JPH0512287B2 - - Google Patents

Info

Publication number
JPH0512287B2
JPH0512287B2 JP58246380A JP24638083A JPH0512287B2 JP H0512287 B2 JPH0512287 B2 JP H0512287B2 JP 58246380 A JP58246380 A JP 58246380A JP 24638083 A JP24638083 A JP 24638083A JP H0512287 B2 JPH0512287 B2 JP H0512287B2
Authority
JP
Japan
Prior art keywords
alkaline earth
aluminum nitride
nitride powder
powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58246380A
Other languages
Japanese (ja)
Other versions
JPS60141607A (en
Inventor
Katsutoshi Yoneya
Hiroshi Inoe
Hideyuki Oozu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58246380A priority Critical patent/JPS60141607A/en
Publication of JPS60141607A publication Critical patent/JPS60141607A/en
Publication of JPH0512287B2 publication Critical patent/JPH0512287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、易焼結性窒化アルミニウム粉末の製
造方法に関する。 〔発明の技術的背景とその問題点〕 窒化アルミニウム(AlN)は、優れた熱伝導
性と高温での化学的安定性に優れているため、各
種高温部品、とりわけ高熱伝導性基板、放熱部品
として注目されている。こうした窒化アルミニウ
ムは、通常、焼結体の状態で使用されるが、この
場合、焼結体の特性はプロセスもさることなが
ら、原料粉末の性状に大きく左右される。 ところで、従来、窒化アルミニウム粉末はアル
ミニウムの直接窒化法や、アルミナの炭素還元法
等により製造されている。しかしながら、これら
の方法は、窒化アルミニウム粉末の生成収率が低
く、しかも製造された窒化アルミニウム粉末の反
応性が低いという欠点があつた。こため、かかる
窒化アルミニウム粉末を用いて緻密な窒化アルミ
ニウム焼結体を製造する場合は、反応性を高める
ために助剤を加える方法が採用されている。しか
しながら、助剤の添加は、微量であるため、その
均一な配合が難しく、緻密な窒化アルミニウム焼
結体を安定して製造することが困難であつた。 〔発明の目的〕 本発明は、上記事情に鑑みされたもので、反応
性の高い易焼結性窒化アルミニウム粉末を収率よ
く製造しえる方法を提供しようとするものであ
る。 〔発明の概要〕 本発明者らは、出発原料として窒化アルミニウ
ム粉末、アルカリ土類酸化物粉末、アルカリ土類
窒化物粉末、アルカリ土類塩粉末希土類酸化物粉
末及び希土類塩から選ばれる少なくとも一種及び
アルミニウム粉末からなり、かつそれらの成分の
配合量を規定したものを用い、これを窒素を含む
窒化性雰囲気中で焼成することによつて、反応性
の高い易焼結性窒化アルミニウム粉末を高収率で
製造しえる方法を見出した。こうした効果は、前
記アルカリ土類酸化物粉末等の添加物がAl粉末
の窒化による発熱制御剤として作用すると共に、
反応の触媒としても働き、反応の促進化がなされ
ることによるものと考えられる。 即ち、本発明は窒化アルミニウム粉末15〜80重
量%、アルカリ土類酸化物粉末、アルカリ土類窒
化物粉末、アルカリ土類塩粉末、希土類酸化物粉
末及び希土類塩から選ばれる少なくとも一種2〜
5重量%(但し、アルカリ土類塩の場合はアルカ
リ土類酸化物、希土類塩の場合は希土類酸化物の
換算)、残部がアルミニウム粉末とする組成を出
発原料とし、これを窒素を含む窒化性雰囲気中で
焼成することを特徴とする易焼結性窒化アルミニ
ウム粉末の製造方法である。 上記窒化アルミニウム粉末(以下AlNと称す)
の配合割合を上記範囲に限定した理由は、その量
が15重量%未満にしても、80重量%を越えても収
率の向上を達成できなくなるからである。なお、
添加物としてアルカリ土類塩、希土類塩を用いる
場合は、AlN粉末の配合割合を15〜50重量%に、
添加物としてアルカリ土類酸化物、アルカリ土類
窒化物、希土類酸化物を用いる場合は、AlN粉
末の配合割合を20〜80重量%に、することが望ま
しい。また、AlN粉末の粒径については、10μm
以下、より好ましくは5〜10μmの範囲にするこ
とが望ましい。この理由は、AlN粉末の粒径が
10μmを越えると、反応性、収率の向上化が難し
くなる。 上記アルカリ土類酸化物粉末としては、例え
ば、CaO、BaO、SrO等を挙げることができる。
アルカリ土類窒化物粉末としては、例えばCa3N2
等を挙げることができる。アルカリ土類塩として
は、例えばCaCO3、BaCO3、SrCO3などのアル
カリ土類炭酸塩、Ca(NO32、Ba(NO32、Sr
(NO32などのアルカリ土類硝酸塩等を挙げるこ
とができる。また、希土類酸化物粉末としては、
例えばY2O3、La2O3、Sm2O3等を挙げることが
できる。希土類塩としては、例えばLa2(CO33
Y2(CO33、Sm2(CO33などの希土類炭酸塩、La
(NO33、Y(NO33、Sm(NO33などの希土類硝
酸塩等を挙げることができる。こうした添加物の
中で、特にアルカリ土類塩及び希土類塩は焼成工
程での塩の熱分解に伴うガス(炭酸ガス、酸化窒
素ガス)により、Al粉末の凝集を防止し、反応
の均一性が促進されるため、出発原料中のAl粉
末の含有量を増加させることができ、易焼結性窒
化アルミニウム粉末の生成収率を更に向上でき
る。こうした添加物の配合割合を上記範囲に限定
した理由は、その配合割合が2重量%未満であつ
ても、5重量%を越えても反応性、収率の向上化
を達成できなくなる。また、これらの添加物の粒
径については2μm以下にすることが望ましい。こ
の理由は、その粒径が2μmを越えると、反応性、
収率の向上化を達成できなくなる恐れがある。 上記Al粉末の粒径は、10μm以下、より好まし
くは5〜10μmにすることが望ましい。この理由
は、その粒径が10μmを越えると、反応性、収率
の向上化が困難となる。 上記出発原料を窒化性雰囲気中で焼成する場合
は、カーボンなどからなる焼成容器に入れて焼成
を行なう。この時の焼成温度、600〜1100℃、よ
り好ましくは700〜900℃とすることが望ましい。 〔発明の実施例〕 以下、本発明の実施例を詳細に説明する。 実施例 1〜26 まず、フイツシヤ平均粒径2.5μmのAlN粉末、
同平均粒径0.5μmの添加物及び同平均粒径1.8μm
のAl粉末を下記第1表、第2表となるような組
成で配合し、それらの量を200gとし、ひつづき
これらをVミキサで混合して26種の出発原料を調
製した。次いで、これら出発原料をカーボンボー
ト状容器に夫々50g収容した後、これら容器を石
英製管状炉に入れ、同第1表、第2表に示す窒素
ガス流量、温度条件で、1時間の焼成後放冷し
た。この間、窒化による瞬間的な発熱が生じ、被
焼成物は2000℃まで加熱、焼成された。 しかして、得られた各AlN粉末についてX線
回折によりそれらの組織を調べた。その結果を同
第1表、第2表に併記した。 また、得られた各AlN粉末をボールミルで
1.5μmまで粉砕し、これらを成形した後、同第1
表及び第2表に示す温度の窒素雰囲気中で2時間
焼結してAlN焼結体を製造し、これら焼結体の
相対密度を測定した。その結果を同第1表、第2
表に併記した。なお、第1表、第2表中には本発
明の範囲から外れる組成の出発原料を用い、実施
例と同様な方法により製造したAlN粉末につい
て、比較例1〜6として併記した。
[Technical Field of the Invention] The present invention relates to a method for producing easily sinterable aluminum nitride powder. [Technical background of the invention and its problems] Aluminum nitride (AlN) has excellent thermal conductivity and chemical stability at high temperatures, so it is used as various high-temperature parts, especially high thermal conductive substrates, and heat dissipation parts. Attention has been paid. Such aluminum nitride is usually used in the form of a sintered body, but in this case, the characteristics of the sintered body are greatly influenced by the properties of the raw material powder as well as the process. By the way, aluminum nitride powder has conventionally been produced by a direct nitriding method of aluminum, a carbon reduction method of alumina, or the like. However, these methods have disadvantages in that the production yield of aluminum nitride powder is low and the reactivity of the produced aluminum nitride powder is low. Therefore, when producing a dense aluminum nitride sintered body using such aluminum nitride powder, a method is adopted in which an auxiliary agent is added to increase the reactivity. However, since the auxiliary agent is added in a small amount, it is difficult to mix it uniformly, and it is difficult to stably produce a dense aluminum nitride sintered body. [Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for producing highly reactive and easily sinterable aluminum nitride powder with good yield. [Summary of the Invention] The present inventors used at least one selected from aluminum nitride powder, alkaline earth oxide powder, alkaline earth nitride powder, alkaline earth salt powder, rare earth oxide powder, and rare earth salt as starting materials; By using aluminum powder with specified blending amounts of these components and firing it in a nitriding atmosphere containing nitrogen, highly reactive and easily sinterable aluminum nitride powder can be produced in high yield. We have discovered a method that can be manufactured at a reduced rate. These effects are due to the additives such as the alkaline earth oxide powder acting as a heat generation control agent by nitriding the Al powder, and
This is thought to be due to the fact that it acts as a reaction catalyst and accelerates the reaction. That is, the present invention comprises 15 to 80% by weight of aluminum nitride powder, at least one selected from the group consisting of alkaline earth oxide powder, alkaline earth nitride powder, alkaline earth salt powder, rare earth oxide powder, and rare earth salt.
5% by weight (in terms of alkaline earth oxide in the case of alkaline earth salts, and rare earth oxide in the case of rare earth salts), and the balance being aluminum powder, is used as a starting material, and this is used as a nitriding material containing nitrogen. This is a method for producing easily sinterable aluminum nitride powder, which is characterized by firing in an atmosphere. The above aluminum nitride powder (hereinafter referred to as AlN)
The reason why the blending ratio of is limited to the above range is that the yield cannot be improved even if the amount is less than 15% by weight or exceeds 80% by weight. In addition,
When using alkaline earth salts or rare earth salts as additives, the blending ratio of AlN powder should be 15 to 50% by weight.
When using alkaline earth oxides, alkaline earth nitrides, and rare earth oxides as additives, it is desirable that the blending ratio of AlN powder is 20 to 80% by weight. In addition, the particle size of AlN powder is 10 μm.
Hereinafter, it is more preferable that the thickness be in the range of 5 to 10 μm. The reason for this is that the particle size of AlN powder is
If it exceeds 10 μm, it becomes difficult to improve reactivity and yield. Examples of the alkaline earth oxide powder include CaO, BaO, SrO, and the like.
As the alkaline earth nitride powder, for example, Ca 3 N 2
etc. can be mentioned. Examples of alkaline earth salts include alkaline earth carbonates such as CaCO 3 , BaCO 3 , SrCO 3 , Ca(NO 3 ) 2 , Ba(NO 3 ) 2 , Sr
Examples include alkaline earth nitrates such as (NO 3 ) 2 . In addition, as rare earth oxide powder,
Examples include Y 2 O 3 , La 2 O 3 , Sm 2 O 3 and the like. Examples of rare earth salts include La 2 (CO 3 ) 3 ,
Rare earth carbonates such as Y2 ( CO3 ) 3 , Sm2 ( CO3 ) 3 , La
Examples include rare earth nitrates such as (NO 3 ) 3 , Y(NO 3 ) 3 , and Sm(NO 3 ) 3 . Among these additives, alkaline earth salts and rare earth salts in particular prevent the agglomeration of Al powder and improve the uniformity of the reaction due to the gases (carbon dioxide gas, nitrogen oxide gas) accompanying thermal decomposition of the salt during the calcination process. Therefore, the content of Al powder in the starting material can be increased, and the production yield of easily sinterable aluminum nitride powder can be further improved. The reason why the blending ratio of these additives is limited to the above range is that even if the blending ratio is less than 2% by weight, and even if it exceeds 5% by weight, improvements in reactivity and yield cannot be achieved. Furthermore, it is desirable that the particle size of these additives be 2 μm or less. The reason for this is that when the particle size exceeds 2 μm, the reactivity and
There is a possibility that it will not be possible to improve the yield. The particle size of the Al powder is desirably 10 μm or less, more preferably 5 to 10 μm. The reason for this is that if the particle size exceeds 10 μm, it becomes difficult to improve reactivity and yield. When the above starting materials are fired in a nitriding atmosphere, they are placed in a firing container made of carbon or the like and fired. The firing temperature at this time is desirably 600 to 1100°C, more preferably 700 to 900°C. [Embodiments of the Invention] Examples of the present invention will be described in detail below. Examples 1 to 26 First, AlN powder with an average grain size of 2.5 μm,
Additives with the same average particle size of 0.5μm and the same average particle size of 1.8μm
Al powders were blended in the compositions shown in Tables 1 and 2 below, the amount of which was 200 g, and then mixed in a V-mixer to prepare 26 kinds of starting materials. Next, 50 g of each of these starting materials were placed in carbon boat-shaped containers, and then these containers were placed in a quartz tubular furnace and fired for 1 hour under the nitrogen gas flow rate and temperature conditions shown in Tables 1 and 2. It was left to cool. During this time, instantaneous heat generation occurred due to nitriding, and the object to be fired was heated to 2000°C and fired. The structure of each of the obtained AlN powders was examined by X-ray diffraction. The results are also listed in Tables 1 and 2. In addition, each of the obtained AlN powders was milled in a ball mill.
After crushing to 1.5μm and molding them,
AlN sintered bodies were produced by sintering for 2 hours in a nitrogen atmosphere at the temperatures shown in Tables 1 and 2, and the relative densities of these sintered bodies were measured. The results are shown in Tables 1 and 2.
Also listed in the table. In addition, in Tables 1 and 2, AlN powders produced by the same method as in the examples using starting materials having compositions outside the scope of the present invention are also listed as Comparative Examples 1 to 6.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば反応性の優
れた易焼結性窒化アルミニウム粉末を高収率で製
造でき、ひいては該窒化アルミニウム粉末を原料
として焼結を行なえば緻密な窒化アルミニウム焼
結体を量産的に製造できる等顕著な効果を有す
る。
As described in detail above, according to the present invention, easily sinterable aluminum nitride powder with excellent reactivity can be produced in high yield, and furthermore, if the aluminum nitride powder is used as a raw material for sintering, dense aluminum nitride sintering can be achieved. It has remarkable effects such as being able to mass-produce the body.

Claims (1)

【特許請求の範囲】 1 窒化アルミニウム粉末15〜80重量%、アルカ
リ土類酸化物粉末、アルカリ土類窒化物粉末、ア
ルカリ土類塩粉末、希土類酸化物粉末及び希土類
塩から選ばれる少なくとも一種2〜5重量%(但
し、アルカリ土類塩の場合はアルカリ土類酸化
物、希土類塩の場合は希土類酸化物の換算)、残
部がアルミニウム粉末とする組成を出発原料と
し、これを窒素を含む窒化性雰囲気中で焼成する
ことを特徴とする易焼結性窒化アルミニウム粉末
の製造方法。 2 アルカリ土類酸化物がCaO、BaO、SrOであ
ることを特徴とする特許請求の範囲第1項記載の
易焼結性窒化アルミニウム粉末の製造方法。 3 アルカリ土類窒化物がCa3N2であることを特
徴とする特許請求の範囲第1項記載の易焼結性窒
化アルミニウム粉末の製造方法。 4 アルカリ土類塩が、CaCO3、BaCO3
SrCO3から選ばれるアルカリ土類炭酸塩であるこ
とを特徴とする特許請求の範囲第1項記載の易焼
結性窒化アルミニウム粉末の製造方法。 5 アルカリ土類塩がCa(NO32、Ba(NO32
Sr(NO32から選ばれるアルカリ土類硝酸塩であ
ることを特徴とする特許請求の範囲第1項記載の
易焼結性窒化アルミニウム粉末の製造方法。 6 希土類酸化物がY2O3、La2O3、Sm2O3であ
ることを特徴とする特許請求の範囲第1項記載の
易焼結性窒化アルミニウム粉末の製造方法。 7 希土類塩がLa2(CO33、Y2(CO32、Sm2
(CO33から選ばれる希土類炭酸塩であることを
特徴とする特許請求の範囲第1項記載の易焼結性
窒化アルミニウム粉末の製造方法。 8 希土類塩がLa(NO33、Y(NO33、Sm
(NO33から選ばれる希土類硝酸塩であることを
特徴とする特許請求の範囲第1項記載の易焼結性
窒化アルミニウム粉末の製造方法。 9 窒化アルミニウム粉末が10μm以下、アルカ
リ土類酸化物粉末、アルカリ土類窒化物粉末、ア
ルカリ土類塩粉末、希土類酸化物粉末及び希土類
塩が2μm以下、アルミニウム粉末が10μm以下で
あることを特徴とする特許請求の範囲第1項記載
の易焼結性窒化アルミニウム粉末の製造方法。 10 焼成を650〜1100℃の温度条件で行なうこ
とを特徴とする特許請求の範囲第1項記載の易焼
結性窒化アルミニウム粉末の製造方法。
[Scope of Claims] 1. At least one member selected from 15 to 80% by weight of aluminum nitride powder, alkaline earth oxide powder, alkaline earth nitride powder, alkaline earth salt powder, rare earth oxide powder, and rare earth salt. 5% by weight (in terms of alkaline earth oxide in the case of alkaline earth salts, and rare earth oxide in the case of rare earth salts), and the balance being aluminum powder, is used as a starting material, and this is used as a nitriding material containing nitrogen. A method for producing easily sinterable aluminum nitride powder, characterized by firing in an atmosphere. 2. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the alkaline earth oxide is CaO, BaO, or SrO. 3. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the alkaline earth nitride is Ca 3 N 2 . 4 Alkaline earth salts include CaCO 3 , BaCO 3 ,
The method for producing easily sinterable aluminum nitride powder according to claim 1, characterized in that the alkaline earth carbonate is selected from SrCO 3 . 5 Alkaline earth salts include Ca(NO 3 ) 2 , Ba(NO 3 ) 2 ,
The method for producing easily sinterable aluminum nitride powder according to claim 1, characterized in that the alkaline earth nitrate is selected from Sr(NO 3 ) 2 . 6. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the rare earth oxide is Y 2 O 3 , La 2 O 3 , or Sm 2 O 3 . 7 Rare earth salts are La 2 (CO 3 ) 3 , Y 2 (CO 3 ) 2 , Sm 2
2. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the carbonate is a rare earth carbonate selected from ( CO3 ) 3 . 8 Rare earth salts are La(NO 3 ) 3 , Y(NO 3 ) 3 , Sm
The method for producing easily sinterable aluminum nitride powder according to claim 1, characterized in that the rare earth nitrate is a rare earth nitrate selected from ( NO3 ) 3 . 9. Aluminum nitride powder is 10 μm or less, alkaline earth oxide powder, alkaline earth nitride powder, alkaline earth salt powder, rare earth oxide powder and rare earth salt are 2 μm or less, and aluminum powder is 10 μm or less. A method for producing easily sinterable aluminum nitride powder according to claim 1. 10. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the firing is performed at a temperature of 650 to 1100°C.
JP58246380A 1983-12-27 1983-12-27 Preparation of easily sinterable aluminum nitride powder Granted JPS60141607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246380A JPS60141607A (en) 1983-12-27 1983-12-27 Preparation of easily sinterable aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246380A JPS60141607A (en) 1983-12-27 1983-12-27 Preparation of easily sinterable aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS60141607A JPS60141607A (en) 1985-07-26
JPH0512287B2 true JPH0512287B2 (en) 1993-02-17

Family

ID=17147677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246380A Granted JPS60141607A (en) 1983-12-27 1983-12-27 Preparation of easily sinterable aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS60141607A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717455B2 (en) * 1986-07-18 1995-03-01 株式会社トクヤマ Method for manufacturing aluminum nitride sintered body
US5242872A (en) * 1986-07-18 1993-09-07 Tokuyama Soda Kabushiki Kaisha Process for producing aluminum nitride sintered body
JPS63274605A (en) * 1987-04-30 1988-11-11 Univ Osaka Production of aluminum nitride powder composition
JPH04119659U (en) * 1991-04-10 1992-10-26 神鋼電機株式会社 Friction clutch or brake
JP2008115068A (en) * 2006-06-30 2008-05-22 Tama Tlo Kk Process for producing aluminum nitride containing material

Also Published As

Publication number Publication date
JPS60141607A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
CA1186346A (en) Sintered bodies of aluminum nitride
US4615863A (en) Process for production of readily sinterable aluminum nitride powder
US4746637A (en) Aluminum nitride sintered body and process for producing the same
US5077245A (en) Aluminum nitride-based sintered body and process for the production thereof
US4134947A (en) Sintered silicon nitride body and a method of producing the same
CN114394827B (en) Low-dielectric-constant silicate microwave dielectric ceramic and preparation method thereof
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
JP3290686B2 (en) Method for producing aluminum nitride powder
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
JPH0512287B2 (en)
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH04923B2 (en)
JPH0575688B2 (en)
JPS63277573A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2528300B2 (en) Aluminum nitride sintered body
JPS63277569A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS62875B2 (en)
JPS6366796B2 (en)
JPH0465367A (en) Production of aluminum nitride sintered compact
JPH0575689B2 (en)
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS60186469A (en) Manufacture of silicon nitride sintered body
JPS5945969A (en) High hardness high tenacity zirconium oxide ceramic and manufacture
JPS62297270A (en) Manufacture of spinel type aluminum oxynitride