JPH0686291B2 - Spinel powder and method for producing the same - Google Patents

Spinel powder and method for producing the same

Info

Publication number
JPH0686291B2
JPH0686291B2 JP61200083A JP20008386A JPH0686291B2 JP H0686291 B2 JPH0686291 B2 JP H0686291B2 JP 61200083 A JP61200083 A JP 61200083A JP 20008386 A JP20008386 A JP 20008386A JP H0686291 B2 JPH0686291 B2 JP H0686291B2
Authority
JP
Japan
Prior art keywords
powder
spinel
particle size
weight
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61200083A
Other languages
Japanese (ja)
Other versions
JPS6360106A (en
Inventor
隆生 福田
久仁雄 松井
浩一 猿楽
Original Assignee
旭化成工業株式会社
新日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社, 新日本化学工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP61200083A priority Critical patent/JPH0686291B2/en
Publication of JPS6360106A publication Critical patent/JPS6360106A/en
Publication of JPH0686291B2 publication Critical patent/JPH0686291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規なスピネル粉体およびその製造方法に関す
るものである。
The present invention relates to a novel spinel powder and a method for producing the same.

[従来の技術] スピネルは古くから知られた複合酸化物であるがアルミ
ナ、マグネシアなどの他の酸化物に比較して十分な用途
の開発が行われていない。スピネルが他の酸化物に比較
して用途開発が遅れている大きな理由は成形性、焼結性
に優れた粉体が得られていないためである。
[Prior Art] Spinel is a complex oxide that has been known for a long time, but its use has not been sufficiently developed compared to other oxides such as alumina and magnesia. The main reason why spinel has been delayed in application development as compared with other oxides is that powder having excellent moldability and sinterability has not been obtained.

しかしスピネルはアルミナと比較して低温での焼結が可
能なため容易にセラミックス製造ができること、またア
ルミナよりも赤外線の吸収が小さいため、優れた透光体
が得られること、そして結晶構造が立方晶のために等方
的なセラミックスが得られること等のために今後の研究
開発が期待されているセラミックスの1つである。
However, since spinel can be sintered at a lower temperature than alumina, ceramics can be easily manufactured, and since infrared absorption is smaller than that of alumina, an excellent light-transmitting body can be obtained, and the crystal structure is cubic. This is one of the ceramics that is expected to be researched and developed in the future because it is possible to obtain isotropic ceramics because of the crystal.

工業的なセラミックスの製造において問題となる条件は
粉体の成形性と焼結性である。成形性、焼結性に優れた
理想的なセラミック粉体として要求される粉体特性は次
のとおりである。
The conditions that are problematic in the industrial production of ceramics are the formability and sinterability of the powder. The powder characteristics required as an ideal ceramic powder having excellent formability and sinterability are as follows.

(1)できるだけ微粒であること (2)粒度分布の狭いこと (3)凝集していないこと (4)球形に近いこと (5)化学組成が均一で高純度であることなど しかしこのような特性を全て兼ね備えた粉体を合成する
ことは極めて困難とされる。
(1) As small as possible (2) Narrow particle size distribution (3) Not aggregated (4) Nearly spherical (5) Uniform chemical composition and high purity, but such characteristics It is extremely difficult to synthesize a powder having all of the above.

従来行われている代表的なスピネル(MgAl2O4)粉体の
合成法としては固相反応法、共沈法、アルコキシド法の
3通りがある。
There are three typical conventional methods for synthesizing spinel (MgAl 2 O 4 ) powder: solid phase reaction method, coprecipitation method, and alkoxide method.

固相反応法はセラミック粉体合成法として操作が単純で
あるために最も一般的な方法であり、これまで数々の報
告がある。例えばAl(OH)3、Mg(OH)2の混合物に鉱化剤と
してAlF3を1.5wt%添加し1100〜1400℃で仮焼して合成
したスピネル粉体(成形体密度60%)を1600℃で1時間
焼成し、相対密度95〜97%の焼結体を得ている[W.T.BA
KKER and J.G.LINDSAY,Ceramic Bulletin,46[11]1094
−1097,(1967)参照]。
The solid phase reaction method is the most general method as a ceramic powder synthesis method because of its simple operation, and there have been many reports so far. For example, spinel powder (molded body density 60%) synthesized by adding 1.5 wt% of AlF 3 as a mineralizer to a mixture of Al (OH) 3 and Mg (OH) 2 and calcining at 1100 to 1400 ℃ 1600 After firing at ℃ for 1 hour, a sintered body with a relative density of 95-97% was obtained [WTBA
KKER and JGLINDSAY, Ceramic Bulletin, 46 [11] 1094
-1097, (1967)].

共沈法、アルコキシド法では焼結性の高い微粒で高純度
な粉体が得られるが操作が複雑であり原料となる塩、ア
ルコキシドが高価であるために得られるスピネル粉体も
高価なものとなる。そして又、生成した水酸化物の仮焼
による粒度の制御が難しいため、単分散粒子は得にく
い。そして、この方法では微粒な粉体が得られるが、そ
の反面、この方法による微粒のものは成形体密度が低い
ため焼成時の収縮が大きく工業的なセラミックス製造に
はあまり好ましくない。
The coprecipitation method and the alkoxide method produce fine powder with high sinterability and high purity, but the operation is complicated and the resulting salt and alkoxide are expensive, so the spinel powder obtained is also expensive. Become. Further, it is difficult to obtain monodisperse particles because it is difficult to control the particle size by calcining the generated hydroxide. And, although fine particles can be obtained by this method, on the other hand, fine particles obtained by this method have a low density of the compact, and therefore, shrinkage during firing is large, which is not preferable for industrial ceramic production.

次に固相法は他の方法に比べると操作が単純である反
面、微粒で単分散な粒子を得ることが困難である。その
ため成形性、焼結性が低いので緻密な焼結体を得るため
にはホットプレス、焼結助剤の添加等の操作が必要にな
る。ところが焼結助剤又は前記した文献のようにAlF3
の添加物を入れる方法により製造されたものは焼結体の
物性、特に電気的特性を低下させる恐れがあるのであま
り好ましくない。
Next, the solid phase method is simpler in operation than other methods, but it is difficult to obtain fine and monodisperse particles. Therefore, since the formability and sinterability are low, operations such as hot pressing and addition of a sintering aid are required to obtain a dense sintered body. However, those manufactured by a method of adding a sintering aid or an additive such as AlF 3 as in the above-mentioned documents are not preferable because they may deteriorate the physical properties of the sintered body, particularly the electrical characteristics.

[発明が解決しようとする問題点] 本発明は前記欠点の少ない球状で単分散な粒子を提供し
ようとするものであり、特に操作が単純な固相法によっ
て、そのような粒子を得ようとするものである。即ち、
本発明の目的は成形性、焼結性に優れた球状で単分散な
粒子のスピネル粉体とその製造方法を提供することであ
る。
[Problems to be Solved by the Invention] The present invention is intended to provide spherical and monodisperse particles having less of the above-mentioned drawbacks, and particularly to obtain such particles by a solid-phase method which is simple in operation. To do. That is,
An object of the present invention is to provide a spinel powder of spherical monodisperse particles excellent in moldability and sinterability, and a method for producing the same.

[問題点を解決するための手段] 本発明者らはスピネルのこのような状況を踏まえて成形
性、焼結性が同時に優れたスピネル粉体を工業的に製造
する方法を探索した結果、固相法において水酸化物を原
料とし、原料の組成及び粒度を調整することにより成形
性、焼結性ともに優れたスピネル粉体の製造方法を見出
し本発明をなすに至った。そしてその構成は特許請求の
範囲に記載の通りである。
[Means for Solving Problems] Based on the situation of spinel, the present inventors have searched for a method for industrially producing spinel powder excellent in formability and sinterability at the same time. In the phase method, a hydroxide was used as a raw material, and by adjusting the composition and particle size of the raw material, a method for producing spinel powder having excellent formability and sinterability was found, and the present invention was accomplished. The structure is as described in the claims.

一般にセラミックスとしては高純度なものが望ましくス
ピネルもMgO+Al2O3が99.5重量%を下回ると電気特性、
透光性が低下する。従って本発明のスピネルの純度は9
9.5重量%以上とする。残部は製造上混入してくるもの
で原料の不純物よりなるが焼結体の物性の点で少ない程
好ましい。
Generally, high-purity ceramics are desirable, and spinel also has electrical characteristics when MgO + Al 2 O 3 is less than 99.5% by weight.
Translucency is reduced. Therefore, the purity of the spinel of the present invention is 9
9.5 wt% or more. The balance is mixed in during manufacture and is composed of impurities of the raw material, but it is preferable that it is smaller in terms of physical properties of the sintered body.

MgO/Al2O3モル比は0.90〜1.36すなわちMgO/(MgO+Al2O
3)重量比が25.5〜35.0重量%が必要であり焼結性の点
でMgO/Al2O3モル比が0.90〜1.10すなわちMgO/(MgO+Al
2O3)重量比が25.5〜31.2重量%が好ましい。MgO/Al2O3
モル比が0.90より小さい場合、焼結の際、異常粒成長が
起こり緻密な焼結体が得にくく緻密化したものでも強度
等の物性が低下する。またMgO/Al2O3モル比が1.36より
大きい場合、焼結しにくく、緻密化しない。またモル比
がこの範囲をはずれるとMgOまたはAl2O3等の第2相が増
えスピネル本来の特性が失われ好ましくない。
The MgO / Al 2 O 3 molar ratio is 0.90 to 1.36, that is, MgO / (MgO + Al 2 O
3 ) A weight ratio of 25.5 to 35.0% by weight is required, and in terms of sinterability, the MgO / Al 2 O 3 molar ratio is 0.90 to 1.10, that is, MgO / (MgO + Al
2 O 3) ratio by weight is 25.5 to 31.2% by weight. MgO / Al 2 O 3
If the molar ratio is less than 0.90, abnormal grain growth occurs during sintering, and it is difficult to obtain a dense sintered body, and physical properties such as strength are deteriorated even if the sintered body is densified. When the MgO / Al 2 O 3 molar ratio is larger than 1.36, sintering is difficult and densification does not occur. On the other hand, if the molar ratio is out of this range, the second phase such as MgO or Al 2 O 3 will increase and the original properties of spinel will be lost, which is not preferable.

本発明のスピネル粉体は平均粒径0.6〜1.5μmであり、
粒度分布が0.5〜2.0μmの粒子が60重量%以上で好まし
くは0.5〜2.0μmの粒子が70重量%以上で、更に好まし
くは80重量%以上である。ここで平均粒径0.6μmより
大きな粉体では焼結性が急激に低下し、また1.5μmよ
り大きな粉体では焼結性が急激に低下し、そして粒度分
布が本発明の粉体より広いものでは焼結体の組織が不均
一となり焼結性が低下する。
The spinel powder of the present invention has an average particle size of 0.6 to 1.5 μm,
The particles having a particle size distribution of 0.5 to 2.0 μm are 60% by weight or more, preferably the particles having 0.5 to 2.0 μm are 70% by weight or more, more preferably 80% by weight or more. Here, the sinterability of the powder having an average particle size larger than 0.6 μm sharply decreases, the sinterability of the powder having an average particle size larger than 1.5 μm sharply decreases, and the particle size distribution is wider than that of the powder of the present invention. In that case, the structure of the sintered body becomes non-uniform, and the sinterability decreases.

固め見掛比重は成形性を表わす一つの示準であるが、1.
1g/cm3より小さいと成形性が低下し緻密な焼結体が得に
くい。固め見掛比重は粒度のみでなく粒子の形状にも依
存し、球状に近いほど大きくなる傾向にある。本発明の
スピネル粉体は後述のSEM写真(走査型顕微鏡写真)か
らも明らかなように粒子が球状であるという非常に大き
な特徴を持っている。この様な粒子形状と狭い粒度分布
ゆえ高い成形性が得られるものと推定される。又、本発
明で得られるスピネル粉体は本発明者らの測定によると
BET法から求めた比表面積が2.0〜7.0m2/gで、また比表
面積から計算した粒子径に対する上記の平均粒子径の比
が5未満であることが好ましい。これにより粒子は球状
でまた分散性が良くなり、一層成形性、焼結性に優れる
ものと考えられる。
The apparent apparent specific gravity is one measure of formability, but 1.
If it is less than 1 g / cm 3 , the formability is lowered and it is difficult to obtain a dense sintered body. The apparent apparent specific gravity depends not only on the particle size but also on the shape of the particles, and tends to increase as the spherical shape approaches. The spinel powder of the present invention has a very great feature that the particles are spherical, as is clear from the SEM photograph (scanning microscope photograph) described later. It is presumed that high moldability can be obtained due to such particle shape and narrow particle size distribution. Further, the spinel powder obtained in the present invention is measured by the present inventors.
It is preferable that the specific surface area obtained by the BET method is 2.0 to 7.0 m 2 / g, and the ratio of the average particle diameter to the particle diameter calculated from the specific surface area is less than 5. As a result, the particles are spherical, and the dispersibility is improved, and it is considered that the particles are more excellent in moldability and sinterability.

次に本発明におけるスピネル粉体の製造方法についての
べる。本発明において原料として用いるMg(OH)2粉は灼
熱基準でMgO98.5重量%以上、SiO2、CaO、B2O3を合量で
0.5〜1.2重量%含まなければならない。Mg(OH)2、Si
O2、CaO、B2O3以外の不純物は製造上やむを得ず混入す
るものであり、少ない程好ましい。SiO2、CaO、B2O3
合量が0.5重量%より少ない場合はスピネル化の反応性
が低下し、未反応のMgO、Al2O3が多量に残り、又1.2重
量%より多い場合には反応は十分に進むが大粒子が生成
しやすくなり、粒径が不均一となり、いずれも焼結性を
低下させ好ましくない。また純度の点からも多いのは好
ましくない。Mg(OH)2粉の粒度はスピネル化の反応を起
こりやすくし、均一な組成のスピネル粉体を製造するた
めに凝集粒で20μm以下のものが好ましい。本発明のこ
の様なMg(OH)2粉は例えば海水にアルカリを反応させ、
分級、洗浄により精製して得られる。
Next, the method for producing the spinel powder in the present invention will be described. The Mg (OH) 2 powder used as a raw material in the present invention is 98.5% by weight or more of MgO on the basis of burning, SiO 2 , CaO, and B 2 O 3 in a total amount.
Must contain 0.5-1.2% by weight. Mg (OH) 2 , Si
Impurities other than O 2 , CaO, and B 2 O 3 are unavoidably mixed in during manufacturing, and the smaller the amount, the better. When the total amount of SiO 2 , CaO, and B 2 O 3 is less than 0.5% by weight, the reactivity of spinelization decreases, and unreacted MgO and Al 2 O 3 remain in a large amount, or more than 1.2% by weight. Although the reaction proceeds sufficiently, the large particles are likely to be generated and the particle diameter becomes non-uniform, which is not preferable because the sinterability is deteriorated. Further, it is not preferable that the amount is large in terms of purity. The particle size of the Mg (OH) 2 powder is preferably 20 μm or less in terms of agglomerated particles in order to facilitate the spinelization reaction and to produce a spinel powder having a uniform composition. Such Mg (OH) 2 powder of the present invention reacts alkali with seawater,
It is obtained by purification by classification and washing.

また、もう一つの原料であるAl(OH)3については本発明
における平均粒径0.6〜1.5μmで、かつ0.5〜2.0μmの
粒子が80重量%以上であるような狭い粒度分布のスピネ
ル粉体を製造するために組成が灼熱基準で表わしてAl2O
399.0重量%、好ましくは99.7重量%以上である必要が
あり、高純度なもの程好ましい。そして0.5〜2.0μmの
粒子が80重量%以上、好ましくは95重量%以上を占め、
その平均粒径が1.2〜1.5μmでなくてはならない。本発
明者らによればスピネルの粒径は原料のMg(OH)2、Al(O
H)3のうちAl(OH)3の粒径に支配されることが明らかにさ
れた。従って本発明ではAl(OH)3粉の粒度の調整が重要
である。Al(OH)3粉の平均粒径が1.2μmより小さい場
合、スピネルの平均粉径は0.6μmより小さくなり、ま
たAl(OH)3粉の平均粒径が1.5μmより大きい場合、スピ
ネルの平均粒径は1.2μmより大きくなり、そしてまたA
l(OH)3の粒度分布の広いものではスピネルの粒度分布も
広くなり好ましくない。本発明で使用されるAl(OH)3
例えば通常のバイヤー法により合成される。
Further, with regard to Al (OH) 3 which is another raw material, a spinel powder having a narrow particle size distribution such that the average particle size in the present invention is 0.6 to 1.5 μm and the particles having 0.5 to 2.0 μm are 80% by weight or more. To produce Al 2 O
It should be 39.0% by weight, preferably 99.7% by weight or more, and the higher purity is more preferable. And particles of 0.5 to 2.0 μm occupy 80% by weight or more, preferably 95% by weight or more,
The average particle size must be 1.2-1.5 μm. According to the inventors, the particle size of spinel is Mg (OH) 2 , Al (O
It was revealed that the grain size of Al (OH) 3 out of H) 3 is dominated. Therefore, in the present invention, it is important to control the particle size of Al (OH) 3 powder. When the average particle size of Al (OH) 3 powder is smaller than 1.2 μm, the average particle size of spinel is smaller than 0.6 μm, and when the average particle size of Al (OH) 3 powder is larger than 1.5 μm, the average of spinel. Particle size is larger than 1.2 μm, and also A
If the particle size distribution of l (OH) 3 is wide, the particle size distribution of spinel becomes wide, which is not preferable. The Al (OH) 3 used in the present invention is synthesized, for example, by the usual Bayer method.

本発明においてMg(OH)2、Al(OH)3の混合は均一に行われ
ることが望ましく、好ましくは水中で混合される。この
ようにして得られたMg(OH)2、Al(OH)3混合ケークは仮焼
され、スピネル化反応によりスピネルが合成される。こ
の時の仮焼温度は1100〜1500℃で行われ、好ましくは12
00〜1400℃である。仮焼により得られた粉体はスピネル
粒子の弱い凝集からなる場合があり、必要に応じて例え
ばボールミル等で粉砕することにより、容易に特許請求
の範囲(1)の粒度分布及び平均粒径のスピネル粉体が
得られる。
In the present invention, Mg (OH) 2 and Al (OH) 3 are desirably mixed uniformly, preferably in water. The Mg (OH) 2 and Al (OH) 3 mixed cake thus obtained is calcined and spinel is synthesized by a spinelization reaction. The calcination temperature at this time is 1100 to 1500 ° C, preferably 12
It is from 00 to 1400 ° C. The powder obtained by calcination may consist of weak agglomerates of spinel particles. If necessary, the powder may be crushed with, for example, a ball mill to easily obtain the particle size distribution and the average particle size according to claim (1). A spinel powder is obtained.

以上述べたように本発明における合成方法の特徴は原料
Mg(OH)2中のSiO2、CaO、B2O3の合量及び原料Al(OH)3
粒度及び粒度分布を調整することであり、その結果、成
形性、焼結性に優れたスピネル粉体が合成できる。
As described above, the characteristic of the synthesis method of the present invention is that the raw material
It is to adjust the total amount of SiO 2 , CaO, B 2 O 3 in Mg (OH) 2 and the particle size and particle size distribution of the raw material Al (OH) 3 , resulting in excellent formability and sinterability. Spinel powder can be synthesized.

次に実施例、比較例により発明の具体的な説明をする。Next, the invention will be specifically described with reference to Examples and Comparative Examples.

[実施例] 本発明においてスピネル粉体の成形は9×5×5mm3
大きさの成形体となるように超硬金属製合型を使い1ton
/cm2で1軸加圧により行い、成形体の径と重量より成形
体密度を求めた。スピネルの焼結体密度は溶媒にケロシ
ンを用いてアルキメデス法により求めた。
[Example] In the present invention, the spinel powder is molded by using a cemented carbide metal mold to obtain a molded body having a size of 9 x 5 x 5 mm 3 and 1 ton.
It was carried out by uniaxial pressing at / cm 2 , and the compact density was determined from the diameter and weight of the compact. The density of the sintered body of spinel was determined by the Archimedes method using kerosene as a solvent.

本発明の測定値において平均粒径及び粒度分布はセイシ
ン企業(株)製の光透過式粒度分布測定器(ミクロン・
フォート・サイザー、型式:SKA−5000)により沈降法に
より0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒
として5分間超音波分散後に測定し50重量%径を平均粒
子径とした。固め見掛比重は細川鉄工所製パウダーテス
ターにより180回タッピングして測定した値である。ま
た粒子の形状については走査型電子顕微鏡で観察した。
In the measured values of the present invention, the average particle size and the particle size distribution are the light transmission type particle size distribution measuring device (micron.
Fort Sizer, Model: SKA-5000) was subjected to ultrasonic precipitation for 5 minutes by a 0.2% aqueous solution of sodium hexametaphosphate as a dispersion medium by a sedimentation method, and the 50% by weight diameter was determined as the average particle diameter. The apparent apparent specific gravity is a value measured by tapping 180 times with a powder tester manufactured by Hosokawa Iron Works. The shape of the particles was observed with a scanning electron microscope.

実施例1 組成が第1表に示すような海水から合成した水酸化マグ
ネシウムと第2表に示した市販の水酸化アルミニウム
(昭和電工製ハイジライトH−42)をMgOが28.3重量%
(MgO/Al2O3モル比=1.00)となる様に水中で攪拌混合
し次いで濾過、乾燥した。次にこの混合粉体を1300℃で
2時間仮焼しスピネル化し、ボールミルで粉砕した。得
られたスピネル粉体の物性を第3表、電子顕微鏡写真を
第1図、粒度分布を第2図に示す。このように粒子は球
状で分散性の良いものであった。
Example 1 Magnesium hydroxide having a composition of 28.3% by weight was prepared from magnesium hydroxide synthesized from seawater as shown in Table 1 and commercially available aluminum hydroxide shown in Table 2 (Hijilite H-42 manufactured by Showa Denko KK).
The mixture was stirred and mixed in water so that (MgO / Al 2 O 3 molar ratio = 1.00), then filtered and dried. Next, this mixed powder was calcined at 1300 ° C. for 2 hours to form a spinel, which was then crushed by a ball mill. The physical properties of the obtained spinel powder are shown in Table 3, the electron micrograph is shown in FIG. 1, and the particle size distribution is shown in FIG. Thus, the particles were spherical and had good dispersibility.

この粉体を加圧成形した後に電気炉で焼成した。その成
形体及び焼結体密度を第4表に示す。H2中1700℃焼結に
より理論密度3.58g/cm3を有する焼結体が得られた。ま
た第3図に成形圧と成形体密度の関係を示す。このスピ
ネル粉体をドクターブレード法によりシー状に成形し、
air中1600℃で焼成したところ第5図の写真に示すよう
にかなり透光性の薄板が得られた。写真中の薄板のサイ
ズは16.5cm×4cm×0.6mmで表面はかなり平滑でそりのな
いものであった。
This powder was pressure-molded and then fired in an electric furnace. Table 4 shows the density of the molded body and the sintered body. Sintering with a theoretical density of 3.58 g / cm 3 was obtained by sintering at 1700 ° C in H 2 . Further, FIG. 3 shows the relationship between the molding pressure and the density of the molded body. This spinel powder is molded into a sea shape by the doctor blade method,
When baked at 1600 ° C in air, a considerably transparent thin plate was obtained as shown in the photograph in Fig. 5. The size of the thin plate in the photograph was 16.5 cm × 4 cm × 0.6 mm, and the surface was fairly smooth and had no warpage.

実施例2 実施例1と同じ水酸化マグネシウムと水酸化アルミニウ
ムを用いMgO/(MgO+Al2O3)重量比が29.3重量%(MgO/
Al2O3モル比=1.05)となる様に混合し実施例1と全く
同様にしてスピネル粉体を合成した。得られたスピネル
粉体の物性を第3表に示した。このスピネル粉体を実施
例1と同様に成形、焼成を行った。成形体および焼結体
の密度を第4表に示した。
Example 2 The same magnesium hydroxide and aluminum hydroxide as in Example 1 were used, and the MgO / (MgO + Al 2 O 3 ) weight ratio was 29.3% by weight (MgO /
Al 2 O 3 molar ratio = 1.05) was mixed and spinel powder was synthesized in exactly the same manner as in Example 1. The physical properties of the obtained spinel powder are shown in Table 3. This spinel powder was molded and fired in the same manner as in Example 1. The densities of the molded body and the sintered body are shown in Table 4.

実施例3 海水から合成した水酸化マグネシウムで組成が第1表に
示すような水酸化マグネシウムと実施例1と同じ水酸化
アルミニウムを用いて実施例1と同じ方法でスピネル粉
体を製造した。得られたスピネル粉体の物性を第3表に
示す。この粉体を実施例1と同様に成形、焼成を行っ
た。その成形体及び焼結体の密度を第4表に示した。
Example 3 A spinel powder was produced in the same manner as in Example 1 by using magnesium hydroxide synthesized from seawater and having the composition shown in Table 1 and the same aluminum hydroxide as in Example 1. Table 3 shows the physical properties of the obtained spinel powder. This powder was molded and fired in the same manner as in Example 1. The densities of the molded body and the sintered body are shown in Table 4.

比較例1 組成が第1表に示すような市販の水酸化マグネシウム
(旭硝子社製、標準品#200)を粉砕し15μmのふるい
を通したものと実施例1と同じ水酸化アルミニウムより
実施例1と同じ方法でスピネル粉体を製造した。得られ
た粉体の電子顕微鏡写真を第4図に粉体物製を第3表に
示す。この粉体中には未反応のMgO及びα−Al2O3が残存
しており微粒で凝集が多い。この粉体を実施例1と同様
に成形、焼成を行った。その成形体および焼結体の密度
を第4表に示した。また焼結体中には異常粒成長がみら
れた。
Comparative Example 1 Commercially available magnesium hydroxide having a composition shown in Table 1 (standard product # 200 manufactured by Asahi Glass Co., Ltd.) was crushed and passed through a 15 μm sieve, and the same aluminum hydroxide as in Example 1 was used. A spinel powder was produced in the same manner as in. An electron micrograph of the obtained powder is shown in FIG. 4, and a powder product is shown in Table 3. Unreacted MgO and α-Al 2 O 3 remain in this powder, and they are fine particles and often aggregate. This powder was molded and fired in the same manner as in Example 1. The densities of the molded body and the sintered body are shown in Table 4. Also, abnormal grain growth was observed in the sintered body.

比較例2 実施例1と同じ水酸化マグネシウムと第2表に示した粗
粒の水酸化アルミニウムより実施例1と同じ方法でスピ
ネル粉体を製造した。得られた粉体の物性を第3表に示
す。この粉体を実施例1と同様に成形、焼成を行った。
その成形体及び焼結体の密度を第4表に示す。
Comparative Example 2 Spinel powder was produced in the same manner as in Example 1 from the same magnesium hydroxide as in Example 1 and the coarse-grained aluminum hydroxide shown in Table 2. The physical properties of the obtained powder are shown in Table 3. This powder was molded and fired in the same manner as in Example 1.
Table 4 shows the densities of the molded body and the sintered body.

[発明の効果] 以上説明したように、本発明のスピネル粉体は成形性、
焼結性が非常に優れた単分散性の粉体であり、特に原料
である水酸化マグネシウム中のSiO2、CaO、B2O3の合量
と、水酸化アルミニウムの粒度を調整することにより、
優れたスピネル粉体を得ることができる。
[Effects of the Invention] As described above, the spinel powder of the present invention has good moldability,
It is a monodisperse powder with excellent sinterability, especially by adjusting the total amount of SiO 2 , CaO, B 2 O 3 in the raw material magnesium hydroxide and the particle size of aluminum hydroxide. ,
An excellent spinel powder can be obtained.

また、用途としては、粉体の粒度分布が狭く、分散性が
よく、球状であるために研磨材に用いられる。成形体は
セラミック基板、透光体に適している。
In addition, as the application, the powder has a narrow particle size distribution, good dispersibility, and has a spherical shape, so that it is used as an abrasive. The molded body is suitable for ceramic substrates and translucent bodies.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例1で得られたスピネル粉体の粒子構造
を示す電子顕微鏡写真、 第2図は、上記粉体の粒度分布を示すグラフ、 第3図は成形圧と成形密度の関係を示すグラフ、 第4図は比較例1で得られたスピネル粉体の粒子構造を
示す電子顕微鏡写真、 第5図は実施例1で得られた粉体をドクターブレード法
で成形し、空気中で1700℃で焼成した透光性の薄板の粒
子構造を示す写真である。
FIG. 1 is an electron micrograph showing the particle structure of the spinel powder obtained in Example 1, FIG. 2 is a graph showing the particle size distribution of the powder, and FIG. 3 is the relationship between molding pressure and molding density. 4 is an electron micrograph showing the particle structure of the spinel powder obtained in Comparative Example 1, and FIG. 5 is a graph showing the powder obtained in Example 1 formed in the air by the doctor blade method. 2 is a photograph showing the grain structure of a light-transmissive thin plate fired at 1700 ° C.

フロントページの続き (72)発明者 猿楽 浩一 福島県いわき市小名浜渚2の4 旭化成工 業株式会社内 (56)参考文献 特開 昭62−72556(JP,A) 特開 昭63−185803(JP,A) 特開 昭62−273044(JP,A) 特開 昭62−23441(JP,A) 特開 昭46−7321(JP,A) 特開 昭59−131570(JP,A) 特開 昭57−67074(JP,A) Ceramic Bull.46[1]、 P.1094−7Front Page Continuation (72) Inventor Koichi Sarugaku 4-2, Onahama Nagisa, Iwaki City, Fukushima Prefecture Asahi Kasei Corporation (56) References JP-A-62-72556 (JP, A) JP-A-63-185803 (JP) , A) JP 62-273044 (JP, A) JP 62-23441 (JP, A) JP 46-7321 (JP, A) JP 59-131570 (JP, A) JP 57-67074 (JP, A) Ceramic Bull. 46 [1], P. 1094-7

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】組成がMgO+Al2O399.5重量%以上、MgOが2
5.5〜35.0重量%で、かつ0.5〜2.0μmの粒子が60重量
%以上であり、かつその平均粒径が0.6〜1.5μm、固め
見掛比重が1.1g/cm3以上であることを特徴とするスピネ
ル粉体。
1. Composition of MgO + Al 2 O 3 99.5 wt% or more, MgO 2
5.5 to 35.0% by weight, 0.5 to 2.0 μm particles are 60% by weight or more, the average particle size is 0.6 to 1.5 μm, and the apparent apparent specific gravity is 1.1 g / cm 3 or more. Spinel powder to be.
【請求項2】組成が灼熱基準で表わしてMgO98.5重量%
以上であり、かつSiO2、CaO、B2O3が合量で0.5〜1.2重
量%である水酸化マグネシウム粉と組成が灼熱基準で表
わしてAl2O399.0重量%以上であり、かつ0.5〜2.0μm
の粒子が80重量%以上を占め、その平均粒径が1.2〜1.5
μmである水酸化アルミニウム粉を混合した後に仮焼す
ることを特徴とするスピネル粉体の製造方法。
2. Composition of MgO 98.5% by weight expressed on a burning basis
Or more, and SiO 2 , CaO, B 2 O 3 is a total of 0.5 to 1.2 wt% magnesium hydroxide powder and composition is Al 2 O 3 99.0 wt% or more on a burning standard, and 0.5 ~ 2.0 μm
Particles occupy 80% by weight or more, and the average particle size is 1.2 to 1.5
A method for producing spinel powder, which comprises calcination after mixing aluminum hydroxide powder having a size of μm.
JP61200083A 1986-08-28 1986-08-28 Spinel powder and method for producing the same Expired - Lifetime JPH0686291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200083A JPH0686291B2 (en) 1986-08-28 1986-08-28 Spinel powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200083A JPH0686291B2 (en) 1986-08-28 1986-08-28 Spinel powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6360106A JPS6360106A (en) 1988-03-16
JPH0686291B2 true JPH0686291B2 (en) 1994-11-02

Family

ID=16418570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200083A Expired - Lifetime JPH0686291B2 (en) 1986-08-28 1986-08-28 Spinel powder and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0686291B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622010B2 (en) * 1999-08-04 2011-02-02 株式会社豊田中央研究所 Spinel powder and spinel slurry
JP3706054B2 (en) * 2000-12-11 2005-10-12 日本碍子株式会社 Method for producing beta alumina solid electrolyte
JP4830911B2 (en) * 2007-03-02 2011-12-07 住友電気工業株式会社 Spinel sintered body, manufacturing method thereof, transparent substrate and liquid crystal projector
EP2030958B1 (en) * 2007-08-27 2013-04-10 Rohm and Haas Electronic Materials LLC Method for producing polycrystalline monolithic magnesium aluminate spinels
JP2009084093A (en) * 2007-09-28 2009-04-23 Hitachi Zosen Corp Method for manufacturing spinel and method for manufacturing metallic silicon
WO2020145342A1 (en) * 2019-01-11 2020-07-16 Dic株式会社 Spinel particles, method for producing same, resin composition, molded article, composition, green sheet, fired article, and glass-ceramic substrate
CN114538913B (en) * 2022-02-17 2023-05-02 大连海事大学 Pure-phase nano MgAl with high sintering activity 2 O 4 Powder and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CeramicBull.46[1、P.1094−7

Also Published As

Publication number Publication date
JPS6360106A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
US9309157B2 (en) Translucent zirconia sintered body, process for producing the same, and use of the same
JP3783445B2 (en) Method for producing translucent alumina sintered body and use thereof
JP4122746B2 (en) Method for producing fine α-alumina powder
CN111620679B (en) Method for preparing high-purity mullite material by taking fused silica as silicon source
JP2639121B2 (en) Method for producing fine α-alumina powder
JP2009269812A (en) Light-transmitting sintered zirconia compact, method for producing the same, and use thereof
JPH0558722A (en) Aluminum titanate ceramics and its production
JP2008024555A (en) Zirconia fine powder, its manufacturing method and its use
JP2010150063A (en) Light-transmitting zirconia sintered compact, method for producing the same and use thereof
US3304153A (en) Method of preparing magnesia spinel
JPH0686291B2 (en) Spinel powder and method for producing the same
JPH0692266B2 (en) Method for producing mullite-cordierite composite ceramics
JP2002029742A (en) Rare earth oxide powder and method for manufacturing the same
JP3420377B2 (en) Method for producing yttrium-aluminum-garnet sintered body
JP4890758B2 (en) Easy-sintering alumina particles
WO2018117162A1 (en) Transparent aln sintered body, and production method therefor
JP3454957B2 (en) Alumina sintered body
JPH0217484B2 (en)
JPH08143358A (en) Aluminous sintered compact
JP2890866B2 (en) Method for producing fine α-alumina powder
JPH0789759A (en) Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
JP3888714B2 (en) Alumina sintered body
JP3177534B2 (en) Spinel ultrafine powder and production method thereof
JPS5820902B2 (en) Manufacturing method of magnesia clinker
JP3125067B2 (en) Method for producing transparent yttria sintered body