JPS616105A - Manufacture of aluminum nitride powder - Google Patents

Manufacture of aluminum nitride powder

Info

Publication number
JPS616105A
JPS616105A JP12445984A JP12445984A JPS616105A JP S616105 A JPS616105 A JP S616105A JP 12445984 A JP12445984 A JP 12445984A JP 12445984 A JP12445984 A JP 12445984A JP S616105 A JPS616105 A JP S616105A
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
fine
atmosphere
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12445984A
Other languages
Japanese (ja)
Inventor
Kazuya Takada
和哉 高田
Toshihiko Nagata
俊彦 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP12445984A priority Critical patent/JPS616105A/en
Publication of JPS616105A publication Critical patent/JPS616105A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture high purity AlN powder by dehydrating a hydrolyzate of an organoaluminum compound by heating mixing the resulting Al2O3 with a proper amount of fine C powder, calcining the mixture in an atmosphere of N2, and removing the unreacted C by heating at a proper temp. CONSTITUTION:The hydrolyzable organoaluminum compound such as aluminum alkoxide is hydrolyzed by contact with water or an org. solvent contg. water such as alcohol. The resulting hydrolyzate is dehydrated by heating at about 300-1,200 deg.C to form Al2O3 of a very small particle size. This Al2O3 is homogeneously mixed with fine C powder in a liq. dispersion medium such as alcohol in (1:0.36)-(1:2) weight ratio of Al2O3:C, and the mixtue is calcined at about 1,400-1,800 deg.C in an atmosphere of N2 or NH3. The unreacted C is removed from the resulting fine nitride powder by heating at 600-900 deg.C in an atmosphere contg. O2 to obtain high purity fine AlN powder giving a sintered body having such properties as high heat conductivity, high light transmittance and high corrosion resistance.

Description

【発明の詳細な説明】 本発明は高純度窒化アルミニウム微粉末の製造方法に関
する。特にその焼結体が高熱伝導性、高透光性、高耐食
性等の性状を与える高純度窒化アルミニウム微粉末の製
造方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high purity aluminum nitride fine powder. In particular, the present invention is a method for producing high-purity aluminum nitride fine powder whose sintered body exhibits properties such as high thermal conductivity, high light transmittance, and high corrosion resistance.

従来、窒化アルミニウム微粉末の製造方法としては次の
2つの方法が知られている。第1の方法は金ベアルミニ
ウム粉末を窒素又はアンモニアの雰囲気下、高温度で窒
素化し得られた窒化物を粉砕して窒化アルミニラl、粉
末とする直接9素化法といわれる方法である。
Conventionally, the following two methods are known as methods for producing fine aluminum nitride powder. The first method is a method called a direct 9-composition method, in which aluminum gold powder is nitrogenized at high temperature in a nitrogen or ammonia atmosphere, and the resulting nitride is crushed to produce aluminum nitride powder.

第2の方法はアルミナとカーボン粉末とを窒素又はアン
モニアの雰囲気下に焼成し、得られた窒化物を酸素を含
む雰囲気下に加熱し未反応力−ホ゛ンを除去するアルミ
ナ還元法といわれる方法である。前者の直接窒化法は粉
砕工程をさけることが出来ないため得られる窒化アルミ
ニウム粉末は均一にならない欠点がある。また後者は比
較的粒度の揃った窒化アルミニウム粉末を与える点で直
接窒化法よりも優れている。噴た特開昭59−5000
8号〈よればその焼結体に透光性を勾える窒化アルミニ
ウム粉末がアルミナ還元法で得られることが報告されて
いる。
The second method is the alumina reduction method, in which alumina and carbon powder are fired in a nitrogen or ammonia atmosphere, and the resulting nitride is heated in an oxygen-containing atmosphere to remove unreacted carbon. be. The former direct nitriding method has the disadvantage that the resulting aluminum nitride powder is not uniform because the pulverization step cannot be avoided. The latter method is also superior to the direct nitriding method in that it provides aluminum nitride powder with relatively uniform particle size. Published Japanese Patent Publication No. 59-5000
No. 8, it is reported that aluminum nitride powder, which imparts translucency to the sintered body, can be obtained by an alumina reduction method.

本発明は特定の製造方法を選択することで熱伝導性、透
光性等の性状を更に改良出来る高純度窒化アルミニウム
做粉末の製法を提供するものである。
The present invention provides a method for producing high-purity aluminum nitride powder whose properties such as thermal conductivity and translucency can be further improved by selecting a specific production method.

R11ち、本発明は加水分解可能な有機アルミqアルミ
ナ対カーボンのyt、@比が1−0.56〜1:2とな
るように液体分散専体中でカーボン微粉末を混合し、該
混合物を窒素又はアンモニアの雰囲気中でf!8威し、
次いで得られた微粉末を酸素を含む雰囲気下に600〜
900℃の温度で加熱し未反応カーボンを除去する高純
度窒化アルミニウム微粉末の製造方法である。
R11: In the present invention, fine carbon powder is mixed in a liquid dispersion medium so that the ratio of hydrolyzable organic aluminum q alumina to carbon is 1-0.56 to 1:2, and the mixture is f! in a nitrogen or ammonia atmosphere. 8.
Next, the obtained fine powder was heated in an atmosphere containing oxygen for 600~
This is a method for producing high-purity aluminum nitride fine powder by heating at a temperature of 900°C to remove unreacted carbon.

本発明で使用する加水分解可能な有4長アルミニウム化
合物は特に限定されず公知の有機アルミニウム化合物、
例オーげトリメチルアルミニウム、トリエチルアルミニ
ウム、ジエチルモノハロアルミニウム等のアルキルアル
ミニウム;特にアルミニウムプロポキシド、アルミニウ
ムブトキシド、アルミニウムモノブトキシジイソプロポ
キシド等のアルミニウムアルフキシトが好適にイ宙用出
来る。腔にアルミニウムアルコキシドは後述する加水分
解反応2分散処置等の操作が容易に実施出来るだけでな
く、得られる窒化アルミニウム粉末の性状の改良が特に
良好であるので工業的に最も好適である。上記加水分解
可能な有機アルミニウム化合物は直接水と反応させても
良いが、一般には有機溶媒に溶解又は分散して用いられ
る。該有機溶媒は有機アルミニウム化合物を溶解又は分
散するものであれば特に限定されず使用出来るが通常は
石油エーテル。
The hydrolyzable 4-length aluminum compound used in the present invention is not particularly limited, and may include known organoaluminum compounds,
For example, aluminum alkyls such as trimethylaluminum, triethylaluminum, and diethylmonohaluminum; and particularly aluminum alphoxides such as aluminum propoxide, aluminum butoxide, and aluminum monobutoxydiisopropoxide can be suitably used. The use of aluminum alkoxide in the cavity is industrially most suitable because not only operations such as the hydrolysis reaction and dispersion treatment described later can be easily carried out, but also the properties of the obtained aluminum nitride powder are particularly improved. The above-mentioned hydrolyzable organoaluminum compound may be reacted directly with water, but is generally used after being dissolved or dispersed in an organic solvent. The organic solvent is not particularly limited and can be used as long as it dissolves or disperses the organoaluminum compound, but petroleum ether is usually used.

ヘキサン、ベンゼン、トルエン等の炭化水素類:メタノ
ール、エタノール、プロパツール。
Hydrocarbons such as hexane, benzene, toluene, etc.: methanol, ethanol, propatool.

インプロパツール等の脂肪族アルコールp等:四塩化炭
素等の塩素系溶剤等が好適である。
Aliphatic alcohols such as Improper Tool: Chlorinated solvents such as carbon tetrachloride are suitable.

特に上記アルコール類は後述する加水分解反応、カーボ
ンの分散処FJ等の操作が容易に実施出来るので好適で
ある。寸だ有機アルミニウム化合物を溶解又は分散した
有機溶媒の濃度は有機アルミニウム化合物の′$4類、
有機溶媒の種類、後述する加水分′M売件等によって異
なり一概に限定出来ないが一般にはアルミニウム化合物
の濃度は低い方h′−好オしい。しかしながら、アルミ
ニウム化合物の濃度h″−あ1りに低くすぎると溶辱の
使用量が著しく増大するし、飛開が高すぎると反応の制
御が酢しくなったり取扱いが不便釦なる。従って通常社
これらを勘案して適宜決定すればよいが一般ICは有機
アルミニウム化合物の一度が50貢5゛%以下、好1し
くけ5〜40″71T叶%の範囲の濃度として使用する
のがpも好ましい。
In particular, the above-mentioned alcohols are suitable because operations such as hydrolysis reaction and carbon dispersion treatment FJ, which will be described later, can be carried out easily. The concentration of the organic solvent in which the organoaluminum compound is dissolved or dispersed is approximately
It varies depending on the type of organic solvent, hydrolysis conditions described below, etc., and cannot be definitively determined, but in general, the lower the concentration of the aluminum compound, the better. However, if the concentration of the aluminum compound is too low (h''-A1), the amount of oxidation used increases significantly, and if the jump is too high, reaction control becomes difficult and handling becomes inconvenient. It may be determined as appropriate in consideration of these factors, but in general IC, it is preferable to use a concentration of organoaluminum compound at a concentration of 50% or less, preferably 1% to 40% and 71%. .

有機アルミニウム化合物は水又は含水有機溶媒と温合し
て加水分解な行う。該有機I容Wけ前記のものが特に限
定されず使用出来るが最も好プしいのけアル7−ル溶液
である。上記含水アルコール溶液を用いるときけ、アル
コールとしては前記脂肪族アルコール類が好適に使用さ
れる。オたアルコール溶液に含まれる水の升は有機アル
ミニウム化合物を加水分解するに十分な量であればよく
、加水分解Φ件、その仙の委件等に応じて予め決定して
用いればよい。寸だ必要に応じ加水分解を促進させるた
めアンモニア、アミン等のアルカリ性化合物或いは硝酸
、塩酸、硫/T′?竹の鉱酸娼′の加水分解促進剤を用
いることもでき/)。
The organoaluminum compound is heated with water or a water-containing organic solvent to perform hydrolysis. Although the organic solution mentioned above can be used without any particular limitation, Al-7-alcohol solution is the most preferred. When using the above-mentioned hydroalcoholic solution, the above-mentioned aliphatic alcohols are preferably used as the alcohol. The volume of water contained in the alcohol solution may be in an amount sufficient to hydrolyze the organoaluminum compound, and may be determined in advance and used depending on the hydrolysis conditions and other factors. If necessary, alkaline compounds such as ammonia and amines, nitric acid, hydrochloric acid, sulfur/T'? Bamboo mineral acid salts' hydrolysis accelerators can also be used.

上記1ff+水分解は一般wtB温する心間水分解反応
が早−ので加温状態で実施するのが好オしくイ2すえげ
25゛C−混合溶媒の沸点の温度がう、tT4 ヘばよ
い。また加水分W1反応けしばしば四合溶が裏を攪拌下
に実施するのめ−好ましく、4繁忙粒子径を均−K11
えるには適度な攪拌/IZ有効な場合が多い。更VC寸
だ加水分解(/Cよ−)で得られる粒子の粒子径は有機
アルミニウム化合物の1度、溶媒の種ηジ方によっても
影響をうけるので、これらのφ件は必要な粒子径に応じ
て予め実験室的に決定しておくと好適である。
The above 1ff + water decomposition is generally carried out in a heated state because the inter-core water decomposition reaction at wtB temperature is fast. . In addition, since the hydrolysis W1 reaction is often carried out under stirring, it is preferable that the four busy particle diameters are uniformly K11.
Moderate stirring/IZ is often effective for increasing the temperature. Furthermore, the particle size of particles obtained by VC size hydrolysis (/C) is also affected by the degree of organoaluminum compound and the type of solvent, so these values are determined by the required particle size. It is preferable to determine this in advance in a laboratory.

つ・、 ・・ 示 白1 本発明に於いては上記加水分lit反応で得られた71
n水分>jl生成物は必費に応じて戸別層び/又は乾燥
を傅て加熱膜、水を行い、アルミナとする。該加畝瞬水
の温度は特に限定されないが一般には300〜1200
℃好ましくはIloθ〜7000℃の温Tt1M門から
選べば十分である。このようにして得られたアルミナは
アルミナの粒子径が非常にホゾく後述する窒化アルミニ
ウム粉末が細粒の粒子が揃ったものを与える。、また襲
アルミナに自重れる不純物の晴も著しく少ないため得ら
れる窒化アルミニウム粉末を焼成した゛(<II成物に
→れたφ光性と熱伝熱性を与える。
In the present invention, 71 obtained by the above-mentioned hydrolytic lit reaction
n Moisture > jl The product is layered and/or dried, then heated and heated to form alumina. The temperature of the Kaune instant water is not particularly limited, but is generally 300 to 1200.
It is sufficient to select a temperature Tt1M, preferably from Iloθ to 7000°C. The alumina thus obtained has a very small alumina particle size, and the aluminum nitride powder described later provides a uniform collection of fine particles. In addition, since the amount of impurities present in the alumina is extremely small, the resulting aluminum nitride powder is calcined.

以)余白 前記方法(よって得られる有機アルミニウム化合物の加
水分解物は直接窒化法或いはアルミナ還元法等の公知の
方法で得られる窒化アルミニウム中の不純物が原料に基
因して不可避的に含まれて来るのに比べて耳しく不純物
の少ないものとなる。またその粒子径は05μm以下で
1μm以下の粒子のものが全体の少くとも90容゛吸%
を占める非常に粒子径が揃ったものを得ることも出来ろ
。このような性状は窒化アルミニウム焼結体を得る場合
の)1結性の向上、焼結体に与える性状例えば熱伝導性
、透光性等の改良に大きなea響を有すンとな混合する
ことが必須の工程である。この場合カーボンの混合割合
はヰ起湘氷分売七−2,アルミナ対カーボンが芦 号比で1 : 0.36〜1:2、好捷しくは1:0.
4〜1:1の範囲から選ぶのが好適であろっカーボンの
使用量が上記範囲より少′f、cい場合は後述する還元
反応が十分に進行しないし、多すぎると未反応のカーボ
ンを除去するfCめに必要以上の時間がかがるので好1
しくない。
Margin: The hydrolyzate of an organoaluminum compound obtained by the above method inevitably contains impurities in aluminum nitride obtained by a known method such as a direct nitriding method or an alumina reduction method due to the raw material. It contains significantly less impurities compared to other types.The particle size is 0.5 μm or less, and particles of 1 μm or less absorb at least 90% of the total volume.
It is also possible to obtain particles with very uniform particle sizes that account for the Such properties are mixed with materials that have a large effect on improving concretion (when obtaining an aluminum nitride sintered body) and improving the properties imparted to the sintered body, such as thermal conductivity and translucency. This is an essential process. In this case, the mixing ratio of carbon is 1:0.36 to 1:2, preferably 1:0.
It is preferable to select from the range of 4 to 1:1. If the amount of carbon used is less than the above range, the reduction reaction described below will not proceed sufficiently, and if it is too large, unreacted carbon will be removed. I like this because it takes more time than necessary to remove fC.
It's not right.

竹江嵐生庄改速λ     、  ニー族4−Mコ2ワ
≠又枕ミ貴を牡f−Hト管慴吊升ア」ンの混合を眞ず=
1液状で実施することが極カーボンσ分とが極めて均質
11?合され、窒化アルミニウムの反応性忙大きな影響
を与えるだけでなく、窒化アルミニウム中の不純物の混
入を最小限にとどめることが出来る利点を勾える。しか
も上記液状での讃0合囲ち湿式a合方式を採用すること
釦より、原料粒子が辞隼して粗大化する傾向を防ぐこと
が出来るので後述する窒素化によって得られろ窒化アル
ミニウム粉′末けそれ自体細粒子で、粒子の揃ったもの
となるため得られる窒化アルミニウムを粉砕する必要は
なく、そのま4焼結することが出来るのである。この粉
砕工程を省くことが出来る利点は工荀的に貴重な役−1
をけだ寸。ダリえば本発明に於1/−1て+′c粉砕中
に混入する不純物を完全に阻止出来、粉砕中に窒化アル
ミニウムの表面が酸化されて酸ネ含有量が増加すること
?完全に防ぐことh′−出ヲにるので窒化、アルミニウ
ム中の不純物の懲・も極めて少な(゛なるのである。
Takee Arashi Ikusho speed change λ, Neezoku 4-M Ko 2 Wa ≠ Matakura Miki, Male f-H Tokankei Suspension A'n mix =
1. It can be carried out in a liquid state that the extremely carbon σ and the extremely homogeneous 11? Not only does this have a great effect on the reactivity of aluminum nitride, but it also has the advantage of minimizing the amount of impurities mixed in with aluminum nitride. In addition, by adopting the above-mentioned liquid-type wet mixing method, it is possible to prevent the raw material particles from collapsing and becoming coarse. In the end, the aluminum nitride itself becomes fine particles with uniform particles, so there is no need to crush the resulting aluminum nitride, and it can be sintered as it is. The advantage of being able to omit this crushing process is valuable for the plant.
The size is small. If possible, the present invention can completely prevent impurities from entering during +'c grinding, and the surface of aluminum nitride will be oxidized during grinding, increasing the acid content. Since it is possible to completely prevent h'-emission, nitriding and impurity damage in aluminum are extremely reduced.

本発明に於ける前記湿式混合を?!許する際は、窒化ア
ルミニウムに焼成したのちに本残存する不純物成分の混
入を避けることh″−出来る材質の装置中で実施するの
がよい。−管に該湿式混合は常温、常圧下で実施するこ
とができ、温度及び圧力によって悪影響をうけることは
ない。捷だ混合装置としては材質から焼成後圧おいても
戎存する不純物成分を牛じないものを選ぶ限り公知の装
置1手段を採用しつる。例えば混合装置として球状物又
は棒状物を内円したミルを使用するのが一般的であるが
、ミルの内壁、球状物又は棒状物等の材質は、得られる
1化アルミニウム中1c 暁ef、り知お(八でも’4
存する不純物成分が混入するのを避けるために、窒化ア
ルミニウム自身あるいは99.9重量%以上の高純度ア
ルミナとするのが好寸しい。またm、合@行の原料と接
する面を全てプラスチックス製とするかプラスチックス
でコーティングとすることもできる。該プラスチックス
としては特に限定されず例えばポリエチレン、ポリプロ
ピレン、ナイロン、ポリエステル、ポリウレタン等がf
F用出来る。この場合、プラスチックス中にけ安定剤と
して種々の金n成分を含む場合があるので、予めチェッ
クして使用するよう圧すべきである。
What about the wet mixing in the present invention? ! If possible, avoid contamination with impurity components that remain after firing into aluminum nitride.It is best to carry out the wet mixing in a device made of material that can be used. It is not affected by temperature and pressure.As long as the material is selected to avoid impurities that remain even under pressure after firing, any known device or method can be used as the crushing and mixing device. Vine.For example, it is common to use a mill with spheres or rods inside as a mixing device, but the materials of the inner wall of the mill, spheres or rods, etc. , Richio (Hachidemo'4
In order to avoid contamination with existing impurity components, it is preferable to use aluminum nitride itself or high purity alumina of 99.9% by weight or more. In addition, all of the surfaces in contact with the raw materials in the m and the rows can be made of plastic or coated with plastic. The plastics are not particularly limited, and include, for example, polyethylene, polypropylene, nylon, polyester, polyurethane, etc.
Can be used for F. In this case, the plastics may contain various gold components as stabilizers, so it should be checked in advance before use.

本発明に於いて原料として使用するカーボン微粉末は灰
分の含有餅が9大0.2重量%、好畔しくけ最大0.1
型骨%の純度のものとして用いるのが好ましい。また該
カーボンの千均池子径は得られる窒化アルミニウムの粒
子径に影響を与えるので、平均粒子径が1μm以下の数
粒子として用するのが好ましい。該カーボンとしてはカ
ーボンブラック、黒4)化カーボンブラック等が使用さ
れうるが、−鵜′にはカーボンブラック/+X mも好
ましい。
The fine carbon powder used as a raw material in the present invention has an ash content of 0.2% by weight, and a maximum of 0.1% by weight.
It is preferable to use one with a purity of % bone. Furthermore, since the particle size of the carbon affects the particle size of the aluminum nitride obtained, it is preferable to use it in the form of several particles with an average particle size of 1 μm or less. Carbon black, blackened carbon black, etc. can be used as the carbon, but carbon black/+Xm is also preferable for -U'.

前記湿式混合された原料は必要により濾別及び/又は乾
燥又辻缶麩逓遠を経て、9素又はアンモニアの雰囲気下
に1400〜1800Cの温度で燐酸する。該燦成温度
hS上記温度より低い場合は工秦的忙十分な遣元窒素化
反応が進行しないので好寸しくない。また該・焼成温度
が前記百度χり高くなると得られる窒化アルミニウムの
一部が焼結を起1..1.5子間のa集h″−起るため
目的の粒子径の窒化アルミニウムが得られ’PRなるの
で好壕しくない。
The wet-mixed raw materials are filtered and/or dried if necessary, and then phosphoricated in an atmosphere of 9 elements or ammonia at a temperature of 1400 to 1800C. If the sintering temperature hS is lower than the above-mentioned temperature, the reaction is not favorable because the nitrogenation reaction will not proceed as efficiently as possible. Additionally, if the firing temperature increases above 100 degrees, a portion of the aluminum nitride obtained will undergo sintering. .. Since aggregation between 1.5 particles and h'' occurs, aluminum nitride of the desired particle size is obtained and 'PR' is not desirable.

1尭成により得られた窒化物微粒子は、木発明忙よれば
次いでf:′!素を含む雰囲気下で600〜qoo’c
のj態度で加熱処理され、該窒化物微粒子に含まれる未
反応のカーボンを酸化して除去圧する工程に付される。
1. According to the nitride fine particles obtained by Yasei, the following f:'! 600~qoo'c in an atmosphere containing
The nitride particles are heat-treated in a manner similar to the above, and subjected to a step of oxidizing and removing unreacted carbon contained in the nitride fine particles.

上記隣化湛度が上記下限値より低い場合は未反応カーボ
ンの除去に長時間を要するので工栗的忙不利となり、逆
圧上記^度が上限値を越えると窒化アルミニウムの表面
が重化され、得られる窒化アルミニウム中の酸=:モ含
有刊・が多くなり、種々の性状を悪化させる原因とt(
るので好プしくない。
If the above-mentioned adhesion degree is lower than the above-mentioned lower limit value, it will take a long time to remove unreacted carbon, which will be a disadvantage for the engineering, and if the above-mentioned back pressure degree exceeds the above-mentioned upper limit value, the surface of aluminum nitride will become heavy. , the acid content in the resulting aluminum nitride increases, causing deterioration of various properties and t(
I don't like it because it is.

このよう忙して得られた窒化アルミニラl、け従来の物
化アルミニウムに比べると不綽物の含有6−が極めてt
J)な(窒化アルミニウム焼結体の種々の物性例えば熱
云4i性、送光性等を著しく改良することが出来ろう例
えば本発明で得られる窒化アルミニウム中のA4N含有
量は97賃量%以上、結合酸素含有4行1.5重量%以
下、アルミニウム以外の他の金FT457分の含有量は
全縮として0.1型骨%以下好ましくVio、osi舞
%以下となる。
The aluminum nitride laminated in this way has extremely low content of undesirable substances compared to the conventional aluminum compound.
J) Various physical properties of the aluminum nitride sintered body, such as thermal properties, light transmitting properties, etc., can be significantly improved. For example, the A4N content in the aluminum nitride obtained by the present invention is 97% or more. , the content of 4 lines of bound oxygen is 1.5% by weight or less, and the content of other gold components other than aluminum is 0.1% or less, preferably less than 0.1%, preferably less than 0.1% as a total shrinkage.

また、本発明で得らAする窒化アルミニウム街粉末は平
均粒子径が2am以下である。平均【)“l子径h;こ
れより大きいと焼結性が低下する頌向が大きくなる。本
発明の窒化アルミニウム徽粉末は好ましくけ平均ネ1″
1.子径が2μm以下で且つ粒径5nmLゾ下の粉子を
80容曙−%以上の割合で含有する。
Further, the aluminum nitride powder A obtained in the present invention has an average particle size of 2 am or less. Average diameter h: If it is larger than this, the sinterability will be more likely to deteriorate.The aluminum nitride powder of the present invention is preferably used with an average diameter h of 1".
1. Contains powder having a particle size of 2 μm or less and a particle size of 5 nm or less in a ratio of 80% or more per volume.

本発明の窒化アルミニウムは上記の如く体めて高純度で
あり、例えば結合酸素含量は好寸しくは最大1.031
1%である。従来、結合酸素含量が2重量%よりA)な
い窒化アルミニウム微粉末は焼結性h″−−充分く、良
好な焼結性を得ろためには結合酸素含量が小くとも2重
量%必要であると信じられていた技術水準を考慮すると
、本発明の高密度窒化アルミニウム微翳末h″−優+t
た焼結性を示すこと社真に意外なことである。
As mentioned above, the aluminum nitride of the present invention has a high purity, for example, the combined oxygen content is preferably at most 1.031.
It is 1%. Conventionally, aluminum nitride fine powder with a combined oxygen content of less than 2% by weight has been found to have sufficient sintering properties, and in order to obtain good sinterability, a combined oxygen content of at least 2% by weight is required. Considering the state of the art believed to exist, the high-density aluminum nitride fine powder of the present invention
It is surprising that the material exhibits such good sinterability.

本発明によれば、本発明の高純度窒化アルミニウム微鉛
末から高純度目つ高密度の窒化アルミニウム4f!、Q
体が提供される。そのような窒化アルミニウムの焼結体
は、本発明の高純度窒化アルミニウム微粉末を成形し、
得られた成形体を1700〜2100℃の温度で不活性
雰囲気下で焼結し、窒化アルミニウム;尭結体を生成・
ljLぬることによって!:1工造さJlろ。
According to the present invention, high-purity and high-density aluminum nitride 4f is obtained from the high-purity aluminum nitride fine lead powder of the present invention! ,Q
The body is provided. Such a sintered body of aluminum nitride is obtained by molding the high-purity aluminum nitride fine powder of the present invention,
The obtained compact is sintered in an inert atmosphere at a temperature of 1,700 to 2,100°C to form an aluminum nitride compact.
By applying ljL! :1 construction Jl.

上記窒化アルミニウム焼結体は焼結助剤を存在させて焼
結を実施する方法によっても製造することが出来る。上
記焼結助剤はOK限定的ではなく公知のものが使用出来
る。一般に好適に採用される代表的な焼結助剤はアルカ
リ土類金属、ランタン族金属およびイツトリウムよりな
る群から選ばれた少くとも1種の金属の単体又はそのQ
化物で、一般には0.01〜5重景%重量加するとよい
。上記焼結助剤は本発明の窒化アルミニウム粉末を製造
するときの、有機アルミニウム化合物の加水分解工程、
カーボンの添加工程等の工程で添加し、得られる窒化ア
ルミニウム粉末中に焼結助剤が含′!jれた製品と−4
−ることも出来る。
The aluminum nitride sintered body can also be manufactured by a method in which sintering is performed in the presence of a sintering aid. The above-mentioned sintering aid is not limited to OK and any known one can be used. A typical sintering aid that is generally suitably employed is at least one metal selected from the group consisting of alkaline earth metals, lanthanum group metals, and ythtrium, or its Q
It is generally advisable to add 0.01 to 5% by weight of the compound. The above-mentioned sintering aid is used in the hydrolysis step of the organoaluminum compound when producing the aluminum nitride powder of the present invention.
Sintering aids are added in processes such as the carbon addition process, and the resulting aluminum nitride powder contains sintering aids! The damaged product and -4
- You can also do that.

上記焼結助剤を含んだ1化アルミニウム粉末は不活性雰
囲気下に1600〜2100℃の温度で焼結することに
より、前記の優れた窒化アルミニウム焼結体となる。
By sintering the aluminum monide powder containing the sintering aid at a temperature of 1,600 to 2,100° C. in an inert atmosphere, it becomes the excellent aluminum nitride sintered body.

1だ前記1結方法は特に限定されず公知焼結方法が採用
出来る。例えば20〜400 Kq/C−の加圧下に実
施されるホットプl/ス暁結法、1〜10気圧程度の窒
::ルガス圧下で焼結されるガス圧焼結法、夜いけ実質
的に非加圧下で実施される常圧焼結法が必要に応じて採
用されうる。
The above-mentioned sintering method is not particularly limited, and any known sintering method can be used. For example, the hot press sintering method is carried out under pressure of 20 to 400 Kq/C, the gas pressure sintering method is sintering under nitrogen gas pressure of about 1 to 10 atm, and A pressureless sintering method performed under non-pressurized conditions may be employed as necessary.

このようにして得られた窒化アルミニウム焼結体はその
密度が6.12/−以上、好壕しくけ3.29/−以上
の優れた高密度焼結体となる。1だ、柊焼結体は熱伝導
度がすぐれており倒えば1[10W/ro−K、好まし
くけ110’、’l / m −K以上のものとなる。
The aluminum nitride sintered body thus obtained is an excellent high-density sintered body with a density of 6.12/- or more and a trench density of 3.29/- or more. 1. The holly sintered body has excellent thermal conductivity, and if it falls over, it will have a thermal conductivity of 1 [10 W/ro-K, preferably 110','l/m-K or more.

更に該焼結体の透光性も例えば焼結体を厚さ0.5+m
qlC加工研摩したものの光琲渦率は6μmの波長に対
して35%以上となろう このようにして得られた焼結体は例えば高伝熱性セラミ
ックとして熱放出板、熱交換器4−1−、l−’) 、
ステレオやビデオアンプ用の基板 。
Furthermore, the translucency of the sintered body is also determined, for example, when the thickness of the sintered body is 0.5+m.
The phosphor vorticity of the qlC processed and polished product will be 35% or more for a wavelength of 6 μm.The sintered body thus obtained can be used, for example, as a highly heat conductive ceramic as a heat dissipation plate or a heat exchanger 4-1- , l-') ,
Board for stereo and video amplifiers.

I c :’(、+Hなどと1〜で利用される。オたそ
の優れた透光性を利用してランプの発光管や紫外〜〜赤
外線を用いるセンサーの窓材料さらにけ電波透過性シ利
用した1ノーダー用窓材料。
I c: '(, +H, etc. and 1 to 1).Using its excellent translucency, it can be used as a window material for lamp arc tubes and sensors that use ultraviolet to infrared rays, as well as for radio wave transmittance. Window material for 1-noder.

高温での透光性8−要求される特殊窓材料としての利用
h′−可箭である。
Translucency at high temperatures 8 - Required use as special window material h' - Possible.

また本発明の窒化アルミニウム粉末はサイアロン系材料
の原料として好適に使用され、α−Flialon 、
β−8ialon 、 A /−Nポリタイプの原料と
して従来のAI、Nを用いては達成できなかった高純度
で特性の優れたサイアロン化合物を与える。
Furthermore, the aluminum nitride powder of the present invention is suitably used as a raw material for sialon-based materials, such as α-Flialon, α-Flialon,
A sialon compound with high purity and excellent properties that could not be achieved by using conventional AI and N as raw materials for β-8ialon, A/-N polytypes can be obtained.

また本発明のq化アルミニウム粉末は分散性の良い均一
な微粉末であるため、例えば炭化ケイ素などの各種セラ
ミックスへの添加助削として、あるいけシリコーンゴム
等のポリマーとの複合体用粉末として効早的な作用を有
する。
In addition, since the aluminum q oxide powder of the present invention is a uniform fine powder with good dispersibility, it is effective as an additive to various ceramics such as silicon carbide, and as a powder for composites with polymers such as silicone rubber. Has rapid action.

以下本発明な実施例により詳細に説明する、なお以下の
実施例および比較例で用いた各群の分析法又は分析装置
は以下のものである。
The present invention will be explained in detail below using Examples, and the analytical methods or analytical devices used in each group in the Examples and Comparative Examples below are as follows.

炭素分析二金属中炭素分析装置(葡場辺作所製 gMI
A−3200) 酸1分析:金閂中1′:1素分析装置(月当剰作所fA
 EMoA−1300) 窒素分析:融解分離中和滴定法 xFi!回折浩置:装本電子13 JRx−12vn走
査早電子司部1日本電子製JSM−T200平均粒子径
および粒度分布測定器: 葡場製伶所製 C!A’PA −500熱伝導率沖11
定装置:理学電機1ノ−ザー法熱定歇油1定装Wit 
 PS−7 光透、i!3率i!1++定装置:日立製作所6す自記
分光光度計 630型 赤外分光光度計 260−30型 神た、焼結体の光透過率は次の式で算出した。
Carbon analysis bimetallic carbon analyzer (manufactured by Ubabe Seisakusho gMI
A-3200) Acid 1 analysis: Kinbanchu 1':1 elemental analyzer (Gekto Susakusho fA
EMoA-1300) Nitrogen analysis: Melting separation neutralization titration xFi! Diffraction equipment: Seihon Denshi 13 JRx-12vn Scanning Hayaden Electronics Department 1 JEOL JSM-T200 Average particle size and particle size distribution measuring instrument: Baeba Manufacturing C! A'PA-500 Thermal Conductivity Oki 11
Fixing device: Rigaku Denki 1 Noser method heat fixing oil 1 fixing Wit
PS-7 Mitsuru, i! 3 rate i! 1++ constant equipment: Hitachi, Ltd. 6-recording spectrophotometer 630 model infrared spectrophotometer 260-30 model The light transmittance of the sintered body was calculated using the following formula.

■0 ここで工。喉入射光の強さ、1は透過光の強さ、Rf寸
反射<!< 、 tけ焼結体の厚み、μけ吸収イS=t
である。R1d焼結体の屈折率によって決するもので屈
折率なnとすれば空気中の泗1定でけRけ次式で表わさ
れろ。
■0 Work here. Intensity of throat incident light, 1 is intensity of transmitted light, Rf dimension reflection <! < , t Thickness of sintered body, μ ke absorption S = t
It is. R1d is determined by the refractive index of the sintered body, and if n is the refractive index, it can be expressed by the R order equation in air.

(1)式中のμが焼結体の透光性を表す指弾となるもの
で、後述の実施例1(おいて示したμの値は(1)式に
従って計算した。
μ in the formula (1) is a finger indicating the translucency of the sintered body, and the value of μ shown in Example 1 (described later) was calculated according to the formula (1).

実施例 1 アルミニウムトリインブロボギシド (At(o−is
o c3Hy )5 ) 200 ”Iを1tのインプ
ロパツールに溶解した溶液を攪拌しつつ、2tの蒸留水
を添加し、1時間加水分解反応を行なうことにより、白
色の沈R物を(1)たう尚、均粒子径がQ、45 pr
r′Iのカーゲンブランク101とを、ナイロン釧ポッ
トとナイロンコーティングしたボールを甲い、エタノー
ルを液体分散媒と1.て均一にボールミル混合した。得
らJlだ混合物を乾燥後、高純度黒鉛製平皿に入れ、雷
気炉内に窒素ガスを5t/minで連続的に供給しなが
ら1600℃の温度で6時間加熱した。イ)らねた反応
混合物を空慨中で750℃の温度で4時間加熱し、未反
応のカーボンを酸化除去した。
Example 1 Aluminum triyne brobogicide (At(o-is
o c3Hy )5) While stirring a solution of 200'' I dissolved in 1 ton of impropat tool, 2 ton of distilled water was added and the hydrolysis reaction was carried out for 1 hour, thereby converting the white precipitate into (1) The average particle size is Q, 45 pr
r'I Kagen Blank 101, a nylon pot and a nylon coated ball, and ethanol as a liquid dispersion medium. The mixture was uniformly mixed using a ball mill. After drying the obtained JL mixture, it was placed in a flat plate made of high-purity graphite and heated at a temperature of 1600° C. for 6 hours while continuously supplying nitrogen gas at 5 t/min into a lightning furnace. b) The reacted reaction mixture was heated in an atmosphere at a temperature of 750° C. for 4 hours to oxidize and remove unreacted carbon.

得られた白色の粉末はxR回折分析(Xraydiff
raction analysis  )  の結果、
単相(5idle phase )のA/=Nであった
。寸だ該粉末の平均粒子徨は1.20μmであり、6μ
m以下が95容量%を占ぬた。走査型電子顕微鏡による
観察ではこの粉末は平均0.7/1mP度の均一な粒子
であった。またこの粉末の分析の結朶、不純物としてO
r + Si 、 Ni 。
The obtained white powder was subjected to xR diffraction analysis (Xraydiff
ration analysis) results,
It was single phase (5 idle phase) A/=N. The average particle size of the powder is 1.20μm, and 6μm.
m or less accounted for 95% by volume. When observed using a scanning electron microscope, this powder was found to be uniform particles with an average particle size of 0.7/1 mP. In addition, as a result of analysis of this powder, O was found to be an impurity.
r + Si, Ni.

Fe弊の金属が微量含まれる他に酸素が1.0重量%及
びCが0.05重号%含1れる極めて高純度の窒化アル
ミニウム粉末で、もった。
It is an extremely high-purity aluminum nitride powder that contains a trace amount of Fe metal, 1.0% by weight of oxygen, and 0.05% by weight of C.

このようにして得らJまた空化アルミニウム粉末1.0
グラムを直径20畔のBN(窒化ホウ紫)でコーティン
グした墨鉛ダイスに入れ高局波誘募加熱炉を用い1便圧
の1釆ガス中100Kf/−の千力下で、2000℃の
温度で2時間ホットプレスした。得られた焼ト、′i体
はやや黄味を帯びたち密な半透明体であった。
Thus obtained J also vacated aluminum powder 1.0
gram was placed in a sumi-lead die coated with BN (boron nitride purple) with a diameter of 20 mm and heated to a temperature of 2000°C under a force of 100 Kf/- in one pot of gas at one pressure using a high frequency induction heating furnace. Hot pressed for 2 hours. The resulting baked product was a slightly yellowish, dense, translucent body.

この焼結体の密度は6.26f/−であり、又XS回折
分析【τよJlげ単相(stngle phase)の
AtNであった。またこの焼結体の3@導+oS 率は寥士イW/m−にであり、この焼結体を厚さ0.5
mIC加工研摩したものの光透過率は6μmの波長に対
して値ν%であった。、また上F七と同灸件でホットプ
レスした直径40雫。
The density of this sintered body was 6.26 f/-, and XS diffraction analysis showed that it was AtN in a single phase. In addition, the 3@conductivity+oS ratio of this sintered body is 3W/m-, and the thickness of this sintered body is 0.5
The light transmittance of the mIC processed and polished product was ν% for a wavelength of 6 μm. , and 40 drops in diameter hot pressed for the same moxibustion as above F7.

厚さ約6篩の円板から切り出した約2.8 X 5×6
51の角柱状試料の6点曲げ強度をクロスへ7ドスピー
ド0.5 rm/min +スパンロ0実施例 2 実施例1と同様な方法で得た窒化アルミニラA粉末(1
0F)にCaOとして0−2 y t%となるようCa
(no3)2・4H20をエタノールを液体媒体として
加え、ポリエチレン與の乳鉢中でポリエチレン製の乳棒
を用い混合した。
Approximately 2.8 x 5 x 6 cut from a disk with a thickness of about 6 sieves
Example 2 Aluminum nitride A powder (1
0F) to become 0-2 yt% as CaO
(No. 3) 2.4H20 was added to ethanol as a liquid medium, and mixed using a polyethylene pestle in a polyethylene mortar.

この混合物を乾燥後、実施例1と同売件でホントブレス
して直径20鵡の焼結体を11!た。
After drying this mixture, press it with the same method as in Example 1 to make a sintered body with a diameter of 20 parrots. Ta.

この焼結体の密度は5.27 ?/r、lであり、Xl
ζ。寸たこの焼結体を厚さ0.51に加工研閂したもの
の光透過率は6μmの波長の光に対し、て犯4%であっ
た。
The density of this sintered body is 5.27? /r, l, and Xl
ζ. The light transmittance of a sintered body of octopus processed and polished to a thickness of 0.51 was 4% for light with a wavelength of 6 μm.

奎Iでヲ]F−毫1Wだ否雪苛、   、−2−一セ亡
ぶ土日脂降七遺罰 実施例 佑 アルミニウムブトキシド2507を16のブタノールに
溶解した溶液を攪拌しつつ、塩酸によってpH2に、調
整した蒸留水2tを添加し、室温で2時間加水分解反応
を行なうことにより、白色の沈澱物を得た。
奎I dewo]F-毫1W はいきゅうい、 -2-One day's death on Saturdays and Sundays A white precipitate was obtained by adding 2 tons of prepared distilled water and carrying out a hydrolysis reaction at room temperature for 2 hours.

該沈澱物より、実施例1と同様の方法で、実施例1と同
様の性状を有する窒化アルミニウム粉末を得た。該粉末
を実施例2と同様の徳山曹達株式会社
From the precipitate, aluminum nitride powder having the same properties as in Example 1 was obtained in the same manner as in Example 1. The powder was prepared by Tokuyama Soda Co., Ltd. in the same manner as in Example 2.

Claims (4)

【特許請求の範囲】[Claims] (1)加水分解可能な有機アルミニウム化合物を水又は
含水有機溶媒と接触させて加水分解を行ない、該加水分
解生成物を加熱脱水し、これにアルミナ:カーボンの重
量比が1:0.36〜1:2となるように液体分散媒体
中でカーボン微粉末を混合し、該混合物を窒素又はアン
モニアの雰囲気中で焼成し、次いで得られた微粉末を酸
素を含む雰囲気下に600〜900℃の温度で加熱し未
反応カーボンを除去することを特徴とする高純度窒化ア
ルミニウム粉末の製造方法。
(1) A hydrolyzable organoaluminum compound is brought into contact with water or a water-containing organic solvent to perform hydrolysis, and the hydrolyzed product is heated and dehydrated, and the weight ratio of alumina:carbon is 1:0.36 or more. Fine carbon powder is mixed in a liquid dispersion medium at a ratio of 1:2, the mixture is fired in an atmosphere of nitrogen or ammonia, and the resulting fine powder is heated at 600 to 900°C in an atmosphere containing oxygen. A method for producing high-purity aluminum nitride powder, characterized by heating at a high temperature to remove unreacted carbon.
(2)加水分解可能な有機アルミニウム化合物がアルミ
ニウムアルコキシドである特許請求の範囲(1)記載の
製造方法。
(2) The production method according to claim (1), wherein the hydrolyzable organoaluminum compound is an aluminum alkoxide.
(3)有機溶媒がアルコールである特許請求の範囲(1
)記載の製造方法。
(3) Claims (1) in which the organic solvent is alcohol
) manufacturing method described.
(4)液体分散媒体がアルコールである特許請求の範囲
(1)記載の製造方法。
(4) The manufacturing method according to claim (1), wherein the liquid dispersion medium is alcohol.
JP12445984A 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder Pending JPS616105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12445984A JPS616105A (en) 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12445984A JPS616105A (en) 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPS616105A true JPS616105A (en) 1986-01-11

Family

ID=14886041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12445984A Pending JPS616105A (en) 1984-06-19 1984-06-19 Manufacture of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS616105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241814A (en) * 1986-04-11 1987-10-22 Sumitomo Electric Ind Ltd Aluminum nitride powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241814A (en) * 1986-04-11 1987-10-22 Sumitomo Electric Ind Ltd Aluminum nitride powder

Similar Documents

Publication Publication Date Title
US4618592A (en) Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production
EP0263662B1 (en) Yttrium oxide ceramic body
CN106045523A (en) Method for producing aluminum nitride ceramic powder on basis of Bayer process
CN102180675A (en) Process for preparing gamma-AlON powder by chemical coprecipitation and carbothermal reduction method
JP3314944B2 (en) Sinterable barium titanate fine particle powder and method for producing the same
JPH0454612B2 (en)
JPH0428645B2 (en)
JPS616105A (en) Manufacture of aluminum nitride powder
WO2020040353A1 (en) Method for producing tungsten and titanium composite carbide powder
JPH0223496B2 (en)
JPS6060910A (en) Manufacture of aluminum nitride
KR890002053B1 (en) A method and composition for aluminium nitride
JPS5950008A (en) Aluminum nitride powder and its manufacture
JPH0339968B2 (en)
JPH0686291B2 (en) Spinel powder and method for producing the same
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
JPS6256307A (en) Production of powder mixed with boron nitride
JPS58161918A (en) Manufacture of high purity magnesia powder
JPS638265A (en) Manufacture of composite sintered body
JPS6272554A (en) Manufacture of fine polycrystal al2o3 sintered body
JPS6222952B2 (en)
JPS6374966A (en) Manufacture of aluminum nitride sintered body
JPS62212213A (en) Production of beta-silicon carbide
CN115947611A (en) Method for preparing refractory material from secondary aluminum ash