, or by adding and mixing a sintering aid, a separate binder, etc. to the raw aluminum nitride powder, and then molding it. A binder is applied, and then pressureless sintering or pressure sintering is performed in an inert gas to produce LYJ.

窒化アルミニウム焼結体の物性が原料窒化アルミニウム
粉末の特性に大きく依存することは周知である。原料窒
化アルミニウム粉末の粒度が粗い場合には十分な密度を
有する焼結体が得られず、強度、熱伝導率等多くの面で
窒化アルミニウムの優れた特性を引き出づことができな
い。このため、窒化アルミニウム粉末の粒度はより細い
ことが望ましい。しかしながら、平均粒子径が2.0μ
以下程度の微粒子になると粒子同志が万しく凝集、付着
する結果、流動性が極めて低下し、粉末の貯蔵。
It is well known that the physical properties of aluminum nitride sintered bodies largely depend on the characteristics of the raw material aluminum nitride powder. If the particle size of the raw material aluminum nitride powder is coarse, a sintered body with sufficient density cannot be obtained, and the excellent properties of aluminum nitride cannot be brought out in many aspects such as strength and thermal conductivity. For this reason, it is desirable that the particle size of the aluminum nitride powder be finer. However, the average particle size is 2.0μ
When the particles become as fine as below, the particles tend to aggregate and adhere to each other, resulting in extremely low fluidity and storage of the powder.

計8.混合9w!送などの工程において排出不能。Total 8. Mixed 9w! It cannot be discharged during processes such as transportation.

器壁への固着、偏析などの各種問題が生じる。Various problems such as sticking to the vessel wall and segregation occur.

窒化アルミニウム微粉末の流動性を改善すべく、種々の
有機物質からなる表面処理剤を粒子表面にコーティング
して粉末の表面物性を改善する方法が提案されている。
In order to improve the fluidity of fine aluminum nitride powder, methods have been proposed in which the surface properties of the powder are improved by coating the surface of the particles with surface treatment agents made of various organic substances.

これらの有機物質は脱バインダ一工程で炭化せずに揮散
するものでなければならない。なぜならば、有機物質が
炭化して残留している窒化アルミニウム粉末を焼結さゼ
た場合には低い熱伝導率を有する焼結体しか得られない
からである。
These organic substances must be able to be volatilized without being carbonized in one step of debinding. This is because if the organic substance is carbonized and the remaining aluminum nitride powder is sintered, only a sintered body with low thermal conductivity can be obtained.

また、脱バインダ一工程で窒化アルミニウムを酸化する
ような表面処理剤の使用は避けなければならないことは
勿論であるが、シランカップリング剤、ブタンカップリ
ング剤のような金属化合物からなる表面処理剤も脱バイ
ンダー”工程後金属成分が残留し、熱伝導率の低下を引
き起すので好ましくない。
In addition, it goes without saying that the use of surface treatment agents that oxidize aluminum nitride in one step of debinding must be avoided, but surface treatment agents made of metal compounds such as silane coupling agents and butane coupling agents should be avoided. This is also undesirable because metal components remain after the binder removal process and cause a decrease in thermal conductivity.

発明が解決しようとする問題点 本発明の目的は、流動性に優れた窒化アルミニウム微粉
末を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to provide fine aluminum nitride powder with excellent fluidity.

本発明の目的は、窒化アルミニウム粉末の熱伝導性を低
下させることなく窒化アルミニウム粉末の流動性を改善
しうる表面処理剤を提供することにある。
An object of the present invention is to provide a surface treatment agent that can improve the fluidity of aluminum nitride powder without reducing its thermal conductivity.

問題ユを解決するための手 本発明の特徴は、表面処理剤として少なくとも1種の1
価アルコールを用いて窒化アルミニウム粉末の表面に少
なくと61種の1価アルコールを吸着させることにより
、窒化アルミニウム微粉末の流動性を改善することにあ
る。
A feature of the present invention is that at least one type of surface treatment agent is used as a surface treatment agent.
The object of the present invention is to improve the fluidity of fine aluminum nitride powder by adsorbing at least 61 types of monohydric alcohols onto the surface of aluminum nitride powder using the alcohol.

1価アルコールとしては、炭素数1〜18のアルコール
例えばメタノール、エタノール、n−プロパツール、イ
ソプロパツール、n−ブタノール。
Examples of monohydric alcohols include alcohols having 1 to 18 carbon atoms, such as methanol, ethanol, n-propanol, isopropanol, and n-butanol.

イソブタノール、ペンタノール、ヘキサノール。Isobutanol, pentanol, hexanol.

オクタツール、デカノール、ラウリルアルコールミリス
チルアルコール、パルミチルアル]−ル。
Octatool, decanol, lauryl alcohol, myristyl alcohol, palmityl alcohol.

ステアリルアルコール等を使用しうる。炭素数3〜12
の1価アルコールを使用することが望ましく、水の混入
がなく沸点の低いアルコールを使用することが特に望ま
しい。
Stearyl alcohol and the like can be used. Carbon number 3-12
It is desirable to use a monohydric alcohol, and it is particularly desirable to use an alcohol that is free from water contamination and has a low boiling point.

本発明の窒化アルミニウム微粉末では窒化アルミニウム
粉末の重量に対して0.05〜3.0ffl11%の1
価アルコールが吸着されている。吸着量が0,05重量
%未満では所望の流動性が得られず、吸@最好ましくな
い。
In the aluminum nitride fine powder of the present invention, 0.05 to 3.0 ffl11% of 1% of the weight of the aluminum nitride powder is used.
Alcohol is adsorbed. If the amount of adsorption is less than 0.05% by weight, the desired fluidity cannot be obtained and the adsorption is not the most preferable.

本発明の窒化アルミニウム微粉末は、所要mの少なくと
も1種の1価アルコールの共存下で窒化アルミニウム粉
末を乾式混合または乾式粉砕することによって12され
得る。このとき、焼結助剤例えばイツトリウム化合物や
カルシウム化合物、分散剤等を共存させてもよい。
The fine aluminum nitride powder of the present invention can be prepared by dry mixing or dry grinding aluminum nitride powder in the presence of a required amount of at least one monohydric alcohol. At this time, sintering aids such as yttrium compounds, calcium compounds, dispersants, etc. may be present.

宋−鷹一烈 本発明の非限定的実施例を示す。Song Dynasty - Taka Yi-rye 1 illustrates a non-limiting example of the invention.

(実施例 1) 平均粒子径5、5μの窒化アルミニウム粉末と0、5%
のイソプロピルアルコールを磁性ポットに入れ、振動ミ
ルにて15時間粉砕した(振幅8R。
(Example 1) Aluminum nitride powder with an average particle size of 5.5μ and 0.5%
of isopropyl alcohol was placed in a magnetic pot and ground in a vibrating mill for 15 hours (amplitude 8R).

vpI11120Orl)Ill )。粉砕終了後の窒
化アルミニウム微粉末は非常に流動性に優れていた。
vpI11120Orl)Ill). The fine aluminum nitride powder after pulverization had excellent fluidity.

〈実施例 2) 平均粒子径2.0μの窒化アルミニウム粉末と1、0%
のn−ブタノールをV型ブレンダーにて5時間混合した
。混合終了後の窒化アルミニウム粉末は処理前の窒化ア
ルミニウム粉末に比べて著しく流動性に優れていた。
<Example 2) Aluminum nitride powder with an average particle size of 2.0μ and 1.0%
of n-butanol was mixed in a V-type blender for 5 hours. The aluminum nitride powder after mixing had significantly better fluidity than the aluminum nitride powder before treatment.

(実施例 3〜5) 平均粒子径5.5μの窒化アルミニウム粉末を用い、表
面処理剤の種類及び濃度を変えて実施例1と同様にして
振動ミルにて粉砕した。
(Examples 3 to 5) Aluminum nitride powder having an average particle diameter of 5.5 μm was used and ground in a vibratory mill in the same manner as in Example 1, except that the type and concentration of the surface treatment agent were changed.

得られた窒化アルミニウム微粉末はいずれも非常に流動
性に優れていた。
All of the obtained aluminum nitride fine powders had excellent fluidity.

(比較例 1) 実施例1で製造した0、5%のイソプロピルアルコール
を吸着させた窒化アルミニウム微粉末を大気中105℃
で3時間加熱乾燥させた。乾燥後の窒化アルミニウム微
粉末の流動性は著しく低下していた。
(Comparative Example 1) Fine aluminum nitride powder adsorbed with 0.5% isopropyl alcohol produced in Example 1 was heated at 105°C in the air.
It was heated and dried for 3 hours. The fluidity of the aluminum nitride fine powder after drying was significantly reduced.

(比較例 2) 実施例2で用いた平均粒子径2.0μの窒化アルミニウ
ム粉末のみを■型ブレングーにて実施例2と同様にして
混合した。混合終了後窒化アルミニウムの多くがブレン
ダー壁面へ付着しており、また流動性も極めて乏しいも
のであった。
(Comparative Example 2) Only the aluminum nitride powder having an average particle diameter of 2.0 μm used in Example 2 was mixed in the same manner as in Example 2 using a ■-type blender. After the mixing was completed, most of the aluminum nitride adhered to the wall of the blender, and the fluidity was extremely poor.

(比較例 3〜5) 平均粒子径5.5μの窒化アルミニウム粉末を用い、表
面処理剤の種類を変えて実施例1と同様にして振動ミル
にて粉砕した。
(Comparative Examples 3 to 5) Aluminum nitride powder having an average particle size of 5.5 μm was used and ground in a vibratory mill in the same manner as in Example 1 except that the type of surface treatment agent was changed.

(実施例 6) 上記実施例及び比較例で(qられた窒化アルミニウム微
粉末について、下記試験を行った。
(Example 6) The following test was conducted on the aluminum nitride fine powder prepared in the above Examples and Comparative Examples.

試験結果を表に示す。The test results are shown in the table.

(試験項目及び試験方法) ■吸るm ■柳本製作所製元素分析装置CHNコーダーMT−3型
で測定し、粉砕もしくは混合時に添加した表面処理剤の
聞に換惇して示す。
(Test items and test methods) ■Suck m ■Measured using an elemental analyzer CHN coder MT-3 model manufactured by Yanagimoto Seisakusho, and is shown in terms of the surface treatment agent added during crushing or mixing.

■ 平均粒子径 窒化アルミニウム微粉末を分散媒中に超音波分散させた
後、■島)上製作所製遠心沈降式粒度分布測定装賀Sへ
−〇 P 2−20型で測定した。
(1) Average particle size After ultrasonically dispersing the aluminum nitride fine powder in a dispersion medium, (2) measuring the particle size using a centrifugal sedimentation type particle size distribution measurement model Soga S-P2-20 manufactured by Shima Kami Seisakusho.

■流動性 流動性の評価に圧縮度を測定した。圧縮度の値が低いほ
ど流動性は優れていることを示す。
■Fluidity The degree of compression was measured to evaluate the fluidity. The lower the value of the degree of compression, the better the fluidity.

圧縮度Cは■細用粉体工学研究所のパウダーテスターP
T−D型を用い、ゆるみ見掛比重Aと固め見掛比ff1
Pを測定し下記式にて算出した。
The degree of compression C is ■Powder Tester P from the Fine Powder Engineering Research Institute.
Using T-D type, loose apparent specific gravity A and hardened apparent ratio ff1
P was measured and calculated using the following formula.

C=100(P−A ) /P     [%]ゆるみ
見掛比重は、直径5.03Cj+、高さ5.03CIR
(容積100cc)の円筒容器へ24メツシユの篩を通
して上方から均一に供給し、上面をすり切って秤量する
ことにより求めた。
C=100(P-A)/P [%] Loose apparent specific gravity is diameter 5.03Cj+, height 5.03CIR
It was determined by uniformly feeding the sample from above into a cylindrical container (volume: 100 cc) through a 24-mesh sieve, cutting off the top surface, and weighing.

固め見掛比重は、上記容器の上に円筒のキャップをはめ
、この上縁まで粉末を加えて高さ 1.8c。
The apparent density of solidification is 1.8c by placing a cylindrical cap on top of the container and adding powder up to the upper edge.

からのタッピングを180回行い、キャップを外して上
面をすり切って秤量することにより求めた。
It was determined by tapping 180 times, removing the cap, scraping off the top surface, and weighing.

■脱脂性 窒化アルミニウム粉末10gを磁性ルツボに入れ、窒素
ガス気流中室温から400℃まで20時間で昇温加熱し
た。室温まで約5時間で冷却した試料について残留炭素
S麿を■堀場製作所製[旧^−2110型を用いて、ま
た酸素不純物濃度を同社製“セラミック中酸素、窒素分
析計E M G A −2800”を用いて測定した。
(10 g of degreasable aluminum nitride powder was placed in a magnetic crucible and heated in a nitrogen gas stream from room temperature to 400° C. over 20 hours. After cooling the sample to room temperature for about 5 hours, residual carbon was measured using Horiba's old Model 2110, and the oxygen impurity concentration was measured using Horiba's Ceramic Oxygen and Nitrogen Analyzer EMG A-2800. ” was used for measurement.

&貝Jυ引四 本発明では、0605〜3.0重量%の1価アルコール
を表面に吸着させることにより、非常に優れた流動性を
有する窒化アルミニウム微粉末を得ることができる。
In the present invention, aluminum nitride fine powder having extremely excellent fluidity can be obtained by adsorbing 0605 to 3.0% by weight of monohydric alcohol on the surface.

加えて、本発明の窒化アルミニウム微粉末には残留炭素
や酸素不純物が殆んど含まれていないので、本発明の窒
化アルミニウム微粉末を原料として高い熱伝導率を有す
る焼結体を製造することができる。
In addition, since the fine aluminum nitride powder of the present invention contains almost no residual carbon or oxygen impurities, it is possible to produce a sintered body with high thermal conductivity using the fine aluminum nitride powder of the present invention as a raw material. I can do it.

本発明の窒化アルミニウム微粉末は、1価アルコールの
共存下で窒化アルミニウム粉末を乾式混合または乾式粉
砕することにより穫めて簡単に且つ高い生産性で製造さ
れつる。
The fine aluminum nitride powder of the present invention can be easily produced with high productivity by dry mixing or dry grinding aluminum nitride powder in the presence of a monohydric alcohol.

Claims (1)

【特許請求の範囲】[Claims] (1)表面に少なくとも1種の1価アルコール0.05
〜3.0重量%が吸着していることを特徴とする窒化ア
ルミニウム微粉末。
(1) At least one monohydric alcohol 0.05 on the surface
A fine aluminum nitride powder characterized in that ~3.0% by weight is adsorbed.
JP61299587A 1986-12-16 1986-12-16 Aluminum nitride fine powder Expired - Lifetime JP2521072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299587A JP2521072B2 (en) 1986-12-16 1986-12-16 Aluminum nitride fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299587A JP2521072B2 (en) 1986-12-16 1986-12-16 Aluminum nitride fine powder

Publications (2)

Publication Number Publication Date
JPS63151607A true JPS63151607A (en) 1988-06-24
JP2521072B2 JP2521072B2 (en) 1996-07-31

Family

ID=17874561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299587A Expired - Lifetime JP2521072B2 (en) 1986-12-16 1986-12-16 Aluminum nitride fine powder

Country Status (1)

Country Link
JP (1) JP2521072B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164710A (en) * 1987-12-21 1989-06-28 Inax Corp Method for stabilizing aluminum nitride powder
US5352424A (en) * 1993-02-16 1994-10-04 The Dow Chemical Company Aluminum nitride powder having a reduced ammonia odor and a method for preparing the same
US5417887A (en) * 1993-05-18 1995-05-23 The Dow Chemical Company Reduced viscosity, organic liquid slurries of aluminum nitride powder
JP2006326572A (en) * 2005-04-28 2006-12-07 Fujifilm Holdings Corp Film forming method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616104A (en) * 1984-06-19 1986-01-11 Tokuyama Soda Co Ltd Manufacture of aluminum nitride powder
JPS61275112A (en) * 1985-05-30 1986-12-05 Nec Corp Recovering method for superfine aluminium nitride particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616104A (en) * 1984-06-19 1986-01-11 Tokuyama Soda Co Ltd Manufacture of aluminum nitride powder
JPS61275112A (en) * 1985-05-30 1986-12-05 Nec Corp Recovering method for superfine aluminium nitride particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164710A (en) * 1987-12-21 1989-06-28 Inax Corp Method for stabilizing aluminum nitride powder
US5352424A (en) * 1993-02-16 1994-10-04 The Dow Chemical Company Aluminum nitride powder having a reduced ammonia odor and a method for preparing the same
US5417887A (en) * 1993-05-18 1995-05-23 The Dow Chemical Company Reduced viscosity, organic liquid slurries of aluminum nitride powder
JP2006326572A (en) * 2005-04-28 2006-12-07 Fujifilm Holdings Corp Film forming method

Also Published As

Publication number Publication date
JP2521072B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
Lee et al. Effect of α to β (β') phase transition on the sintering of silicon nitride ceramics
KR101996695B1 (en) METHOD FOR MAKING A DENSE SiC BASED CERAMIC PRODUCT
JPH09175865A (en) Production of alpha-type silicon carbide powder composition and its sintered compact
JPS6363514B2 (en)
JP2525074B2 (en) Aluminum nitride granules and method for producing the same
US4023975A (en) Hot pressed silicon carbide containing beryllium carbide
CN115838290B (en) Pressureless liquid phase sintering silicon carbide ceramic and preparation method thereof
JP2001130972A (en) Silicon carbide powder, method for producing green body, and method for producing silicon carbide sintered body
JPH0159995B2 (en)
JPS63151607A (en) Production of fine aluminum nitride powder
JPH10194743A (en) Zirconia-alumina granule and its production
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
Yoshimura et al. Sintering of 6H (α)-SiC and 3C (β)-SiC powders with B 4 C and C additives
Assmann et al. Processing of Al2O3SiC composites in aqueous media
US5139719A (en) Sintering process and novel ceramic material
CN109206138B (en) Preparation method of silicon carbide particles with high sphericity
US5362691A (en) Sintered material based on Si3 N4 and processes for its production
US20060087063A1 (en) Process for preparing improved silicon carbide powder
KR20050122748A (en) Fabrication method of silicon nitride ceramics by nitrided pressureless sintering process
JPH0253388B2 (en)
JP2000169213A (en) Ceramic granule molding method
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JPH092879A (en) Aluminum nitride particle and its production
JPH10297970A (en) Production of silicon carbide-based sintered compact
JP3036830B2 (en) Sialon casting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term