JPS6272554A - Manufacture of fine polycrystal al2o3 sintered body - Google Patents
Manufacture of fine polycrystal al2o3 sintered bodyInfo
- Publication number
- JPS6272554A JPS6272554A JP60211762A JP21176285A JPS6272554A JP S6272554 A JPS6272554 A JP S6272554A JP 60211762 A JP60211762 A JP 60211762A JP 21176285 A JP21176285 A JP 21176285A JP S6272554 A JPS6272554 A JP S6272554A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- mgo
- al2o3
- raw material
- ultrafine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本3?iすJは緻密な多結晶Al2O3焼結体の製造方
法に係り、詳しくは、高温覗き窓、赤外透過窓、化学工
学用覗き窓、高圧ナトリウム放電灯等の基材として好適
な、緻密な多結晶Al2O3焼結体の製造方法に関する
。[Detailed description of the invention] [Industrial application field] Book 3? iSJ relates to a method for producing dense polycrystalline Al2O3 sintered bodies, and in detail, it is a method for producing dense polycrystalline Al2O3 sintered bodies, which are suitable as base materials for high-temperature viewing windows, infrared transmission windows, chemical engineering viewing windows, high-pressure sodium discharge lamps, etc. The present invention relates to a method for producing a polycrystalline Al2O3 sintered body.
[従来の技術]
近年、耐熱性透明材料として様々な高融点酸化物焼結体
の透明化が試みられており、このような透光性セラミッ
クスの一種としてA n 2O3焼結体が開発されてい
る。この透光性のAR2O3焼結体は六方晶系焼結体で
、その直線透過率は60%程度である。[Prior Art] In recent years, attempts have been made to make various high-melting point oxide sintered bodies transparent as heat-resistant transparent materials, and A n 2O3 sintered bodies have been developed as a type of such translucent ceramics. There is. This light-transmitting AR2O3 sintered body is a hexagonal sintered body, and its in-line transmittance is about 60%.
ところで、セラミックスを透光体とするためにl+ 緬
めでkIII寝&二椿龜ζさせ為必要があるところから
、透光性セラミックスの製造方法としては・高温焼結法
や焼結助剤(以下、単に助剤ということがある。)を用
いる方法あるいは超加圧焼結法が採用されている0例え
ば、透光性A l 2O3を製造する方法としては、そ
の融点(2O50℃程度)近傍の高温度で焼結するか、
あるいは、第1図に示す如く、原料粉末にMgO等の助
剤粉末を0.2〜0.6重量%添加混合し、仮焼、粉砕
、成形した後、必要に応じて加工後、H2炉又は真空炉
で仮焼し5次いで1700〜1900℃で5〜2O時間
本焼成して製造されている。By the way, in order to make ceramics into a translucent body, it is necessary to heat the ceramics with l+ kIII and two-tsubaki zeta, so methods for manufacturing translucent ceramics include high-temperature sintering and sintering aids (hereinafter referred to as sintering aids). For example, as a method for producing translucent Al 2O3, a method using a super-pressure sintering method (sometimes simply referred to as an auxiliary agent) or a superpressure sintering method uses Sinter at high temperature or
Alternatively, as shown in Fig. 1, 0.2 to 0.6% by weight of auxiliary powder such as MgO is added and mixed to the raw material powder, calcined, crushed, molded, processed as necessary, and then heated in an H2 furnace. Alternatively, it is produced by calcination in a vacuum furnace, followed by main firing at 1700 to 1900°C for 5 to 20 hours.
[発明が解決しようとする問題点]
このように、焼結助剤を用いずに、透光性を有するwk
v、なA fL2O3焼結体を製造する場合には、a高
温における焼成が必要とされ、工業的に不利であった。[Problems to be solved by the invention] In this way, wk having translucency can be produced without using a sintering aid.
When producing a sintered body of A fL2O3, firing at a high temperature was required, which was industrially disadvantageous.
また、焼結助剤を用いることにより、焼成温度を下げる
ことができるが、この場合には、原料粉末と助剤粉末と
の混合において不都合がある。即ち、これらの粉末は、
通常、0.5〜Ig、m程度と微細粒径のものであり、
しかも助剤粉末の添加量が微量であるところから、原料
粉末と助剤粉末とを均一に混合することは極めて困難で
ある。また、互いの接触面積が極めて小さいので、助剤
添加の効果が十分に発揮し得ない場合がある。Further, by using a sintering aid, the firing temperature can be lowered, but in this case, there is a problem in mixing the raw material powder and the aid powder. That is, these powders are
Usually, it has a fine particle size of about 0.5 to Ig, m,
Moreover, since the amount of the auxiliary powder added is very small, it is extremely difficult to uniformly mix the raw material powder and the auxiliary powder. Moreover, since the contact area with each other is extremely small, the effect of adding the auxiliary agent may not be fully exhibited.
なお、1000−1100Kg/crn’程度の超加圧
下では、tooo〜1300℃程度の低温で焼成するこ
とにより、l&密な焼結体を得ることは可能であるが、
この場合には、超加圧設備が必要となり、設備の大型化
や保守管理の複雑化等の問題が生じ、製造コストが高く
つくという欠点がある。Note that under super-pressure of about 1000-1100 Kg/crn', it is possible to obtain a dense sintered body by firing at a low temperature of about 1300°C.
In this case, superpressurizing equipment is required, which causes problems such as increased equipment size and complicated maintenance management, and has the disadvantage of increasing manufacturing costs.
[問題点を解決するための手段]
本発明者らは上記従来法の問題点を解決するべく種々検
討を重ねた結果、アルコキシド法で生成される超微粒子
に着目し、高純度Al2O3にアルコキシド法で生成さ
れるA l 2O3及びMgOを超微粉粒子助剤として
添加混合することによって、容易に低温でしかも短時間
で緻密な多結晶A l 2O3焼結体を製造することが
できることを見出し1本発明を完成させた。[Means for Solving the Problems] As a result of various studies in order to solve the problems of the above-mentioned conventional methods, the present inventors focused on ultrafine particles produced by the alkoxide method, and applied the alkoxide method to high-purity Al2O3. It was discovered that a dense polycrystalline Al 2O3 sintered body could be easily produced at low temperature and in a short time by adding and mixing Al 2O3 and MgO produced in ultrafine powder particles as an auxiliary agent. Completed the invention.
即ち、本発明は。That is, the present invention.
高純度Al2Oz原料にアルコキシド法により得られた
。1[粒子A l 2O z及びMgOを混合し、この
混合物を成形した後真空又C±水素雰囲気中で焼成する
ことを特徴とする@密な多結晶A l 2O3焼結体の
製造方法、
を要旨とするものである。Obtained by alkoxide method using high purity Al2Oz raw material. 1 [Method for producing a dense polycrystalline Al2O3 sintered body, which comprises mixing particles Al2Oz and MgO, molding the mixture, and then firing it in a vacuum or C±hydrogen atmosphere. This is a summary.
以下に未発明の詳細な説明する。A detailed description of the invention will be given below.
本発明において、Al2O3原料としては、高純度Al
2O3を用いる。高純度Al2Ox原料としては、純度
99.996以上の高純度品が好亥しい。In the present invention, as the Al2O3 raw material, high purity Al
2O3 is used. As the high-purity Al2Ox raw material, a high-purity product with a purity of 99.996 or higher is preferable.
このような高純度A l 2O3原料の一つとして、ア
ルゴ≠シト法により得られた沈殿物を仮焼したA L
2O zが挙げられ己、これtt、原料の主属フルー奈
シト溶液を、言渋により加水分解し、得られた沈澱物を
例えば400〜800’CF程度で仮焼したものである
。As one of such high-purity Al 2O3 raw materials, Al
For example, 2Oz is the product obtained by hydrolyzing a solution of the main fluorine as a raw material and calcining the resulting precipitate at, for example, about 400 to 800'CF.
本発明において、A l 2O3 Ll料は、平均粒径
が0.2〜1.0gm程度、とりわけ0.5pm程度の
粉末が好ましい。In the present invention, the Al 2 O 3 Ll material is preferably a powder having an average particle size of about 0.2 to 1.0 gm, particularly about 0.5 pm.
また1本発明において、焼結助剤として用いるアルコキ
シド法により得られた超微粒子Al2O3及びMgOと
しては、An及びMgのアルコキシドを加水分解して得
られた粉末を必要に応じて粉砕、仮焼したものが用いら
れる。この場合、原料のAn及びMgアルコキシドとし
ては、An及びMgのメトキシド、エトキシド、インプ
ロポキシド、ブトキシド等が用いられる。使用するアル
コキシドは不純物含有量の低いものが好ましい、これら
のアルコキシドは、ベンゼン、トルエン、キシレンある
いはアルコール等の有機溶媒中に溶解混合して加水分解
に供しても良い。In addition, in the present invention, the ultrafine particles Al2O3 and MgO obtained by the alkoxide method used as sintering aids are obtained by crushing and calcining powders obtained by hydrolyzing An and Mg alkoxides as necessary. things are used. In this case, as the raw material An and Mg alkoxide, An and Mg methoxide, ethoxide, impropoxide, butoxide, etc. are used. The alkoxide used preferably has a low impurity content. These alkoxides may be dissolved and mixed in an organic solvent such as benzene, toluene, xylene or alcohol and subjected to hydrolysis.
この超微粒子A l 2O :I及びMgOは、粒径l
O〜100OAの超微粒子が好ましい、また、Al2O
3とMgOの割合は重量比でAl2O3:Mg0=9
: 1〜4:6とするのが好ましい。The ultrafine particles A l 2O :I and MgO have a particle size l
Ultrafine particles of 0 to 100 OA are preferable, and Al2O
The weight ratio of 3 and MgO is Al2O3:Mg0=9
: It is preferable to set it as 1-4:6.
本発明においては、まずA!;L2O−4原料にト記A
iL 2O3及びMgOからなる助剤を湿式又は乾式
で添加混合する。Al2O3及びMgOの添加量は、A
fL2O3原料に対して0.15〜10重量%とするの
が好ましい。In the present invention, first, A! ; Add A to L2O-4 raw material
An auxiliary agent consisting of iL 2 O 3 and MgO is added and mixed in a wet or dry manner. The amounts of Al2O3 and MgO added are A
The amount is preferably 0.15 to 10% by weight based on the fL2O3 raw material.
得られた混合物は加圧成形法等の成形法により成形する
が、加圧成形の場合、成形圧力は700〜1500Kg
/crn’程度が好適である。The obtained mixture is molded by a molding method such as pressure molding, but in the case of pressure molding, the molding pressure is 700 to 1500 kg.
/crn' is preferable.
この成形体は、次いで、真空又は水素雰囲気中で焼成す
る。この焼成は1600〜1800℃で3〜10時間程
度、とりわけ1600〜1700セで5〜10時間程度
行なうのが好ましい、なお、この焼成に先立って仮焼を
行なうのが好ましい、仮焼は1000〜12O0℃で1
〜3時間程度行なうのが好適である。この仮焼も真空又
は水素雰囲気中で行なうのが好ましいが、他の雰囲気と
しても良い。This molded body is then fired in a vacuum or hydrogen atmosphere. This firing is preferably carried out at 1,600 to 1,800 °C for about 3 to 10 hours, especially at 1,600 to 1,700 °C for about 5 to 10 hours. It is also preferable to perform calcination prior to this firing. 1 at 12O0℃
It is preferable to carry out the treatment for about 3 hours. This calcination is also preferably carried out in vacuum or in a hydrogen atmosphere, but other atmospheres may be used.
このような本発明の方法により得られる多結晶A l
2O3焼結体は、極めて緻密で透光性に優れたものとな
る。Polycrystalline Al obtained by such a method of the present invention
The 2O3 sintered body is extremely dense and has excellent translucency.
[作用]
一般に、アルコキシド法あるいはアルコキシド共沈法に
より得られる粉末は、粒径が小さく、表面が活性でしか
も高純度である。[Function] Generally, the powder obtained by the alkoxide method or the alkoxide coprecipitation method has a small particle size, an active surface, and high purity.
このため、本発明により、高純度の1例えばアルコキシ
ド法により得られた沈殿物を仮焼した原料A l 2O
yに、アルコキシド法により得られた超微粒子Al2
O3及びMgOを添加混合することによって、Al2O
3原料粉末の粒子間に超微粒子粉末のA l 2O3及
びMgOが均一に分布されるようになるため、低い焼成
温度で均一かつ緻密な焼結体を得ることが可能となる。Therefore, according to the present invention, high-purity 1, for example, a raw material A l 2O obtained by calcining a precipitate obtained by an alkoxide method.
y, ultrafine particles Al2 obtained by the alkoxide method
By adding and mixing O3 and MgO, Al2O
Since the ultrafine powder A 1 2 O 3 and MgO are uniformly distributed between the particles of the three raw material powders, it is possible to obtain a uniform and dense sintered body at a low firing temperature.
また、本発明方法のプロセスは、第1図の経路Aのよう
になり、従来法の途中の諸操作を省略でき、実施が容易
である。Further, the process of the method of the present invention is as shown in route A in FIG. 1, and various operations in the middle of the conventional method can be omitted, making it easy to implement.
[実施例]
以下に本発明を実施例により更に具体的に説明するが、
本発明はその要旨を超えない限り、以下の実施例に限定
されるものではない。[Examples] The present invention will be explained in more detail by examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.
実施例1
平均粒径が0.5ルmの高純度Al2O3 (純度99
.9%以上)95重量部とアルコキシド法により生成さ
れたA l 2O3及びMgO微粉粒子(粒径lO〜l
OOA、AlI303 : Mg0=9:l(重量比
))5重量部をポットミルで乾式混合した。得られた混
合粉末を1000Kg/Crrfで加圧成形し、この成
形体を水素炉中、1000℃で1時間仮焼し、更に16
50℃で3時間本焼成し、焼結体を得た。Example 1 High purity Al2O3 (purity 99
.. 9% or more) and 95 parts by weight of Al2O3 and MgO fine powder particles (particle size lO~l) produced by the alkoxide method.
5 parts by weight of OOA, AlI303:Mg0=9:l (weight ratio)) were dry mixed in a pot mill. The obtained mixed powder was press-molded at 1000 Kg/Crrf, and this compact was calcined in a hydrogen furnace at 1000°C for 1 hour, and further heated for 16 hours.
Main firing was performed at 50° C. for 3 hours to obtain a sintered body.
この焼結体の各種物性値を測定したところ、下記の通り
であった。When various physical property values of this sintered body were measured, they were as follows.
密 度 : 4.00Kg/cゴ曲げ強度
: 40.OKg/mrn’熱′#1撃性 : 26
0℃急冷
光透過率 : 96%
この結果から、本発明により、極めて緻密で透光性が高
く機械的性質にも優れたAl2O3焼結体が短時間で容
易に得られることが明らかである。Density: 4.00Kg/c Bending strength
: 40. OKg/mrn'heat'#1 Impact: 26
0° C. quenching light transmittance: 96% From these results, it is clear that according to the present invention, an extremely dense Al2O3 sintered body having high translucency and excellent mechanical properties can be easily obtained in a short time.
[発明の効果]
焼結体の製造方法は、高純度A fL2O :l原料に
、アルコキシド法により得られたA l 2O3及びM
gO超微粒子を添加混合し、得られた混合物を成形、焼
成するものであって、A l 2O3及びMg0M微粒
子が焼結助剤として良好に作用するため8低温焼成で短
時間に極めて緻密な焼結体を得ることができる。しかし
て、本発明により製造される多結晶A l 2O3焼結
体は、透光性が高く、強度、熱衝撃性等の機械的特性、
化学的安定性にも極めて優れ、高温覗き窓、赤外透過窓
、化学工学用覗き窓、高圧ナトリウム放電灯等の基材と
して、工業的に極めて有用である。[Effects of the Invention] The method for producing a sintered body includes adding Al 2O3 and M obtained by an alkoxide method to a high-purity A fL2O:l raw material.
Ultrafine particles of gO are added and mixed, and the resulting mixture is molded and fired.Since the Al2O3 and Mg0M fine particles act well as sintering aids, very dense sintering can be achieved in a short time at low temperature. You can get a solid body. Therefore, the polycrystalline Al2O3 sintered body produced by the present invention has high translucency, mechanical properties such as strength and thermal shock resistance, and
It also has excellent chemical stability and is extremely useful industrially as a base material for high-temperature viewing windows, infrared transmission windows, chemical engineering viewing windows, high-pressure sodium discharge lamps, etc.
:51図は従来の透光性セラミックスの製造プロセスの
説明図である。51 is an explanatory diagram of the conventional manufacturing process of translucent ceramics.
Claims (4)
り得られた超微粒子Al_2O_3及びMgOを混合し
、この混合物を成形した後真空又は水素雰囲気中で焼成
することを特徴とする緻密な多結晶Al_2O_3焼結
体の製造方法。(1) A dense polycrystalline Al_2O_3 sintered body characterized by mixing ultrafine particles of Al_2O_3 and MgO obtained by an alkoxide method with a high-purity Al_2O_3 raw material, molding this mixture, and then firing it in a vacuum or hydrogen atmosphere. manufacturing method.
_3及びMgOの添加量が0.15〜10重量%である
ことを特徴とする特許請求の範囲第1項に記載の緻密な
多結晶Al_2O_3焼結体の製造方法。(2) Ultrafine particles Al_2O for Al_2O_3 raw material
2. The method for producing a dense polycrystalline Al_2O_3 sintered body according to claim 1, wherein the amount of addition of _3 and MgO is 0.15 to 10% by weight.
10〜1000Åであることを特徴とする特許請求の範
囲第1項又は第2項に記載の緻密な多結晶Al_2O_
3焼結体の製造方法。(3) Dense polycrystalline Al_2O_ according to claim 1 or 2, characterized in that the average particle size of the ultrafine particles Al_2O_3 and MgO is 10 to 1000 Å.
3. Method for manufacturing sintered body.
_3及びMgOの割合は9:1〜4:6(重量比)であ
ることを特徴とする特許請求の範囲第1項ないし第3項
のいずれか1項に記載の緻密な多結晶Al_2O_3焼
結体の製造方法。(4) Ultrafine particles Al_2O_3 and MgO Al_2O
Dense polycrystalline Al_2O_3 sintered according to any one of claims 1 to 3, wherein the ratio of _3 and MgO is 9:1 to 4:6 (weight ratio). How the body is manufactured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60211762A JPS6272554A (en) | 1985-09-25 | 1985-09-25 | Manufacture of fine polycrystal al2o3 sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60211762A JPS6272554A (en) | 1985-09-25 | 1985-09-25 | Manufacture of fine polycrystal al2o3 sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6272554A true JPS6272554A (en) | 1987-04-03 |
JPH0236545B2 JPH0236545B2 (en) | 1990-08-17 |
Family
ID=16611157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60211762A Granted JPS6272554A (en) | 1985-09-25 | 1985-09-25 | Manufacture of fine polycrystal al2o3 sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6272554A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03261648A (en) * | 1990-03-09 | 1991-11-21 | Agency Of Ind Science & Technol | Sintered material of polycrystalline alumina |
WO2017086227A1 (en) | 2015-11-20 | 2017-05-26 | 旭硝子株式会社 | Optical glass |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04119045U (en) * | 1991-04-03 | 1992-10-23 | 住金鋼材工業株式会社 | Raised floor wiring structure |
-
1985
- 1985-09-25 JP JP60211762A patent/JPS6272554A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03261648A (en) * | 1990-03-09 | 1991-11-21 | Agency Of Ind Science & Technol | Sintered material of polycrystalline alumina |
WO2017086227A1 (en) | 2015-11-20 | 2017-05-26 | 旭硝子株式会社 | Optical glass |
US10294144B2 (en) | 2015-11-20 | 2019-05-21 | AGC Inc. | Optical glass |
Also Published As
Publication number | Publication date |
---|---|
JPH0236545B2 (en) | 1990-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62153173A (en) | Aluminum nitride sintered body and manufacture | |
US5641440A (en) | Sintering aids for producing BaO.Al2 O3.2SiO2 and SrO.Al.sub. O3.2SiO2 ceramic materials | |
JPH05345662A (en) | Production of forsterite ceramic | |
JPS6272556A (en) | Manufacture of fine polycrystal mgal2o4 spinel | |
JPS6272554A (en) | Manufacture of fine polycrystal al2o3 sintered body | |
JPS6360106A (en) | Spinel powder and its production | |
JP2558849B2 (en) | Method for producing transparent aluminum oxynitride composite sintered body | |
JPH06144925A (en) | Light transmitting yttrium-aluminum-garnet sintered compact and production thereof and window material for clock | |
JPH01212268A (en) | Superconducting sintered body | |
JPS6172683A (en) | Manufacture of zirconia ceramics | |
JP2586151B2 (en) | Alumina-silica based sintered body and method for producing the same | |
JPS58181764A (en) | Manufacture of high fineness magnesia sintered body | |
JP4100932B2 (en) | Dielectric ceramic composition and manufacturing method thereof | |
JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
JPH0788256B2 (en) | Method for manufacturing aluminum nitride sintered body | |
JPH07133149A (en) | Production of magnesia sintered body | |
JPH01145380A (en) | Production of silicon nitride sintered form | |
JPH0383851A (en) | Mullite-based sintered compact and production thereof | |
JPH0383852A (en) | Mullite-based sintered compact and its production | |
JPH0234516A (en) | Production of tl-ba-ca-cu-o type superconducting ceramics | |
JP2003342079A (en) | Process for molding heat-shrinkable ceramic | |
JPS58204813A (en) | Preparation of powdery carbide and nitride of silicon | |
JPH0627031B2 (en) | Aluminum nitride sintered body | |
JPS62288166A (en) | Manufacture of tungsten carbide-oxide composite sintered body | |
JPH0742169B2 (en) | Method for producing high-density boron nitride sintered body |