JPH0647447B2 - Method for producing aluminum nitride powder - Google Patents

Method for producing aluminum nitride powder

Info

Publication number
JPH0647447B2
JPH0647447B2 JP60216534A JP21653485A JPH0647447B2 JP H0647447 B2 JPH0647447 B2 JP H0647447B2 JP 60216534 A JP60216534 A JP 60216534A JP 21653485 A JP21653485 A JP 21653485A JP H0647447 B2 JPH0647447 B2 JP H0647447B2
Authority
JP
Japan
Prior art keywords
powder
alumina
carbon
particle size
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60216534A
Other languages
Japanese (ja)
Other versions
JPS6278103A (en
Inventor
寛 井上
章彦 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60216534A priority Critical patent/JPH0647447B2/en
Publication of JPS6278103A publication Critical patent/JPS6278103A/en
Publication of JPH0647447B2 publication Critical patent/JPH0647447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、窒化アルミニウム粉末の製造方法に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing aluminum nitride powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化アルミニウム(AlN)の焼結体は、高い熱伝導性,
耐食性,高強度等の特性を有するため各種高温材料とし
て注目されている物質である。
Aluminum nitride (AlN) sintered body has high thermal conductivity,
It is a substance that is drawing attention as a high-temperature material because of its properties such as corrosion resistance and high strength.

ところで、上記AlN焼結体の原料となるAlN粉末の合成方
法としては、従来より次の2つの代表的方法が知られて
いる。即ち、金属Al粉末を直接窒化する方法と、アルミ
ナとカーボンの混合粉末を窒素ガス含有雰囲気で焼成す
る方法である。
By the way, the following two representative methods have been conventionally known as a method for synthesizing an AlN powder as a raw material of the AlN sintered body. That is, there are a method of directly nitriding the metal Al powder and a method of firing a mixed powder of alumina and carbon in an atmosphere containing nitrogen gas.

しかしながら前者の方法では窒化率をあげるために原料
のAlを粉砕する工程と、生成したAlNを焼成用原料とし
て適合させるために数μm以下の粒径に粉砕する工程に
おいて不純物が混入する、いわゆる二次汚染を避けるこ
とができない。また、Alが残存するため、数重量%近い
金属不純物を含有するAlN粉末となる。一方、後者の方
法によれば比較的細かくて粒径の揃ったAlN粉末を合成
できる。しかしながら、窒化反応を完全に行なうことが
難しく、未反応のアルミナが数重量%残存する。しか
も、かかる方法によっても数μm以下の細かい粉末を得
るには多くの場合、粉砕を必要とし、この際に金属系不
純物や酸素の混入等の二次汚染を招く。
However, in the former method, impurities are mixed in the step of pulverizing the raw material Al to increase the nitriding rate and the step of pulverizing the generated AlN to a particle size of several μm or less in order to adapt it as a raw material for firing. Secondary pollution is unavoidable. Further, since Al remains, it becomes an AlN powder containing metal impurities of approximately several weight%. On the other hand, according to the latter method, AlN powder having a relatively fine particle size can be synthesized. However, it is difficult to carry out the nitriding reaction completely, and a few wt% of unreacted alumina remains. In addition, in order to obtain a fine powder having a particle size of several μm or less even by such a method, pulverization is required in many cases, which causes secondary contamination such as mixing of metal impurities and oxygen.

したがって、上述した合成法により得られたAlN粉末は
金属系酸化物や酸素含有量が多く、これらのAlN粉末を
原料として製造されたAlN焼結体は純度が低くAlN本来の
特性を十分に発揮されないという問題があった。また、
これらAlN粉末は焼結性にも難点があるため、焼結助剤
の添加や高温高圧の焼結条件を必要としていた。このた
め、AlN焼結体を必ずしも工業的に満足する方法で得る
のが困難であった。
Therefore, the AlN powder obtained by the above-mentioned synthesis method has a large amount of metal oxides and oxygen content, and the AlN sintered body produced using these AlN powder as a raw material has low purity and sufficiently exhibits the original characteristics of AlN. There was a problem that was not done. Also,
Since these AlN powders also have difficulty in sinterability, it was necessary to add a sintering aid and sintering conditions of high temperature and high pressure. Therefore, it has been difficult to obtain an AlN sintered body by a method that is industrially satisfactory.

〔発明の目的〕[Object of the Invention]

本発明は、超微粉状で不純物や酸素含有量の少ない高純
度のAlN粉末の製造方法を提供しようとするものであ
る。
The present invention is intended to provide a method for producing a high-purity AlN powder that is in the form of ultrafine powder and has a low content of impurities and oxygen.

〔発明の概要〕[Outline of Invention]

本発明は、平均粒径5μm以下のアルミナ粉末または水
酸化アルミニウム粉末と平均粒径1μm以下のカーボン
粉末とを水媒体の存在下で混合してスラリー状混合物と
し、この混合物を噴霧乾燥して前記アルミナ粉末または
水酸化アルミニウム粉末の表面に前記微細なカーボン粉
末を凝集させた顆粒状とした後、窒素またはアンモニア
の雰囲気下で1400〜1700℃の温度にて焼成する
ことを特徴とする窒化アルミニウム粉末の製造方法であ
る。
In the present invention, an alumina powder or aluminum hydroxide powder having an average particle size of 5 μm or less and a carbon powder having an average particle size of 1 μm or less are mixed in the presence of an aqueous medium to form a slurry-like mixture, and the mixture is spray-dried to obtain the above-mentioned mixture. Aluminum nitride powder characterized by being formed by agglomerating the fine carbon powder on the surface of alumina powder or aluminum hydroxide powder, and then firing at a temperature of 1400 to 1700 ° C. in an atmosphere of nitrogen or ammonia. Is a manufacturing method.

上記アルミナ粉末又は水酸化アルミニウム粉末は、純度
が99.0重量%以上、好ましくは99.9重量%以上
のものを用いることが望ましい。また、カーボン粉末は
純度が95重量%以上、好ましくは99重量%以上のも
のを用いることが望ましい。
It is desirable to use the alumina powder or aluminum hydroxide powder having a purity of 99.0% by weight or more, preferably 99.9% by weight or more. Further, it is desirable to use carbon powder having a purity of 95% by weight or more, preferably 99% by weight or more.

上記アルミナ粉末又は水酸化アルミニウム粉末の平均粒
径を5μm以下に、カーボン粉末の粒径を1μm以下に
夫々限定した理由は、それらの粒径が5μm,1μmを
越えると、水媒体の存在下での混合分散性が低下し、焼
成時の反応性の低下やカーボンの残留等を招くからであ
る。
The reason why the average particle size of the alumina powder or aluminum hydroxide powder is limited to 5 μm or less and the particle size of the carbon powder is 1 μm or less is that when the particle size exceeds 5 μm and 1 μm, respectively, in the presence of an aqueous medium. This lowers the mixing and dispersibility of the compound (1), which leads to a decrease in reactivity during firing and carbon residue.

上記アルミナ粉末又は水酸化アルミニウムとカーボンと
の混合比は1:0.35〜0.37(但し、水酸化アル
ミニウムはアルミナ換算)の範囲に規定することが望ま
しい。この理由は、それらの混合比が上記範囲を逸脱す
ると、焼成により得られたAlN粉末中にアルミナやカー
ボンが残留して高純度化を阻害する恐れがあるからであ
る。なお、水酸化アルミニウム粉末とカーボン粉末との
混合比では1:0.22〜0.24の範囲となる。
The mixing ratio of the alumina powder or aluminum hydroxide and carbon is preferably specified in the range of 1: 0.35 to 0.37 (where aluminum hydroxide is converted to alumina). The reason for this is that if the mixing ratio thereof deviates from the above range, alumina or carbon may remain in the AlN powder obtained by firing and impede purification. The mixing ratio of aluminum hydroxide powder and carbon powder is in the range of 1: 0.22 to 0.24.

本発明の最大の特徴はアルミナ粉末又は水酸化アルミニ
ウム粉末とカーボン粉末を水媒体の存在下で分散させる
ことにある。即ち、水媒体中で両素原料を混合,分散さ
せるに際し、両素原料の水中における粒子表面の特性を
制御する表面改質剤の使用により粒径の大きいアルミナ
又は水酸化アルミニウム粉末の表面に微細なカーボン粉
末を凝集せしめ、その状態で噴霧乾燥して顆粒状にでき
る。このため、かかる顆粒状物を焼成することによりア
ルミナ又は水酸化アルミニウムから変換したアルミナの
還元が必要最小限のカーボン粉末で完全に進行する。そ
の結果カーボン粉末の必要量がほとんど理論量で済むた
め、焼成後のAlN粉末中に不純物となるカーボンがほと
んど存在せず、酸素量の増大を招くと共に繁雑な工程で
ある脱炭処理を不要となる。
The greatest feature of the present invention is to disperse alumina powder or aluminum hydroxide powder and carbon powder in the presence of an aqueous medium. That is, when mixing and dispersing amphoteric raw materials in an aqueous medium, the use of a surface modifier that controls the characteristics of the particle surfaces of the amphoteric raw materials in water makes it possible to form fine particles on the surface of alumina or aluminum hydroxide powder having a large particle diameter. It is possible to agglomerate various carbon powders and spray-dry in that state to form granules. Therefore, by firing such a granular material, the reduction of alumina or alumina converted from aluminum hydroxide proceeds completely with the minimum necessary carbon powder. As a result, the required amount of carbon powder is almost the theoretical amount, so there is almost no carbon as an impurity in the AlN powder after firing, which leads to an increase in oxygen content and eliminates the need for a decarburization process, which is a complicated process. Become.

上記水媒体による分散混合時において、後の顆粒状とさ
せるのに都合のよい粘結剤を用いても製造上の利点は損
なわれない。また、混合,分散,乾燥工程では素原料の
純度を低下させないような配慮が必要なことは言うまで
もない。
In the dispersion and mixing with the above aqueous medium, the production advantage is not impaired even if a binder which is convenient for making the granules later is used. Needless to say, it is necessary to take care not to reduce the purity of the raw materials in the mixing, dispersion and drying steps.

上記顆粒状の混合物は1400〜1700℃,好ましく
は1450〜1650℃の範囲で焼成される。焼成温度
を1400℃未満にすると、反応が円滑に進まず、かと
いってその温度が1700℃を越えると生成したAlN粉
末の粒径が粗大化する。
The granular mixture is calcined in the range of 1400 to 1700 ° C, preferably 1450 to 1650 ° C. If the firing temperature is lower than 1400 ° C, the reaction does not proceed smoothly, but if the temperature exceeds 1700 ° C, the particle size of the produced AlN powder becomes coarse.

〔発明の実施例〕Example of Invention

以上、本発明の実施例を説明する。 The embodiments of the present invention are described above.

実施例1 純度99.9重量%,平均粒径0.5μmのアルミナ粉
末100gと灰分0.1重量%以下,平均粒径0.02
μmのカーボン粉末35.4gとをプラスチックボール
の入ったプラスチックポットに収容した後、このポット
内に純水と界面活性剤及び粘結剤を加え、1時間混合,
分散した。つづいて、得られたスラリーをスプレードラ
イヤにより噴霧乾燥して平均粒径70μmの顆粒状物を
調製した。次いで、この顆粒状物を黒鉛トレイに装填
し、窒素ガス中にて1550℃,5時間焼成して白色粉
末を得た。
Example 1 100 g of alumina powder having a purity of 99.9% by weight and an average particle size of 0.5 μm, ash content of 0.1% by weight or less, and an average particle size of 0.02
35.4 g of carbon powder of μm was placed in a plastic pot containing a plastic ball, pure water, a surfactant and a binder were added to the pot and mixed for 1 hour.
Dispersed. Subsequently, the obtained slurry was spray-dried with a spray dryer to prepare a granular material having an average particle size of 70 μm. Next, this granular material was loaded into a graphite tray and baked in nitrogen gas at 1550 ° C. for 5 hours to obtain a white powder.

実施例2 実施例1と同様なアルミナ粉末とカーボン粉末とを、下
記第1表に示す混合比でプラスチックボールの入ったプ
ラスチックポットに収容し、以下、実施例と同様な方法
により5種の顆粒状物を調製した。次いで、これら顆粒
状物を黒鉛トレイに装填し、同第1表に示す条件で焼成
して5種の白色粉末を得た。
Example 2 The same alumina powder and carbon powder as in Example 1 were placed in a plastic pot containing a plastic ball at a mixing ratio shown in Table 1 below, and 5 kinds of granules were prepared by the same method as in Example 1 below. Was prepared. Next, these granular materials were loaded into a graphite tray and fired under the conditions shown in Table 1 to obtain 5 types of white powder.

比較例1 実施例1と同様なアルミナ粉末とカーボン粉末を1:
0.353の比率(重量比率)にて混合し、これを黒鉛
トレイに装填した後窒素ガス中にて1550℃,5時間
焼成して粉末を得た。
Comparative Example 1 Alumina powder and carbon powder similar to those in Example 1 were used in a ratio of 1:
The mixture was mixed at a ratio (weight ratio) of 0.353, charged in a graphite tray, and then fired in nitrogen gas at 1550 ° C. for 5 hours to obtain a powder.

しかして本実施例1〜6及び比較例1の粉末について酸
素含有量,炭素含有量,平均粒径及び構成相を調べた。
その結果を下記第1表に併記した。なお、粉末中の酸
素,炭素含有量は機器分析装置により求め構成相につい
ては粉末のX線回析法により求めた。
Therefore, the powders of Examples 1 to 6 and Comparative Example 1 were examined for oxygen content, carbon content, average particle size and constituent phase.
The results are also shown in Table 1 below. The oxygen and carbon contents in the powder were determined by an instrumental analyzer, and the constituent phases were determined by the powder X-ray diffraction method.

実施例7 純度99重量%,平均粒径0.8μmの水酸化アルミニ
ウム(Al(OH)3)粉末100gと灰分0.2重量%以
下,平均粒径0.02μmのカーボン粉末23gとをプ
ラスチックボールの入ったプラスチックポットに収納し
た後、このポット内に純水と界面活性剤及び粘結剤を加
え、1時間混合,分散した。つづいて、得られたスラリ
ーをスプレードライヤにより噴霧乾燥して平均粒径80
μmの顆粒状物を調製した。次いで、この顆粒状物を黒
鉛トレイに装填し窒素ガス中にて1550℃5時間焼成して
白色粉末を得た。
Example 7 100 g of aluminum hydroxide (Al (OH) 3 ) powder having a purity of 99% by weight and an average particle size of 0.8 μm and 23 g of carbon powder having an ash content of 0.2% by weight or less and an average particle size of 0.02 μm were used as plastic balls. After being stored in a plastic pot containing, the pure water, the surfactant and the binder were added to the pot and mixed and dispersed for 1 hour. Then, the obtained slurry is spray-dried with a spray dryer to obtain an average particle size of 80.
A μm granular material was prepared. Next, this granular material was loaded into a graphite tray and fired in nitrogen gas at 1550 ° C. for 5 hours to obtain a white powder.

実施例8〜12 実施例7と同様な水酸化アルミニウム粉末とカーボン粉
末とを、下記第2表に示す混合比でプラスチックボール
の入ったプラスチックポットに収容し、以下、実施例7
と同様な方法により5種の顆粒状物を調製した。次い
で、これら顆粒状物を黒鉛トレイに装填し、同第2表に
示す条件で焼成して5種の白色粉末を得た。
Examples 8 to 12 The same aluminum hydroxide powder and carbon powder as in Example 7 were housed in a plastic pot containing a plastic ball in the mixing ratio shown in Table 2 below, and then, in Example 7 below.
Five kinds of granular materials were prepared by the same method as described in (1). Next, these granular materials were loaded into a graphite tray and fired under the conditions shown in Table 2 to obtain 5 kinds of white powders.

比較例2 実施例7と同様な水酸化アルミニウム粉末とカーボン粉
末を1:0.23の比率(重量比率)で混合し、これを
黒鉛トレイに装填した後、窒素ガス中にて1550℃,
5時間焼成して粉末を得た。
Comparative Example 2 The same aluminum hydroxide powder and carbon powder as in Example 7 were mixed at a ratio (weight ratio) of 1: 0.23, and this was loaded on a graphite tray, and then, at 1550 ° C. in nitrogen gas,
The powder was obtained by firing for 5 hours.

しかして、本実施例7〜12及び比較例2の粉末につい
て酸素含有量,炭素含有量,平均粒径及び構成相を調べ
た。その結果を下記第2表に併記した。
Then, the oxygen content, the carbon content, the average particle size and the constituent phases of the powders of Examples 7 to 12 and Comparative Example 2 were examined. The results are also shown in Table 2 below.

〔発明の効果〕 以上詳述した如く、本発明によれば超微粉状で不純物や
酸素含有量の少ない高純度の窒化アルミニウム粉末を簡
単な工程で製造でき、ひいては該窒化アルミニウム粉末
を原料として成形,焼成を行なうことにより焼結性が高
く、窒化アルミニウム本来の優れた特性を持つ窒化アル
ミニウム焼結体を得ることができる等顕著な効果を有す
る。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to produce a high-purity aluminum nitride powder that is ultrafine and has a low content of impurities and oxygen in a simple process, and by using the aluminum nitride powder as a raw material. By carrying out molding and firing, there are remarkable effects such as high sinterability and the ability to obtain an aluminum nitride sintered body having excellent characteristics inherent to aluminum nitride.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均粒径5μm以下のアルミナ粉末または
水酸化アルミニウム粉末と平均粒径1μm以下のカーボ
ン粉末とを水媒体の存在下で混合してスラリー状混合物
とし、この混合物を噴霧乾燥して前記アルミナ粉末また
は水酸化アルミニウム粉末の表面に前記微細なカーボン
粉末を凝集させた顆粒状とした後、窒素またはアンモニ
アの雰囲気下で1400〜1700℃の温度にて焼成す
ることを特徴とする窒化アルミニウム粉末の製造方法。
1. Alumina powder or aluminum hydroxide powder having an average particle size of 5 μm or less and carbon powder having an average particle size of 1 μm or less are mixed in the presence of an aqueous medium to form a slurry mixture, and the mixture is spray-dried. Aluminum nitride characterized in that the fine carbon powder is agglomerated on the surface of the alumina powder or aluminum hydroxide powder to form a granule, which is then fired at a temperature of 1400 to 1700 ° C. in an atmosphere of nitrogen or ammonia. Powder manufacturing method.
【請求項2】アルミナ粉末または水酸化アルミニウム粉
末(アルミナ換算)とカーボン粉末とを重量比で1:
0.34〜0.37の割合で混合することを特徴とする
特許請求の範囲第1項記載の窒化アルミニウム粉末の製
造方法。
2. Alumina powder or aluminum hydroxide powder (calculated as alumina) and carbon powder in a weight ratio of 1:
The method for producing the aluminum nitride powder according to claim 1, wherein the aluminum nitride powder is mixed in a ratio of 0.34 to 0.37.
JP60216534A 1985-09-30 1985-09-30 Method for producing aluminum nitride powder Expired - Lifetime JPH0647447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216534A JPH0647447B2 (en) 1985-09-30 1985-09-30 Method for producing aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216534A JPH0647447B2 (en) 1985-09-30 1985-09-30 Method for producing aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS6278103A JPS6278103A (en) 1987-04-10
JPH0647447B2 true JPH0647447B2 (en) 1994-06-22

Family

ID=16689941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216534A Expired - Lifetime JPH0647447B2 (en) 1985-09-30 1985-09-30 Method for producing aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH0647447B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207703A (en) * 1986-03-06 1987-09-12 Tokuyama Soda Co Ltd Production of powdery aluminum nitride
KR910001300B1 (en) * 1986-11-28 1991-03-02 가와사키세이데쓰 가부시키가이샤 Process for production of aluminium nitride
JPS6456371A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456374A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6461361A (en) * 1987-09-01 1989-03-08 Sumitomo Electric Industries Aluminum nitride sintered compact having high heat conductivity
JPS6456376A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JP2547786B2 (en) * 1987-08-28 1996-10-23 住友電気工業株式会社 Manufacturing method of aluminum nitride sintered body
JPH01203271A (en) * 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd High-thermal conductivity circuit board
GB2233969A (en) * 1989-07-06 1991-01-23 Carborundum Co Improvements in or relating to the manufacture of aluminium nitride.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562804A (en) * 1979-10-09 1980-05-12 Sumitomo Electric Ind Ltd Production of nitride
JPS6077111A (en) * 1983-10-05 1985-05-01 Tokuyama Soda Co Ltd Production of aluminum nitride powder

Also Published As

Publication number Publication date
JPS6278103A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
JP4122746B2 (en) Method for producing fine α-alumina powder
EP0186144B1 (en) Process for preparing aluminum nitride powder
EP0187431B1 (en) Process for producing silicon aluminum oxynitride
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
JPH0647447B2 (en) Method for producing aluminum nitride powder
JP3290686B2 (en) Method for producing aluminum nitride powder
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
GB2172882A (en) Process for preparation of high a-type silicon nitride powder
US7314593B2 (en) Process for preparing improved silicon carbide powder
EP0131894A2 (en) A method for producing alpha-form silicon nitride fine powders
Qiu et al. Novel way to synthesize nanocrystalline aluminum nitride from coarse aluminum powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP2730086B2 (en) Aluminum nitride powder and method for producing the same
JPS5918106A (en) Preparation of silicon aluminum oxynitride type powdery raw material
KR840008789A (en) High purity aluminum nitride fine powder, compositions thereof and sintered bodies thereof, and methods for producing them
JPS60260410A (en) Manufacture of beta-sialon powder
EP0481563B1 (en) Process for preparing fine aluminium nitride powder.
JPS62100405A (en) Aluminium nitride powder and production thereof
US7109138B2 (en) Composition for preparation of silicon carbide powder
JPS6183606A (en) Production of easily sinterable aluminum nitride powder
JPH05279002A (en) Production of al nitride powder
JP3838691B2 (en) Silicon nitride grinding aid and its use
JP3348797B2 (en) Silicon nitride grinding aid and silicon nitride powder
JP2518409B2 (en) Method for producing aluminum nitride powder
JP3496795B2 (en) Method for producing silicon nitride powder