JPH0575688B2 - - Google Patents

Info

Publication number
JPH0575688B2
JPH0575688B2 JP59203565A JP20356584A JPH0575688B2 JP H0575688 B2 JPH0575688 B2 JP H0575688B2 JP 59203565 A JP59203565 A JP 59203565A JP 20356584 A JP20356584 A JP 20356584A JP H0575688 B2 JPH0575688 B2 JP H0575688B2
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
particle size
rare earth
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59203565A
Other languages
Japanese (ja)
Other versions
JPS6183606A (en
Inventor
Hiroshi Inoe
Akihiko Tsuge
Katsutoshi Yoneya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59203565A priority Critical patent/JPS6183606A/en
Priority to EP85110445A priority patent/EP0176737B1/en
Priority to DE8585110445T priority patent/DE3572155D1/en
Priority to US06/768,137 priority patent/US4615863A/en
Publication of JPS6183606A publication Critical patent/JPS6183606A/en
Publication of JPH0575688B2 publication Critical patent/JPH0575688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、易焼結性窒化アルミニウム質粉末の
製造方法に関し、特に焼結助剤としの希土類酸化
物を含有する易焼結性窒化アルミニウム質粉末の
製造方法に係わる。 〔発明の技術的背景とその問題点〕 窒化アルミニウム質焼結体は、高温での安定性
と熱伝導性が良好であるため、各種高温材料等に
用いられている。かかる窒化アルミニウム質焼結
体の特性は、該焼結体の原料である窒化アルミニ
ウム質粉末の平均粒径や粒径及び粒径のばらつき
の程度、更には焼結助剤の形態により非常に大き
な影響を受ける。 ところで、窒化アルミニウム質粉末は従来より
アルミニウム直接窒化やアルミナの炭素還元等に
より製造されている。しかしながら、これら方法
では、窒化アルミニウム質粉末の平均粒径を小さ
くすること、並びに粒径及び粒径のばらつきを少
なくすることは困難であつた。 一方、窒化アルミニウム質粉末に焼結助剤を添
加する工程において、ボールミル法を始めとする
各種の方法が行われているが、粉末同志の混合で
あるために窒化アルミニウム質粉末と焼結助剤と
を理想的に分散させるには、高度な技術が要求さ
れ、不充分な分散状態で焼結されることが多い。 〔発明の目的〕 本発明は、粒径が小さく、粒径及び粒径のばら
つきが少なく、更に焼結助剤が均一に分散された
易焼結性窒化アルミニウム質粉末の製造方法を提
供しようとするものである。 〔発明の概要〕 本発明は、平均粒径が0.5μm以下のアルミナ粉
末または高温においてアルミナ粉末を生成する化
合物粉末と平均粒径が0.5μm以下の炭素粉末また
は高温において炭素粉末を生成する化合物粉末と
の混合物粉末に、平均粒径が0.7μm以下の希土類
酸化物粉末または高温において希土類酸化物粉末
を生成する化合物粉末から選ばれる少なくとも1
種の粉末を添加し、そのまま混合して原料粉末を
調製する工程と、 前記原料粉末を窒素を含む非酸化生雰囲気中で
焼成する工程と を具備したことを特徴とする易焼結性窒化アルミ
ニウム質粉末の製造方法である。 上記原料粉末の一構成成分である高温において
アルミナ粉末を生成する化合物としては、硝酸ア
ルミニウム(Al(NO33)、アルミン酸ナトリウ
ム(NaAlO2)等を挙げることができる。また、
他の構成成分である炭素粉末としては、例えばカ
ーボンブラツク、グラフアイト等を挙げることが
でき、高温において炭素粉末を生成する化合物と
しては、例えば各種樹脂系の物質等を挙げること
ができる。更に、混合粉末に添加される希土類化
合物としては、例えば酸化イツトリウム、酸化ラ
ンタン、酸化セリウム等を挙げることができ、高
温で希土類酸化物を生成する化合物としては、例
えば硝酸イツトリウム(Y(NO33)などの硝酸
塩や炭酸イツトリウム(Y2(CO33)などの炭酸
塩等を挙げることができる。 上記原料粉末の調製にあたつては、炭素粉末は
アルミナ粉末1重量部に対して0.35〜〜2.0重量
部、好ましくは0.4〜1.0重量部用いられ、希土類
酸化物はアルミナ粉末1重量部に対して0.005〜
1.0重量部、好ましくは0.005〜0.1重量部使用され
る。炭酸粉末の量を0.35重量部未満にすると、ア
ルミナ粉末が未反応のまま残留する。かといつ
て、その量が2.0重量部を越えると窒化アルミニ
ウム質粉末の生成は可能であるが、収率の低下が
避けられない。なお、炭素粉末を過剰に配合した
場合には、未反応の炭素が残留するが、酸化性雰
囲気中600〜850℃で残留炭素を酸化して除去する
ことができる。前記希土類酸化物の量を0.005重
量部未満にすると、焼結助剤及び反応促進として
の効果を充分に達成できない恐れがある。かとい
つて、その量が1.0重量部を越えると、該希土類
酸化物の性質が顕著となり本発明の目的とする窒
化アルミニウム質の粉末特性を得ることが困難と
なる。前述した高温においてアルミナ粉末を生成
する化合物、同様な条件で炭素粉末を生成する化
合物、及び同様な条件で希土類酸化物を生成する
化合物の量については、生成物が上記割合となる
ように設定すればよい。なお、上記原料粉末の調
製にあたつては湿式での混合がなされず、そのま
ま前記各成分粉末を混合する方法が採用される。 上記焼成工程での窒素を含む非酸化性雰囲気と
しては、例えば窒素、アンモニアガス単独、窒素
−アルゴン、窒素−水素等の雰囲気が挙げられ
る。こうした雰囲気での焼成温度は、1400〜1850
℃、好ましくは1450〜1600℃の範囲で行なうこと
が望ましい。焼成温度を1400℃未満にすると、窒
化アルミニウム質粉末が生成し難くなり、かとい
つてその温度が1850℃を越えると、粒成長が顕著
となり粒径の小さい窒化アルミニウム質粉末の生
成が困難となる。 しかして、本発明によれば前述した原料粉末を
窒素を含む非酸化性雰囲気中で焼成を行なうこと
によつて、焼成時においてアルミナ粉末の炭素粉
末による還元反応により生成した窒化アルミニウ
ムが原料中に含まれる希土類酸化物を核として進
行する。その結果、粒径が小さく(例えば2.0μm
以下、場合によつては1.0μm以下)、粒形及び粒
径のばらつきが少なく、更に焼結助剤として作用
する希土類酸化物を包含した易焼結性窒化アルミ
ニウム質粉末を得ることができる。この焼成工程
において、希土類酸化物は合成反応時に一部還元
窒化されることがあるが、窒化アルミニウムが合
成する際の核として機能及び焼結助剤として機能
は損われない。また、窒化アルミニウムが生成さ
れる以前から希土類酸化物が存在し、これを核と
して微細な窒化アルミニウムが成長していく。こ
のため、窒化アルミニウムと焼結助剤としての希
土類酸化物が理想的な状態で分散されるので、場
合によつてそのまま成形し、焼結できる利点を有
する。 〔発明の実施例〕 以下、本発明の実施例を詳細に説明する。 実施例 1 まず、平均粒径0.05μmのアルミナ粉末1重量
部、0.05μm以下のカーボンブラツク0.5重量部及
び平均粒径0.7μmの酸化イツトリウム粉末0.05重
量部を混合して原料粉末100gを調製した。つづ
いて、この原料粉末をカーボン容器に入れ、窒素
気流中(10/min)、1550℃で5時間焼成した。
得られた生成物は、カーボンをわずかに含有する
粉末であつた。次いで、この生成物を650℃で3
時間、空気中で処理してカーボンを除去した。得
られた生成物をX線回折により成分を調べたとこ
ろ、主に窒化アルミニウムからなる粉末であるこ
とが確認された。また、同生成物(粉末)の粒度
分布を調べたところ、0.1〜2.0μmの範囲にあり、
粒径が小さく、かつ粒形及び粒径のばらつきの少
ないものであることが確認された。 また、前記窒化アルミニウム質粉末を30mm×30
mm×5mmの形状に金型を用いて成形した後、該成
形体を窒素雰囲気中で1780℃、2時間焼成して窒
化アルミニウム質焼結体を製造した。 比較例 まず、平均粒径1.8μmの窒化アルミニウム粉末
100重量部に平均粒径0.7μmの酸化イツトリウム
粉末を3重量部を添加し、ボールミル法により混
合して焼結体原料を調製した。つづいて、該原料
を実施例1と同様な条件で成形、焼成して窒化ア
ルミニウム質焼結体を製造した。 しかして、本実施例1及び比較例の窒化アルミ
ニウム質焼結体について、相対密度及び熱伝導率
を調べた。その結果、比較列の焼結体の相対密度
は92%であるのに対し、本実施例1の焼結体の相
対密度は98%以上と極めて緻密なものであつた。
また、比較例の焼結体の熱伝導率は50W/m・k
であるのに対し、本実施例1の焼結体は93W/
m・kと極めて熱伝導性の高いものであつた。 実施例 2〜9 平均粒径0.05μmのアルミナ粉末、0.05μm以下
のカーボンブラツク及び平均粒径0.7μmの希土類
酸化物を下記表の示す割合で混合して原料粉末を
調製した後、同表に示す条件で焼成し、さらに
650℃の空気中で3時間程度処理してカーボンを
除去して8種の窒化アルミニウム質粉末を得た。
得られた窒化アルミニウム質粉末をX線回折によ
り成分及び粒度分布を調べた。その結果を同表に
併記した。 また、得られた各窒化アルミニウム質粉末を前
記実施例1と同様な条件で成形、焼成して8種の
窒化アルミニウム質焼結体を製造した。 しかして、本実施例1及び比較例の窒化アルミ
ニウム質焼結体について、相対密度及び熱伝導率
を調べた。その結果を同表に併記した。なお、表
中には前記実施例1及び比較例の特性も併記し
た。
[Technical Field of the Invention] The present invention relates to a method for producing easily sinterable aluminum nitride powder, and particularly to a method for producing easily sinterable aluminum nitride powder containing a rare earth oxide as a sintering aid. [Technical background of the invention and its problems] Aluminum nitride sintered bodies have good stability and thermal conductivity at high temperatures, and are therefore used in various high-temperature materials. The characteristics of such an aluminum nitride sintered body vary greatly depending on the average particle size, particle size, and variation in particle size of the aluminum nitride powder that is the raw material for the sintered body, as well as the form of the sintering aid. to be influenced. By the way, aluminum nitride powder has conventionally been produced by direct nitriding of aluminum, carbon reduction of alumina, etc. However, with these methods, it has been difficult to reduce the average particle size of the aluminum nitride powder and to reduce the particle size and variation in particle size. On the other hand, in the process of adding a sintering aid to aluminum nitride powder, various methods including the ball mill method are used, but since the powders are mixed together, the aluminum nitride powder and the sintering aid are mixed together. Advanced technology is required to ideally disperse the materials, and sintering is often performed in an insufficiently dispersed state. [Objective of the Invention] The present invention aims to provide a method for producing easily sinterable aluminum nitride powder, which has a small particle size, little variation in particle size and particle size, and has a sintering aid uniformly dispersed therein. It is something to do. [Summary of the Invention] The present invention provides an alumina powder with an average particle size of 0.5 μm or less or a compound powder that produces alumina powder at high temperatures, and a carbon powder with an average particle size of 0.5 μm or less or a compound powder that produces carbon powder at high temperatures. and at least one selected from rare earth oxide powders having an average particle size of 0.7 μm or less or compound powders that produce rare earth oxide powders at high temperatures.
An easily sinterable aluminum nitride comprising the steps of: adding a seed powder and mixing as is to prepare a raw material powder; and firing the raw material powder in a non-oxidizing atmosphere containing nitrogen. This is a method for producing fine powder. Examples of compounds that form alumina powder at high temperatures, which are one of the components of the raw material powder, include aluminum nitrate (Al(NO 3 ) 3 ), sodium aluminate (NaAlO 2 ), and the like. Also,
Examples of the carbon powder that is another component include carbon black and graphite, and examples of compounds that produce carbon powder at high temperatures include various resin-based substances. Further, examples of rare earth compounds added to the mixed powder include yttrium oxide, lanthanum oxide, cerium oxide, etc., and examples of compounds that generate rare earth oxides at high temperatures include yttrium nitrate (Y(NO 3 )). Examples include nitrates such as 3 ) and carbonates such as yttrium carbonate (Y 2 (CO 3 ) 3 ). In preparing the above raw material powder, carbon powder is used in an amount of 0.35 to 2.0 parts by weight, preferably 0.4 to 1.0 parts by weight, per 1 part by weight of alumina powder, and rare earth oxides are used in an amount of 0.4 to 1.0 parts by weight per 1 part by weight of alumina powder. te 0.005~
1.0 part by weight is used, preferably 0.005 to 0.1 part by weight. When the amount of carbonate powder is less than 0.35 parts by weight, alumina powder remains unreacted. On the other hand, if the amount exceeds 2.0 parts by weight, it is possible to produce aluminum nitride powder, but a decrease in yield is unavoidable. Note that if an excessive amount of carbon powder is blended, unreacted carbon remains, but the remaining carbon can be oxidized and removed at 600 to 850° C. in an oxidizing atmosphere. If the amount of the rare earth oxide is less than 0.005 parts by weight, the effect as a sintering aid and reaction promoter may not be sufficiently achieved. On the other hand, if the amount exceeds 1.0 parts by weight, the properties of the rare earth oxide become significant, making it difficult to obtain the aluminum nitride powder properties aimed at in the present invention. The amounts of the compounds that produce alumina powder at high temperatures, the compounds that produce carbon powder under similar conditions, and the compounds that produce rare earth oxides under similar conditions should be set so that the products will have the above ratios. Bye. In preparing the above-mentioned raw material powder, a method is employed in which the above-mentioned component powders are directly mixed without wet mixing. Examples of the nitrogen-containing non-oxidizing atmosphere in the firing step include nitrogen, ammonia gas alone, nitrogen-argon, nitrogen-hydrogen, and the like. The firing temperature in such an atmosphere is 1400 to 1850.
It is desirable to conduct the reaction at a temperature of 1450 to 1600°C. If the firing temperature is less than 1400°C, it will be difficult to produce aluminum nitride powder, and if the temperature exceeds 1850°C, grain growth will become significant and it will be difficult to produce aluminum nitride powder with small particle size. . According to the present invention, by firing the raw material powder described above in a non-oxidizing atmosphere containing nitrogen, aluminum nitride produced by the reduction reaction of the alumina powder with the carbon powder during firing is mixed into the raw material. Proceeds using the rare earth oxides contained as nuclei. As a result, the particle size is small (e.g. 2.0μm
(in some cases, 1.0 μm or less), it is possible to obtain an easily sinterable aluminum nitride powder that has small variations in particle shape and particle size, and further contains a rare earth oxide that acts as a sintering aid. In this firing step, the rare earth oxide may be partially reduced and nitrided during the synthesis reaction, but its function as a nucleus during the synthesis of aluminum nitride and as a sintering aid is not impaired. In addition, rare earth oxides exist before aluminum nitride is generated, and fine aluminum nitride grows using these as nuclei. Therefore, since aluminum nitride and the rare earth oxide as a sintering aid are dispersed in an ideal state, it has the advantage that it can be shaped and sintered as it is, depending on the case. [Embodiments of the Invention] Examples of the present invention will be described in detail below. Example 1 First, 100 g of raw material powder was prepared by mixing 1 part by weight of alumina powder with an average particle size of 0.05 μm, 0.5 part by weight of carbon black with an average particle size of 0.05 μm or less, and 0.05 part by weight of yttrium oxide powder with an average particle size of 0.7 μm. Subsequently, this raw material powder was placed in a carbon container and fired at 1550° C. for 5 hours in a nitrogen stream (10/min).
The resulting product was a powder containing a small amount of carbon. This product was then incubated at 650°C for 3
The carbon was removed by treatment in air for an hour. When the components of the obtained product were examined by X-ray diffraction, it was confirmed that it was a powder mainly consisting of aluminum nitride. In addition, when we investigated the particle size distribution of the same product (powder), it was found to be in the range of 0.1 to 2.0 μm.
It was confirmed that the particle size was small and there was little variation in particle shape and particle size. In addition, the aluminum nitride powder was
After molding into a shape of mm x 5 mm using a mold, the molded body was fired at 1780° C. for 2 hours in a nitrogen atmosphere to produce an aluminum nitride sintered body. Comparative example First, aluminum nitride powder with an average particle size of 1.8 μm
3 parts by weight of yttrium oxide powder having an average particle size of 0.7 μm was added to 100 parts by weight and mixed by a ball mill method to prepare a raw material for a sintered body. Subsequently, the raw material was molded and fired under the same conditions as in Example 1 to produce an aluminum nitride sintered body. Therefore, the relative density and thermal conductivity of the aluminum nitride sintered bodies of Example 1 and Comparative Example were investigated. As a result, the relative density of the sintered bodies in the comparative row was 92%, while the relative density of the sintered bodies of Example 1 was 98% or more, which was extremely dense.
In addition, the thermal conductivity of the sintered body of the comparative example is 50W/m・k
On the other hand, the sintered body of Example 1 has a power of 93W/
It had an extremely high thermal conductivity of m·k. Examples 2 to 9 Raw material powder was prepared by mixing alumina powder with an average particle size of 0.05 μm, carbon black with an average particle size of 0.05 μm or less, and rare earth oxide with an average particle size of 0.7 μm in the proportions shown in the table below. Fired under the conditions shown and further
Carbon was removed by treatment in air at 650°C for about 3 hours to obtain eight types of aluminum nitride powders.
The components and particle size distribution of the obtained aluminum nitride powder were examined by X-ray diffraction. The results are also listed in the same table. Further, each of the obtained aluminum nitride powders was molded and fired under the same conditions as in Example 1 to produce eight types of aluminum nitride sintered bodies. Therefore, the relative density and thermal conductivity of the aluminum nitride sintered bodies of Example 1 and Comparative Example were investigated. The results are also listed in the same table. In addition, the characteristics of Example 1 and Comparative Example are also listed in the table.

【表】【table】

【表】 * 構成相量;+++++>++++>>>+
上表から明らかな如く、本発明方法により得ら
れた窒化アルミニウム質粉末は粒径が小さく、か
つ粒形及び粒径のばらつきが少ないことがわか
る。しかも該窒化アルミニウム質粉末を焼結体原
料として成形、焼成することによつて緻密で、熱
伝導率の極めて高い窒化アルミニウム質焼結体を
得ることができることがわかる。 〔発明の効果〕 以上詳述した如く、本発明によれば粒径が小さ
く、粒形及び粒形のばらつきが少なく、更に焼結
助剤が均一に分散された易焼結性窒化アルミニウ
ム質粉末の製造でき、ひいてはこの粉末を原料と
して成形、焼成を行なうことにより緻密で高熱伝
導率等の優れた特性を備える窒化アルミニウム質
焼結体を得ることができる等顕著な効果を有す
る。
[Table] * Constituent phase amount; +++++>++++>>>+
As is clear from the above table, the aluminum nitride powder obtained by the method of the present invention has a small particle size and little variation in particle shape and particle size. Moreover, it is found that by molding and firing the aluminum nitride powder as a raw material for a sintered body, a dense aluminum nitride sintered body having extremely high thermal conductivity can be obtained. [Effects of the Invention] As detailed above, the present invention provides an easily sinterable aluminum nitride powder with a small particle size, little variation in particle shape and particle shape, and in which a sintering aid is uniformly dispersed. It has remarkable effects such as being able to produce aluminum nitride sintered bodies having excellent properties such as denseness and high thermal conductivity by molding and firing this powder as a raw material.

Claims (1)

【特許請求の範囲】 1 平均粒径が0.5μm以下のアルミナ粉末または
高温においてアルミナ粉末を生成する化合物粉末
と平均粒径が0.5μm以下の炭素粉末または高温に
おいて炭素粉末を生成する化合物粉末との混合物
粉末に、平均粒径が0.7μm以下の希土類酸化物粉
末または高温において希土類酸化物粉末を生成す
る化合物粉末から選ばれる少なくとも1種の粉末
を添加し、そのまま混合して原料粉末を調製する
工程と、 前記原料粉末を窒素を含む非酸化生雰囲気中で
焼成する工程と を具備したことを特徴とする易焼結性窒化アルミ
ニウム質粉末の製造方法。 2 原料粉末は、アルミナ粉末1重量部に対して
炭素粉末を0.35〜2重量部、1種以上の希土類酸
化物粉末を0.005〜1.0重量部配合したものからな
ることを特徴とする特許請求の範囲第1項記載の
易焼結性窒化アルミニウム質粉末の製造方法。 3 希土類酸化物粉末が酸化イツトリウム粉末で
あることを特徴とする特許請求の範囲第1項記載
の易焼結性窒化アルミニウム質粉末の製造方法。 4 焼成処理は、1400〜1850℃の温度範囲で行わ
れることを特徴とする特許請求の範囲第1項記載
の易焼結性窒化アルミニウム質粉末の製造方法。
[Claims] 1. Alumina powder with an average particle size of 0.5 μm or less or a compound powder that produces alumina powder at high temperatures and carbon powder with an average particle size of 0.5 μm or less or a compound powder that produces carbon powder at high temperatures. A step of adding at least one powder selected from rare earth oxide powder with an average particle size of 0.7 μm or less or compound powder that produces rare earth oxide powder at high temperatures to the mixed powder, and mixing as is to prepare a raw material powder. A method for producing easily sinterable aluminum nitride powder, comprising the steps of: and firing the raw material powder in a non-oxidizing atmosphere containing nitrogen. 2. Claims characterized in that the raw material powder is composed of 0.35 to 2 parts by weight of carbon powder and 0.005 to 1.0 parts by weight of one or more rare earth oxide powders to 1 part by weight of alumina powder. 2. A method for producing easily sinterable aluminum nitride powder according to item 1. 3. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the rare earth oxide powder is yttrium oxide powder. 4. The method for producing easily sinterable aluminum nitride powder according to claim 1, wherein the firing treatment is performed at a temperature range of 1400 to 1850°C.
JP59203565A 1984-09-28 1984-09-28 Production of easily sinterable aluminum nitride powder Granted JPS6183606A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59203565A JPS6183606A (en) 1984-09-28 1984-09-28 Production of easily sinterable aluminum nitride powder
EP85110445A EP0176737B1 (en) 1984-09-28 1985-08-20 Process for production of readily sinterable aluminum nitride powder
DE8585110445T DE3572155D1 (en) 1984-09-28 1985-08-20 Process for production of readily sinterable aluminum nitride powder
US06/768,137 US4615863A (en) 1984-09-28 1985-08-22 Process for production of readily sinterable aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203565A JPS6183606A (en) 1984-09-28 1984-09-28 Production of easily sinterable aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS6183606A JPS6183606A (en) 1986-04-28
JPH0575688B2 true JPH0575688B2 (en) 1993-10-21

Family

ID=16476236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203565A Granted JPS6183606A (en) 1984-09-28 1984-09-28 Production of easily sinterable aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS6183606A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047512A (en) * 2005-08-10 2007-02-22 Citizen Watch Co Ltd Display system
KR101348451B1 (en) * 2006-01-31 2014-01-06 오스람 실바니아 인코포레이티드 Rare earth-activated aluminium nitride powders and method of making
KR102010867B1 (en) * 2012-03-30 2019-08-14 가부시키가이샤 도쿠야마 Method for producing aluminum nitride powder

Also Published As

Publication number Publication date
JPS6183606A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US4073845A (en) High density high strength S13 N4 ceramics prepared by pressureless sintering of partly crystalline, partly amorphous S13 N4 powder
US4117096A (en) Process for producing powder of β-type silicon carbide
US4680278A (en) Process for preparing aluminum nitride powder
JP3290686B2 (en) Method for producing aluminum nitride powder
JPS6131358A (en) Silicon nitride sintered body for cutting tool and manufacture
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPS59107976A (en) Manufacture of readily sinterable silicon nitride powder
JPH0575688B2 (en)
US4500644A (en) Preparation and composition of sialon grain and powder
JPH0647447B2 (en) Method for producing aluminum nitride powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH04923B2 (en)
JPH0512287B2 (en)
JPS638069B2 (en)
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPH0575689B2 (en)
JPH08225311A (en) Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
JPS6317210A (en) Production of aluminum nitride powder
JPS62167208A (en) Production of aluminum nitride powder
JP2610156B2 (en) Method for producing silicon nitride powder
JPH06116045A (en) Silicon nitride sintered compact and its production
JPS62270468A (en) Aluminum nitride base sintered body
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPS63147867A (en) Manufacture of silicon nitride sintered body