JPH0236545B2 - - Google Patents

Info

Publication number
JPH0236545B2
JPH0236545B2 JP60211762A JP21176285A JPH0236545B2 JP H0236545 B2 JPH0236545 B2 JP H0236545B2 JP 60211762 A JP60211762 A JP 60211762A JP 21176285 A JP21176285 A JP 21176285A JP H0236545 B2 JPH0236545 B2 JP H0236545B2
Authority
JP
Japan
Prior art keywords
mgo
sintered body
producing
dense
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60211762A
Other languages
Japanese (ja)
Other versions
JPS6272554A (en
Inventor
Keisuke Morita
Hiroshi Sasaki
Yasuo Fukatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP60211762A priority Critical patent/JPS6272554A/en
Publication of JPS6272554A publication Critical patent/JPS6272554A/en
Publication of JPH0236545B2 publication Critical patent/JPH0236545B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は緻密な多結晶Al2O3焼結体の製造方法
に係り、詳しくは、高温覗き窓、赤外透過窓、化
学工学用覗き窓、高圧ナトリウム放電灯等の基材
として好適な、緻密な多結晶Al2O3焼結体の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a dense polycrystalline Al 2 O 3 sintered body, and specifically relates to a method for manufacturing a dense polycrystalline Al 2 O 3 sintered body. The present invention relates to a method for producing a dense polycrystalline Al 2 O 3 sintered body suitable as a base material for windows, high-pressure sodium discharge lamps, etc.

[従来の技術] 近年、耐熱性透明材料として様々な高融点酸化
物焼結体の透明化が試みられており、このような
透光性セラミツクスの一種としてAl2O3焼結体が
開発されている。この透光性のAl2O3焼結体は六
方晶系焼結体で、その直線透過率は60%程度であ
る。
[Prior Art] In recent years, attempts have been made to make various high-melting point oxide sintered bodies transparent as heat-resistant transparent materials, and Al 2 O 3 sintered bodies have been developed as a type of such translucent ceramics. ing. This translucent Al 2 O 3 sintered body is a hexagonal sintered body, and its in-line transmittance is about 60%.

ところで、セラミツクスを透光体とするために
は、極めて緻密に焼結させる必要があるところか
ら、透光性セラミツクスの製造方法としては、高
温焼結法や焼結助剤(以下、単に助剤ということ
がある。)を用いる方法あるいは超加圧焼結法が
採用されている。例えば、透光性Al2O3を製造す
る方法としては、その融点(2050℃程度)近傍の
高温度で焼結するか、あるいは、第1図に示す如
く、原料粉末にMgO等の助剤粉末を0.2〜0.6重量
%添加混合し、仮焼、粉砕、成形した後、必要に
応じて加工後、H2炉又は真空炉で仮焼し、次い
で1700〜1900℃で5〜20時間本焼成して製造され
ている。
By the way, in order to make ceramics into a transparent material, it is necessary to sinter it extremely densely, so methods for producing transparent ceramics include high-temperature sintering and the use of sintering aids (hereinafter simply referred to as aids). ) or a superpressure sintering method is adopted. For example, methods for manufacturing translucent Al 2 O 3 include sintering at a high temperature near its melting point (approximately 2050°C), or adding an auxiliary agent such as MgO to the raw material powder as shown in Figure 1. After adding and mixing 0.2 to 0.6% by weight of powder, calcining, pulverizing, and molding, after processing as necessary, calcining in an H2 furnace or vacuum furnace, and then main firing at 1700 to 1900℃ for 5 to 20 hours. It is manufactured by

[発明が解決しようとする問題点] このように、焼結助剤を用いずに、透光性を有
する緻密なAl2O3焼結体を製造する場合には、超
高温における焼成が必要とされ、工業的に不利で
あつた。また、焼結助剤を用いることにより、焼
成温度を下げることができるが、この場合には、
原料粉末と助剤粉末との混合において不都合があ
る。即ち、これらの粉末は、通常、0.5〜1μm程
度と微細粒径のものであり、しかも助剤粉末の添
加量が微量であるところから、原緑粉末と助剤粉
末とを均一に混合することは極めて困難である。
また、互いの接触面積が極めて小さいので、助剤
添加の効果が十分に発揮し得ない場合がある。
[Problems to be solved by the invention] As described above, when producing a dense Al 2 O 3 sintered body with transparency without using a sintering aid, firing at an ultra-high temperature is necessary. Therefore, it was industrially disadvantageous. In addition, the firing temperature can be lowered by using a sintering aid, but in this case,
There is a problem in mixing the raw material powder and the auxiliary powder. That is, these powders usually have a fine particle size of about 0.5 to 1 μm, and since the amount of auxiliary powder added is very small, it is necessary to uniformly mix the raw green powder and the auxiliary powder. is extremely difficult.
Moreover, since the contact area with each other is extremely small, the effect of adding the auxiliary agent may not be fully exhibited.

なお、1000〜1100Kg/cm2程度の超加圧下では、
1000〜1300℃程度の低温で焼成することにより、
緻密な焼結体を得ることは可能であるが、この場
合には、超加圧設備が必要となり、設備の大型化
や保守管理の複雑化等の問題が生じ、製造コスト
が高くつくという欠点がある。
In addition, under super pressurization of about 1000 to 1100Kg/ cm2 ,
By firing at a low temperature of about 1000-1300℃,
It is possible to obtain a dense sintered body, but in this case, super pressurized equipment is required, leading to problems such as larger equipment and more complicated maintenance management, which increases manufacturing costs. There is.

[問題点を解決するための手段] 本発明者らは上記従来法の問題点を解決するべ
く種々検討を重ねた結果、アルコキシド法で生成
される超微粒子に着目し、高純度Al2O3にアルコ
キシド法で生成されるAl2O3及びMgOを超微粉粒
子助剤として添加混合することによつて、容易に
低温でしかも短時間で緻密な多結晶Al2O3焼結体
を製造することができることを見出し、本発明を
完成させた。
[Means for Solving the Problems] As a result of various studies in order to solve the problems of the above-mentioned conventional methods, the present inventors focused on ultrafine particles produced by the alkoxide method, and developed high-purity Al 2 O 3 By adding and mixing Al 2 O 3 and MgO produced by the alkoxide method as ultrafine particle auxiliary agents, a dense polycrystalline Al 2 O 3 sintered body can be easily produced at low temperature and in a short time. They discovered that it is possible to do this, and completed the present invention.

即ち、本発明は、 高純度Al2O3原料にアルコキシド法により得ら
れた超微粒子Al2O3及びMgOを混合し、この混合
物を成形した後真空又は水素雰囲気中で焼成する
ことを特徴とする緻密な多結晶Al2O3焼結体の製
造方法、 を要旨とするものである。
That is, the present invention is characterized in that ultrafine particles of Al 2 O 3 and MgO obtained by an alkoxide method are mixed with a high-purity Al 2 O 3 raw material, and this mixture is shaped and then fired in a vacuum or hydrogen atmosphere. A method for producing a dense polycrystalline Al 2 O 3 sintered body.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明において、Al2O3原料としては、高純度
Al2O3を用いる。高純度Al2O3原料としては、純
度99.9%以上の高純度品が好ましい。
In the present invention, high purity Al 2 O 3 raw material is used as Al 2 O 3 raw material.
Use Al 2 O 3 . As the high-purity Al 2 O 3 raw material, a high-purity product with a purity of 99.9% or more is preferable.

このような高純度Al2O3原料の一つとして、ア
ルコキシド法により得られた沈殿物を仮焼した
Al2O3が挙げられる。これは、原料の金属アルコ
キシド溶液を、常法により加水分解し、得られた
沈澱物を例えば400〜800℃程度で仮焼したもので
ある。
As one of such high-purity Al 2 O 3 raw materials, precipitates obtained by the alkoxide method are calcined.
Examples include Al2O3 . This is obtained by hydrolyzing a metal alkoxide solution as a raw material by a conventional method and calcining the obtained precipitate at, for example, about 400 to 800°C.

本発明において、Al2O3原料は、平均粒径が0.2
〜1.0μm程度、とりわけ0.5μm程度の粉末が好ま
しい。
In the present invention, the Al 2 O 3 raw material has an average particle size of 0.2
Powders with a diameter of about 1.0 μm, especially about 0.5 μm are preferred.

また、本発明において、焼結助剤として用いる
アルコキシド法により得られた超微粒子Al2O3
びMgOとしては、Al及びMgのアルコキシドを
加水分解して得られた粉末を必要に応じて粉砕、
仮焼したものが用いられる。この場合、原料の
Al及びMgアルコキシドとしては、Al及びMgの
メトキシド、エトキシド、イソプロポキシト、ブ
トキシド等が用いられる。使用するアルコキシド
は不純物含有量の低いものが好ましい。これらの
アルコキシドは、ベンゼン、トルエン、キシレン
あるいはアルコール等の有機溶媒中に溶解混合し
て加水分解に供しても良い。
In addition, in the present invention, the ultrafine particles Al 2 O 3 and MgO obtained by the alkoxide method used as sintering aids are obtained by pulverizing powder obtained by hydrolyzing Al and Mg alkoxides as necessary.
The calcined one is used. In this case, the raw material
As Al and Mg alkoxides, Al and Mg methoxide, ethoxide, isopropoxide, butoxide, etc. are used. The alkoxide used preferably has a low impurity content. These alkoxides may be dissolved and mixed in an organic solvent such as benzene, toluene, xylene or alcohol, and subjected to hydrolysis.

この超微粒子Al2O3及びMgOは、粒径10〜1000
Åの超微粒子が好ましい。また、Al2O3とMgOの
割合は重量比でAl2O3:MgO=9:1〜4:6と
するのが好ましい。
This ultrafine particle Al 2 O 3 and MgO has a particle size of 10 to 1000
Ultrafine particles of Å are preferred. Moreover, it is preferable that the weight ratio of Al 2 O 3 and MgO is Al 2 O 3 :MgO=9:1 to 4:6.

本発明においては、まずAl2O3原料に上記
Al2O3及びMgOからなる助剤を湿式又は乾式で添
加混合する。Al2O3及びMgOの添加量は、Al2O3
原料に対して0.15〜10重量%とするのが好まし
い。
In the present invention, first, the above-mentioned material is added to the Al 2 O 3 raw material.
An auxiliary agent consisting of Al 2 O 3 and MgO is added and mixed in a wet or dry manner. The amount of Al 2 O 3 and MgO added is Al 2 O 3
The amount is preferably 0.15 to 10% by weight based on the raw material.

得られた混合物は加圧成形法等の成形法により
成形するが、加圧成形の場合、成形圧力は700〜
1500Kg/cm2程度が好適である。
The obtained mixture is molded by a molding method such as pressure molding, but in the case of pressure molding, the molding pressure is 700~
Approximately 1500Kg/cm 2 is suitable.

この成形体は、次いで、真空又は水素雰囲気中
で焼成する。この焼成は1600〜1800℃で3〜10時
間程度、とりわけ1600〜1700℃で5〜10時間程度
行なうのが好ましい。なお、この焼成に先立つて
仮焼を行なうのが好ましい。仮焼は1000〜1200℃
で1〜3時間程度行なうのが好適である。この仮
焼も真空又は水素雰囲気中で行なうのが好ましい
が、他の雰囲気としても良い。
This molded body is then fired in a vacuum or hydrogen atmosphere. This firing is preferably carried out at 1600 to 1800°C for about 3 to 10 hours, particularly preferably at 1600 to 1700°C for about 5 to 10 hours. Note that it is preferable to perform calcination prior to this firing. Calcination at 1000-1200℃
It is preferable to carry out the heating for about 1 to 3 hours. This calcination is also preferably carried out in vacuum or in a hydrogen atmosphere, but other atmospheres may be used.

このような本発明の方法により得られる多結晶
Al2O3焼結体は、極めて緻密で透光性に優れたも
のとなる。
Polycrystals obtained by such a method of the present invention
The Al 2 O 3 sintered body is extremely dense and has excellent translucency.

[作用] 一般に、アルコキシド法あるいはアルコキシド
共沈法により得られる粉末は、粒径が小さく、表
面が活性でしかも高純度である。
[Function] Generally, the powder obtained by the alkoxide method or the alkoxide coprecipitation method has a small particle size, an active surface, and high purity.

このため、本発明により、高純度の、例えばア
ルコキシド法により得られた沈殿物を仮焼した原
料Al2O3に、アルコキシド法により得られた超微
粒子Al2O3及びMgOを添加混合することによつ
て、Al2O3原料粉末の粒子間に超微粒子粉末の
Al2O3及びMgOが均一に分布されるようになるた
め、低い焼成温度で均一かつ緻密な焼結体を得る
ことが可能となる。
Therefore, according to the present invention, ultrafine particles of Al 2 O 3 and MgO obtained by the alkoxide method are added and mixed to high purity raw material Al 2 O 3 obtained by calcining a precipitate obtained by the alkoxide method, for example. Due to
Since Al 2 O 3 and MgO are uniformly distributed, it is possible to obtain a uniform and dense sintered body at a low firing temperature.

また、本発明方法のプロセスは、第1図の経路
Aのようになり、従来法の途中の諸操作を省略で
き、実施が容易である。
Further, the process of the method of the present invention is as shown in route A in FIG. 1, and various operations in the middle of the conventional method can be omitted, making it easy to implement.

[実施例] 以下に本発明を実施例により更り具体的に説明
するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。
[Examples] The present invention will be explained in more detail by Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例 1 平均粒径が0.5μmの高純度Al2O3(純度99.9%以
上)95重量部とアルコキシド法により生成された
Al2O3及びMgO微粉粒子(粒径10〜100Å、
Al2O3:MgO=9:1(重量比))5重量部をポツ
トミルで乾式混合した。得られた混合粉末を1000
Kg/cm2で加圧成形し、この成形体を水素炉中、
1000℃で1時間仮焼し、更に1650℃で3時間本焼
成し、焼結体を得た。
Example 1 Produced by an alkoxide method with 95 parts by weight of high-purity Al 2 O 3 (purity of 99.9% or more) with an average particle size of 0.5 μm
Al2O3 and MgO fine powder particles (particle size 10~ 100Å ,
5 parts by weight of Al 2 O 3 :MgO=9:1 (weight ratio) were dry mixed in a pot mill. 1000 of the obtained mixed powder
Pressure molded at Kg/ cm2 , and put this molded body in a hydrogen furnace.
Calcination was performed at 1000°C for 1 hour, and main firing was further performed at 1650°C for 3 hours to obtain a sintered body.

この焼結体の各種物性値を測定したところ、下
記の通りであつた。
When various physical properties of this sintered body were measured, they were as follows.

密度:4.00Kg/cm3 曲げ強度:40.0Kg/mm2 熱衝撃性:260℃急冷 光透過率:96% この結果から、本発明により、極めて緻密で透
光性が高く機械的性質にも優れたAl2O3焼結体が
短時間で容易に得られることが明らかである。
Density: 4.00Kg/cm 3 Bending strength: 40.0Kg/mm 2 Thermal shock resistance: Quenched at 260°C Light transmittance: 96% From these results, the present invention has been found to be extremely dense, highly translucent, and has excellent mechanical properties. It is clear that an Al 2 O 3 sintered body can be easily obtained in a short time.

[発明の効果] 以上詳述した通り、本発明の多結晶Al2O3焼結
体の製造方法は、高純度Al2O3原料に、アルコキ
シド法により得られたAl2O3及びMgO超微粒子を
添加混合し、得られた混合物を成形、焼成するも
のであつて、Al2O3及びMgO超微粒子が焼結助剤
として良好に作用するため、低温焼成で短時間に
極めて緻密な焼結体を得ることができる。しかし
て、本発明により製造される多結晶Al2O3焼結体
は、透光性が高く、強度、熱衝撃性等の機械的特
性、化学的安定性にも極めて優れ、高温覗き窓、
赤外透過窓、化学工学用覗き窓、高圧ナトリウム
放電灯等の基材として、工業的に極めて有用であ
る。
[Effects of the Invention] As detailed above, the method for producing a polycrystalline Al 2 O 3 sintered body of the present invention adds Al 2 O 3 and MgO obtained by an alkoxide method to a high-purity Al 2 O 3 raw material. Fine particles are added and mixed, and the resulting mixture is molded and fired. Because the Al 2 O 3 and MgO ultrafine particles act well as sintering aids, extremely dense sintering can be achieved in a short time at low temperatures. You can get a solid body. Therefore, the polycrystalline Al 2 O 3 sintered body produced by the present invention has high translucency, excellent mechanical properties such as strength and thermal shock resistance, and excellent chemical stability, and can be used as a high-temperature viewing window,
It is extremely useful industrially as a base material for infrared transmission windows, viewing windows for chemical engineering, high-pressure sodium discharge lamps, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の透光性セラミツクスの製造プロ
セスの説明図である。
FIG. 1 is an explanatory diagram of a conventional manufacturing process of translucent ceramics.

Claims (1)

【特許請求の範囲】 1 高純度Al2O3原料にアルコキシド法により得
られた超微粒子Al2O3及びMgOを混合し、この混
合物を成形した後真空又は水素雰囲気中で焼成す
ることを特徴とする緻密な多結晶Al2O3焼結体の
製造方法。 2 Al2O3原料に対する超微粒子Al2O3及びMgO
の添加量が0.15〜10重量%であることを特徴とす
る特許請求の範囲第1項に記載の緻密な多結晶
Al2O3焼結体の製造方法。 3 超微粒子Al2O3及びMgOの平均粒径は10〜
1000Åであることを特徴とする特許請求の範囲第
1項又は第2項に記載の緻密な多結晶Al2O3焼結
体の製造方法。 4 超微粒子Al2O3及びMgOのAl2O3及びMgOの
割合は9:1〜4:6(重量比)であることを特
徴とする特許請求の範囲第1項ないし第3項のい
ずれか1項に記載の緻密な多結晶Al2O3焼結体の
製造方法。
[Claims] 1. Ultrafine particles of Al 2 O 3 and MgO obtained by an alkoxide method are mixed with a high-purity Al 2 O 3 raw material, and this mixture is shaped and then fired in a vacuum or hydrogen atmosphere. A method for producing a dense polycrystalline Al 2 O 3 sintered body. 2 Ultrafine particles of Al 2 O 3 and MgO for Al 2 O 3 raw materials
The dense polycrystal according to claim 1, characterized in that the amount of added is 0.15 to 10% by weight.
A method for producing an Al 2 O 3 sintered body. 3 The average particle size of ultrafine particles Al 2 O 3 and MgO is 10~
A method for producing a dense polycrystalline Al 2 O 3 sintered body according to claim 1 or 2, wherein the thickness is 1000 Å. 4. Any one of claims 1 to 3, characterized in that the ratio of Al 2 O 3 and MgO in the ultrafine particles Al 2 O 3 and MgO is 9:1 to 4:6 (weight ratio). A method for producing a dense polycrystalline Al 2 O 3 sintered body according to item 1.
JP60211762A 1985-09-25 1985-09-25 Manufacture of fine polycrystal al2o3 sintered body Granted JPS6272554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211762A JPS6272554A (en) 1985-09-25 1985-09-25 Manufacture of fine polycrystal al2o3 sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211762A JPS6272554A (en) 1985-09-25 1985-09-25 Manufacture of fine polycrystal al2o3 sintered body

Publications (2)

Publication Number Publication Date
JPS6272554A JPS6272554A (en) 1987-04-03
JPH0236545B2 true JPH0236545B2 (en) 1990-08-17

Family

ID=16611157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211762A Granted JPS6272554A (en) 1985-09-25 1985-09-25 Manufacture of fine polycrystal al2o3 sintered body

Country Status (1)

Country Link
JP (1) JPS6272554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119045U (en) * 1991-04-03 1992-10-23 住金鋼材工業株式会社 Raised floor wiring structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2663191B2 (en) * 1990-03-09 1997-10-15 通商産業省工業技術院長 Method for producing polycrystalline alumina sintered body
WO2017086227A1 (en) 2015-11-20 2017-05-26 旭硝子株式会社 Optical glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119045U (en) * 1991-04-03 1992-10-23 住金鋼材工業株式会社 Raised floor wiring structure

Also Published As

Publication number Publication date
JPS6272554A (en) 1987-04-03

Similar Documents

Publication Publication Date Title
JP3548438B2 (en) Method for producing low thermal expansion ceramics
CN113943159A (en) Preparation method of boron carbide composite ceramic
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JPH0535102B2 (en)
JPH05345662A (en) Production of forsterite ceramic
JPH0236545B2 (en)
CN107417271A (en) A kind of preparation method of the bar-shaped brilliant enhancing dimension stone of magnesia alumina spinel of rare earth aluminium (silicon) hydrochlorate
JP3734540B2 (en) Manufacturing method of indium oxide-zinc oxide based sintered compact target
JPH06144925A (en) Light transmitting yttrium-aluminum-garnet sintered compact and production thereof and window material for clock
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JPH02252661A (en) Method for forming and calcining boron nitride-nonoxide ceramic composite material
JPH01212268A (en) Superconducting sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JP2614874B2 (en) Pressureless sintered boron nitride compact
JPH0615421B2 (en) Method for manufacturing mullite sintered body
JPH07133149A (en) Production of magnesia sintered body
JP2586151B2 (en) Alumina-silica based sintered body and method for producing the same
JPH0867517A (en) Member consisting of indium-tin oxide and production thereof
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPS6283358A (en) Manufacture of high purity mgo sintered body
JPH0383851A (en) Mullite-based sintered compact and production thereof
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body
JPH01148748A (en) Production of sintered body of zirconia
JPH06122551A (en) Translucent yttrium-aluminum-garnet sintered compact, its production and window material for watch
JPH0742169B2 (en) Method for producing high-density boron nitride sintered body