JPH01164710A - Method for stabilizing aluminum nitride powder - Google Patents

Method for stabilizing aluminum nitride powder

Info

Publication number
JPH01164710A
JPH01164710A JP32431787A JP32431787A JPH01164710A JP H01164710 A JPH01164710 A JP H01164710A JP 32431787 A JP32431787 A JP 32431787A JP 32431787 A JP32431787 A JP 32431787A JP H01164710 A JPH01164710 A JP H01164710A
Authority
JP
Japan
Prior art keywords
powder
alkyl groups
aqn
treated
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32431787A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishii
宏 石井
Tetsuo Hata
哲郎 秦
Kenji Izumi
泉 賢次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP32431787A priority Critical patent/JPH01164710A/en
Publication of JPH01164710A publication Critical patent/JPH01164710A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Abstract

PURPOSE:To obtain aluminum nitride (AlN) powder highly stabilized to water and oxygen by chemically bonding >=5C alkyl groups to the surfaces ot fine AlN particles. CONSTITUTION:Water repellent >=5C, preferably >=8C alkyl groups are chemically bonded to the surfaces of fine AlN particles. In the case where higher alcohol (R-OH) is used as an alkylating agent, an esterification reaction represented by the formula takes place. The fine AlN particles having the chemically bonded alkyl groups are desirably dried after the unreacted alkyl compd., a solvent and other residue are removed with a nonaq. solvent. The alkyl groups produce the effect when bonded only by <= about 1wt.% of the amt. Al the AlN.

Description

【発明の詳細な説明】 利用分野 本発明は、焼結体用の材料等として有用であるチッ化ア
ルミニウム(以下に^QNと略称することがある)粉体
の水分や酸素に対する安定化法に関する。詳しくは、A
QN微粒子の表面に高級アルキル基を化学的に結合せし
めることによる、AQN粉体の耐湿安定化法に関する。
Detailed Description of the Invention Field of Application The present invention relates to a method for stabilizing aluminum nitride (hereinafter sometimes abbreviated as ^QN) powder, which is useful as a material for sintered bodies, against moisture and oxygen. . For details, see A.
This invention relates to a method for stabilizing the moisture resistance of AQN powder by chemically bonding higher alkyl groups to the surface of QN fine particles.

本発明は、例えばアルミナ等の不純物の混入を極度に回
避する必要のある高熱伝導性A12N焼結体用のAQN
粉体の安定化法として、特に有用である。
The present invention is an AQN material for high thermal conductivity A12N sintered bodies that require extremely high prevention of contamination with impurities such as alumina.
It is particularly useful as a method for stabilizing powders.

従来の技術および問題点 チッ化アルミニウム粉体は、大気中で熱力学的に極めて
不安定であり、特に微粉体は容易に酸素や水分と反応す
る。例えばAρN粉体は、30℃80%相対湿度雰囲気
下で40日程度保存するとkQN+3H20→AQ(O
n)3+ NH3の反応が進行して八り(O)]) 3
へと変化してしまう。このためAQN粉体を保存する場
合は、完全乾燥後に容器に密封するか、チッ素またはア
ンモニアガス雰囲気下で保管する必要があり、管理が困
難である。仮に貯蔵時に水酸化アルミニウムおよび/ま
たはアルミナ等への分解が実質的に防止できたとしても
、焼結体製造時の焼成前の諸工程において分解不純物が
ある程度は発生する。
Prior Art and Problems Aluminum nitride powder is thermodynamically extremely unstable in the atmosphere, and particularly fine powder easily reacts with oxygen and moisture. For example, when AρN powder is stored for about 40 days at 30°C and 80% relative humidity, kQN+3H20→AQ(O
n)3+ The reaction of NH3 progresses (O)]) 3
It changes to. Therefore, when AQN powder is stored, it must be completely dried and then sealed in a container or stored under a nitrogen or ammonia gas atmosphere, making management difficult. Even if decomposition into aluminum hydroxide and/or alumina can be substantially prevented during storage, decomposed impurities will still be generated to some extent during the various steps before firing during the production of the sintered body.

AQN粉体を耐湿安定化する方法としては、有機重合体
または分子量の大きい有機化合物にてAQN粉体を被覆
する(化学結合ではない)ことが提案されている。しか
し該被覆にはA(!Nff1の例えば10重量%以上の
有機重合体等を必要とし、有機不純物が過大量となるの
で焼結体材料粉として不適当と思考される。
As a method for stabilizing AQN powder against moisture, it has been proposed to coat AQN powder with an organic polymer or an organic compound with a large molecular weight (not through chemical bonding). However, the coating requires an organic polymer of, for example, 10% by weight or more of A(!Nff1), which results in an excessive amount of organic impurities, making it unsuitable as a sintered body material powder.

従って、A4N焼結体用のAQN粉体として、少量の処
理剤を用いて水酸化アルミニウムおよびアルミナ等の不
純物の生成を防止する方法が要望されている。
Therefore, there is a need for a method of preventing the formation of impurities such as aluminum hydroxide and alumina by using a small amount of processing agent as AQN powder for A4N sintered bodies.

問題点を解決するための手段 本発明者は、AQN微粒子の表面に水分#ホ#妻キに対
して反撲性であるアルキル基を直接におよび/または酸
素等の原子を介して化学的に結合せしめて、AQN微粒
子の表面を改質することによって上記の問題点を解決し
た。
Means for Solving the Problems The present inventor has proposed that an alkyl group that is anti-moisture resistant be chemically bonded directly and/or through atoms such as oxygen to the surface of AQN fine particles. At least, the above problems were solved by modifying the surface of AQN fine particles.

すなわち本発明によって、A(2N微粒子の表面に炭素
原子数5以上のそして更に好ましくは8以上のアルキル
基を化学的に結合せしめることを特徴とする、Al2N
粉体の安定化法が提供される。アルキル基を化学的に結
合させた後に、未反応のアルキル系化合物および溶媒等
の残存物を非水性溶剤にて除去しそして乾燥するのが望
ましい。なお、Al2N粒子の表面に化学結合したアル
キル基および7/またはアルキル誘導体基の量は、Af
2Nの量に対して通常は約1重量%以下で充分である。
That is, according to the present invention, A
A method for stabilizing a powder is provided. After chemically bonding the alkyl group, it is desirable to remove unreacted alkyl compounds and residual substances such as solvent using a non-aqueous solvent, and then dry the product. Note that the amount of alkyl groups and 7/or alkyl derivative groups chemically bonded to the surface of Al2N particles is Af
Usually less than about 1% by weight based on the amount of 2N is sufficient.

焼結時の有機不純物の観点からは、例えば約0.5重量
%以下または約0.3重量%以下であるのが好都合であ
りそして充分に効果的である。
From the point of view of organic impurities during sintering, less than about 0.5% by weight, or less than about 0.3% by weight, for example, is advantageous and fully effective.

上記のようにアルキル基を化学結合させるためのアルキ
ル化剤としては、−OH基または一〇−基と反応性であ
る炭素数5個以上のアルキル基を有する化合物が使用で
き4、そしてアルコール、アルキルアミン、脂肪酸等が
例示される。すなわち、IN粒子の表面は水分および酸
素にキって分解反応を生起し、少なくも部分的に 〕八
へ−01(またはンAQ−0−AQ;の水酸化物および
/または酸化物を形成している。これに該アルキル化剤
を反応せしめて、アルキル基を化学結合させる。例えば
、高級アルコール(R−〇il)をアルキル化剤として
使用する場合、下記のエステル化反応が生起する。
As the alkylating agent for chemically bonding an alkyl group as described above, a compound having an alkyl group having 5 or more carbon atoms that is reactive with an -OH group or a 10- group can be used4, and an alcohol, Examples include alkylamines and fatty acids. That is, the surface of the IN particles undergoes a decomposition reaction due to moisture and oxygen, and at least partially forms hydroxides and/or oxides of [AQ-0-AQ]. This is reacted with the alkylating agent to chemically bond the alkyl group.For example, when higher alcohol (R-〇il) is used as the alkylating agent, the following esterification reaction occurs.

ンAQ−OH+ROII →>A12− OR+ H,
0具体例 =4= 以下に実施例等によって、本発明を更に説明する。なお
、割合(%)等は特に指定しない限り重量による。
AQ-OH+ROII →>A12-OR+H,
0 Specific Examples = 4 = The present invention will be further explained below with reference to Examples. Note that ratios (%) etc. are based on weight unless otherwise specified.

例」− 市販のAQN粉[徳山曹達託製Fグレード(A)酸化金
属の還元窒化法によるもの、比表面積3.8m”/g1
50g、 1%のセチルアルコール[半井化学器特級試
薬]およびヘキサンを200mQをガラス容器中で軽く
混合し、オートクレーブを用いてヘキサンの臨界点付近
の約235℃、約30気圧にて加熱加圧処理を30分間
行い、そして放冷した。その後ヘキサンおよびアセトン
で該粉体を数回洗浄し、さらに120℃で6時間乾燥し
、未反応のセチルアルコールおよびアセトン、ヘキサン
を除いた。
Example - Commercially available AQN powder [F grade (A) manufactured by Tokuyama Soda Trust Co., Ltd., produced by the reduction nitridation method of metal oxide, specific surface area 3.8 m''/g1
Lightly mix 50 g, 1% cetyl alcohol [Hani Kagakuki special grade reagent] and 200 mQ of hexane in a glass container, and heat and pressurize the mixture using an autoclave at about 235°C, near the critical point of hexane, at about 30 atmospheres. was carried out for 30 minutes, and then allowed to cool. Thereafter, the powder was washed several times with hexane and acetone, and further dried at 120° C. for 6 hours to remove unreacted cetyl alcohol, acetone, and hexane.

第1図にkQNの原料粉と表面処理AQN粉のDTA(
示差熱分析)曲線を示す。処理脣N粉は、270℃付近
に発熱ピークが見られる。
Figure 1 shows the DTA of kQN raw material powder and surface-treated AQN powder (
Differential thermal analysis) curve is shown. The treated N powder shows an exothermic peak around 270°C.

第2図に未処理粉および処理AQN粉の赤外線吸収スペ
クトルを示す。これによれば該処理粉は2130cm−
’、 2050cm−’および1390cm−’付近に
C−11結合の吸収ピークが見られる。すなわち、該処
理粉は、AQN表面にてセチルアルコールとのエステル
化反応により該アルキル基と結合していることが認めら
れた。
FIG. 2 shows the infrared absorption spectra of untreated powder and treated AQN powder. According to this, the treated powder is 2130cm-
Absorption peaks of C-11 bonds are seen near 2050 cm-', 1390 cm-', and 1390 cm-'. That is, it was observed that the treated powder was bonded to the alkyl group on the AQN surface through an esterification reaction with cetyl alcohol.

また、TG(熱分析)によると表面に結合したアルキル
基は、0.26%であった。直鎖アルキル基の断面積を
20X 10””0m’(1分子あたり)、アボガドロ
数を6,02X 10”そしてアルキル基分子量を22
5.5とすると、アルキル基のAQN粒子の表面被覆率
は約36.6%であった(粉体の比表面積は、3.8m
2/g)。
Further, according to TG (thermal analysis), the amount of alkyl groups bonded to the surface was 0.26%. The cross-sectional area of the straight chain alkyl group is 20X 10""0m' (per molecule), Avogadro's number is 6.02X 10", and the alkyl group molecular weight is 22
5.5, the surface coverage of the alkyl group AQN particles was approximately 36.6% (the specific surface area of the powder was 3.8 m
2/g).

AQNの粒子表面が完全にはアルキル基で被覆されてい
ないが、アルキル基の炭素数が大きいため十分表面が疎
水性になる。一般には用いるアルキル基の炭素数が多い
ほど効果が大きく、炭素数が約5以上のものが有効とさ
れる。
Although the AQN particle surface is not completely covered with alkyl groups, the surface becomes sufficiently hydrophobic because the alkyl group has a large number of carbon atoms. Generally, the greater the number of carbon atoms in the alkyl group used, the greater the effect, and those having about 5 or more carbon atoms are considered effective.

乱ん 1N粉体として東芝セラミックス器製品(金属窒化法に
よるもの、比表面積1.9m”7g)を用いた。その他
は例Iと同様に実施して、粉体表面に該アルキル基が化
学結合したACN処理粉を得た。
Toshiba Ceramics products (produced by metal nitriding method, specific surface area: 1.9 m", 7 g) were used as the disordered 1N powder.Other steps were carried out in the same manner as in Example I, and the alkyl groups were chemically bonded to the powder surface. ACN-treated powder was obtained.

例」し 例2で用いた東芝セラミックス製AQN粉体を使用し、
そしてセチルアルコールのかわりにステアリルアミンを
使用し、その他は例1と同様に実施した。粉体表面に該
アルキル基が化学結合したAQN処理粉を得た。
Example: Using the Toshiba Ceramics AQN powder used in Example 2,
The same procedure as in Example 1 was carried out except that stearylamine was used instead of cetyl alcohol. An AQN-treated powder in which the alkyl group was chemically bonded to the powder surface was obtained.

外( 東芝セラミックス製のkQN粉体50g、  )ルエン
200mρおよびステアリルアミン1%を丸底フラスコ
に投じ、トルエンの沸点温度にて1時間還流法で加熱処
理を行った。加熱処理後に冷却し、トルエンとアセトン
で十分洗浄した後に、120℃で24時間乾燥した。粉
体表面に該アルキル基が化学結合したAσN処理粉を得
た。
50 g of kQN powder manufactured by Toshiba Ceramics, 200 mρ of toluene, and 1% stearylamine were placed in a round-bottomed flask, and heated under reflux at the boiling point temperature of toluene for 1 hour. After the heat treatment, it was cooled, thoroughly washed with toluene and acetone, and then dried at 120° C. for 24 hours. An AσN-treated powder in which the alkyl group was chemically bonded to the powder surface was obtained.

1足 本発明によって処理したAQN粉体および処理前のAQ
N粉について、耐湿性をテストした。
1 pair of AQN powder treated according to the present invention and AQ before treatment
N powder was tested for moisture resistance.

未処理AffN粉および実施例1による処理A12N粉
を、60℃80%R11の高温多湿雰囲気に置いて、A
QN粉体の耐湿性を調べた。第3図は、耐湿試験100
時間後の粉末のX線回折パターンである。未処理粉はA
(2Nのピークが小さく、AQ(OH)3のピークが表
れている。これに対し、該処理粉はAQNのピークのみ
が観察される。従って、本発明の処理AQN粉は、60
8C80%R11という条件下でも水と殆んど反応しな
いことが判明した。この条件は、工業的な原料の取扱い
工程にはない厳しいもので、十分すぎる程に耐湿性が改
善されていることを示す。
The untreated AffN powder and the treated A12N powder according to Example 1 were placed in a high temperature and humid atmosphere at 60°C and 80% R11.
The moisture resistance of QN powder was investigated. Figure 3 shows the moisture resistance test 100
Fig. 3 is an X-ray diffraction pattern of the powder after a period of time. Unprocessed powder is A
(The peak of 2N is small and the peak of AQ(OH)3 appears.On the other hand, only the peak of AQN is observed in the treated powder. Therefore, the treated AQN powder of the present invention has a
It was found that there was almost no reaction with water even under the conditions of 8C80%R11. These conditions are stricter than in industrial raw material handling processes, and show that the moisture resistance has been improved to a more than sufficient degree.

例6 比較のために、耐湿性に若干問題があることが知られて
いるチッ化珪素粉体を本発明の例1と同様に処理し、そ
の処理前のものおよび処理したものについて耐水性をテ
ストした。本発明の例1による処理AeN粉体および未
処理のAQI!粉に関する、耐水性テスト結果を対比し
て示す。AQN粉およびチッ化珪素粉の各未処理粉およ
び処理粉をそれぞれ100時間水中に分散させた後に、
X線分析にて結晶相を調べた。結果を下表に示す。
Example 6 For comparison, silicon nitride powder, which is known to have some moisture resistance problems, was treated in the same manner as in Example 1 of the present invention, and the water resistance of the untreated and treated powders was evaluated. Tested. Treated AeN powder according to Example 1 of the invention and untreated AQI! A comparison of water resistance test results regarding powder is shown below. After dispersing each untreated powder and treated powder of AQN powder and silicon nitride powder in water for 100 hours,
The crystal phase was examined by X-ray analysis. The results are shown in the table below.

3i3N、(東芝セラミックス製A−4053)   
5izN−相のみ   5isNt相のみすなわち、チ
ッ化珪素は耐湿耐水性のためには格別の処理を必要とし
ない程度であり、AQNの場合は本発明による処理が極
めて有用であることが 。
3i3N, (A-4053 manufactured by Toshiba Ceramics)
5izN-phase only 5isNt phase only, that is, silicon nitride does not require any special treatment for moisture resistance and water resistance, and in the case of AQN, the treatment according to the present invention is extremely useful.

明示される。be made explicit.

乱L(参考例) 例1および例2による処理Af2N粉体ならびに未処理
のA12N粉体について、水および有機溶剤に対する分
散性をテストした。水、トルエンおよびアセトンを用い
て、各粉末の5%の分散液を振とうおよび超音波分散に
より調製した。24時間静置して、分散状態を観察した
。第1表にその結果を示す。
Dispersion L (Reference Example) The treated Af2N powders according to Examples 1 and 2 and the untreated A12N powders were tested for dispersibility in water and organic solvents. A 5% dispersion of each powder was prepared using water, toluene and acetone by shaking and ultrasonic dispersion. The dispersion state was observed after being allowed to stand for 24 hours. Table 1 shows the results.

該処理粉は、水に浮いてなじまず、そしてアセトン、ト
ルエンには良く分散している。したがって、非水系で原
料を泥漿にする場合、分散が良くなり、使用する分散剤
を減らすことができる。また、泥漿濃度を上げることが
でき、コスト的にも有利である。
The treated powder does not float on water and is well dispersed in acetone and toluene. Therefore, when raw materials are made into a slurry in a non-aqueous system, the dispersion is improved and the amount of dispersant used can be reduced. In addition, the slurry concentration can be increased, which is advantageous in terms of cost.

−8〜 川(水、トルエンおよびアセトンに対する分散性)AQ
N微粒子表面上の分解反応によって生じた一0II基等
にアルキル基を化学結合させる表面処理によって、化学
結合したアルキル基が少量であっても該化学結合アルキ
ル基の作用によって、AQN粉体は水分および酸素に対
して極めて安定化される。
-8~ River (dispersibility in water, toluene and acetone) AQ
Through surface treatment in which alkyl groups are chemically bonded to 10II groups, etc. generated by decomposition reactions on the surface of N fine particles, even if the number of chemically bonded alkyl groups is small, the AQN powder retains moisture due to the action of the chemically bonded alkyl groups. and is highly stabilized against oxygen.

従って、アルミナ等の不純物の混入を極度にきらうAρ
N焼結体用のAσN粉体の安定化法として、非常に効果
的である。
Therefore, Aρ is extremely sensitive to contamination with impurities such as alumina.
This is a very effective method for stabilizing AσN powder for N sintered bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による処理AQN粉体および処理前の
AffN粉体の示差熱分析曲線を示す。第2図は、該処
理粉体および該未処理粉体の赤外線吸収スペクトルを示
す。第3図は、本発明による処理粉体および処理前の粉
体の耐湿性を示す粉末X線回折パターンである。 特許出願人   株式会社 イナックス温度(’C)
FIG. 1 shows differential thermal analysis curves of treated AQN powder according to the invention and untreated AffN powder. FIG. 2 shows the infrared absorption spectra of the treated powder and the untreated powder. FIG. 3 is a powder X-ray diffraction pattern showing the moisture resistance of a treated powder according to the present invention and an untreated powder. Patent applicant Inax Co., Ltd. Temperature ('C)

Claims (2)

【特許請求の範囲】[Claims] (1)チッ化アルミニウム微粒子の表面に炭素原子数5
以上のアルキル基を化学的に結合せしめることを特徴と
する、チッ化アルミニウム粉体の安定化法。
(1) Number of carbon atoms on the surface of aluminum nitride fine particles is 5
A method for stabilizing aluminum nitride powder, characterized by chemically bonding the above alkyl groups.
(2)該微粒子の表面にアルキル基を化学的に結合させ
た後に残存物を非水性溶剤にて除去しそして乾燥する、
特許請求の範囲第1項の安定化法。
(2) After chemically bonding an alkyl group to the surface of the fine particles, removing the residue with a non-aqueous solvent and drying.
Stabilization method according to claim 1.
JP32431787A 1987-12-21 1987-12-21 Method for stabilizing aluminum nitride powder Pending JPH01164710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32431787A JPH01164710A (en) 1987-12-21 1987-12-21 Method for stabilizing aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32431787A JPH01164710A (en) 1987-12-21 1987-12-21 Method for stabilizing aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPH01164710A true JPH01164710A (en) 1989-06-28

Family

ID=18164442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32431787A Pending JPH01164710A (en) 1987-12-21 1987-12-21 Method for stabilizing aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH01164710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352424A (en) * 1993-02-16 1994-10-04 The Dow Chemical Company Aluminum nitride powder having a reduced ammonia odor and a method for preparing the same
US5417887A (en) * 1993-05-18 1995-05-23 The Dow Chemical Company Reduced viscosity, organic liquid slurries of aluminum nitride powder
WO2015137263A1 (en) * 2014-03-13 2015-09-17 株式会社トクヤマ Aluminum nitride powder having exceptional water resistance
WO2023103207A1 (en) * 2021-12-06 2023-06-15 江苏航天大为科技股份有限公司 Imaging focusing system for specified monitoring area

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207770A (en) * 1986-03-06 1987-09-12 古河電気工業株式会社 Aluminum nitride powder for manufacturing sintered body
JPS63151607A (en) * 1986-12-16 1988-06-24 Toyo Alum Kk Production of fine aluminum nitride powder
JPS63225507A (en) * 1987-03-16 1988-09-20 Toyo Alum Kk Aluminum nitride powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207770A (en) * 1986-03-06 1987-09-12 古河電気工業株式会社 Aluminum nitride powder for manufacturing sintered body
JPS63151607A (en) * 1986-12-16 1988-06-24 Toyo Alum Kk Production of fine aluminum nitride powder
JPS63225507A (en) * 1987-03-16 1988-09-20 Toyo Alum Kk Aluminum nitride powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352424A (en) * 1993-02-16 1994-10-04 The Dow Chemical Company Aluminum nitride powder having a reduced ammonia odor and a method for preparing the same
US5417887A (en) * 1993-05-18 1995-05-23 The Dow Chemical Company Reduced viscosity, organic liquid slurries of aluminum nitride powder
WO2015137263A1 (en) * 2014-03-13 2015-09-17 株式会社トクヤマ Aluminum nitride powder having exceptional water resistance
JPWO2015137263A1 (en) * 2014-03-13 2017-04-06 株式会社トクヤマ Aluminum nitride powder with excellent water resistance
WO2023103207A1 (en) * 2021-12-06 2023-06-15 江苏航天大为科技股份有限公司 Imaging focusing system for specified monitoring area

Similar Documents

Publication Publication Date Title
Ishikawa et al. Production mechanism of polyzirconocarbo-silane using zirconium (IV) acetylacetonate and its conversion of the polymer into inorganic materials
Xiao et al. Synthesis of aluminum nitride/boron nitride composite materials
Laine et al. The Evolutionary Process during Pyrolytic Transformation of Poly (N‐methylsilazane) from a Preceramic Polymer into an Amorphous Silicon Nitride/Carbon Composite
US6972301B2 (en) Process for producing organically modified metal oxides and products thereof
Ivicheva et al. Sol–gel synthesis of oxonitridoaluminosilicates (SiAlON)
JPH01164710A (en) Method for stabilizing aluminum nitride powder
Koyama et al. Preparation of AlN from poly (ethyliminoalane) via pyrolysis
US20120063983A1 (en) Method for Synthesis of Boron Nitride Nanopowder
Jiang et al. Preparation of titanium diboride from titanium alkoxides and boron powder
JPH07196372A (en) Boron nitride ceramic and its production
Julbe et al. Effect of boric acid addition in colloidal sol-gel derived SiC precursors
JPS63274603A (en) Method for elevating purity of hexagonal boron nitride to high level
US4582696A (en) Method of making a special purity silicon nitride powder
Ramesh et al. Preparation and characterization of single‐phase β‐sialon
Iwamoto et al. Si3N4–TiN–Y2O3 ceramics derived from chemically modified perhydropolysilazane
RU2392227C1 (en) Method of modified ultradisperse aluminium oxide powder obtainment
US5552353A (en) Process for producing advanced ceramics
JP2938103B2 (en) Aluminum dihydrogen tripolyphosphate intercalation compound
JPH02141409A (en) Aluminum nitride powder having high water resistance
US4983368A (en) Method of producing β-sialon fine powder
EP0228221A2 (en) Methanation catalysts
Salles et al. Synthesis of SiCNAl (O) pre-alloyed nanopowders by pyrolysis of an aluminosilazane aerosol
Koyama et al. Pyrolytic preparation of gallium nitride from [Ga (NEt2) 3] 2 and its ammonolysis compound
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
Zimmermann et al. Synthesis of a silazane polymer by chemical reaction in an aerosol: a precursor for silicon nitride