JPS60260410A - Manufacture of beta-sialon powder - Google Patents

Manufacture of beta-sialon powder

Info

Publication number
JPS60260410A
JPS60260410A JP59113963A JP11396384A JPS60260410A JP S60260410 A JPS60260410 A JP S60260410A JP 59113963 A JP59113963 A JP 59113963A JP 11396384 A JP11396384 A JP 11396384A JP S60260410 A JPS60260410 A JP S60260410A
Authority
JP
Japan
Prior art keywords
powder
slurry
carbon
sialon
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59113963A
Other languages
Japanese (ja)
Other versions
JPH0425204B2 (en
Inventor
Tatsuya Shiogai
達也 塩貝
Mutsuo Hayashi
睦夫 林
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP59113963A priority Critical patent/JPS60260410A/en
Publication of JPS60260410A publication Critical patent/JPS60260410A/en
Publication of JPH0425204B2 publication Critical patent/JPH0425204B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture easily high purity beta-sialon powder by adding a dispersant and a pH adjusting liq. to silica powder, alumina powder and powder of a substance contg. carbon, mixing them to prepare a slurry, drying the slurry, and calcining it in a flow of gaseous nitrogen. CONSTITUTION:The dispersant and a pH adjusting liq. are added to high purity silica powder of <=about 3mum average particle size, high purity alumina powder of <=about 3mum average particle size and powder of a substance contg. carbon such as carbon black of <=about 1mum average particle size, and they are mixed to prepare a slurry. Ammonium oxalate or the like is used as the dispersant by about 1.0-6.0wt% of the total amount of the silica and alumina powders. An aqueous ammonia soln. is used as the pH adjusting liq. to adjust the slurry to about 8.0-9.5pH. The prepd. slurry is dried and calcined at about 1,350-1,500 deg.C in a flow of gaseous nitrogen for about 0.2-20hr to form beta-sialon.

Description

【発明の詳細な説明】 本発明はβサイアロン粉末の新規な製造方法に関する。[Detailed description of the invention] The present invention relates to a novel method for producing β-sialon powder.

βサイアロンは一般式S + a z A Z z O
□Ng−=(ただしO<Z≦4.2)で示され、β型窒
化けい素(β−8i3N、 )をAtおよびOで置換固
溶したものである。βサイアロンは高温における耐酸化
性が大きく、かつ溶融金属等に対する耐食性も優れてい
るので、各種耐火用原料として有用である。さらにβサ
イアロンの焼結体は高温での強度や硬度が高いだめ、各
種エンジン部材や切削工具としても太いに注目されてい
る。
βsialon has the general formula S + a z A Z z O
It is represented by □Ng-= (O<Z≦4.2), and is a solid solution of β-type silicon nitride (β-8i3N, ) substituted with At and O. Since β-sialon has high oxidation resistance at high temperatures and excellent corrosion resistance against molten metals, etc., it is useful as a raw material for various refractories. Furthermore, because of its high strength and hardness at high temperatures, β-SiAlON sintered bodies are attracting attention for use in various engine parts and cutting tools.

従来のβサイアロン粉末の製造方法は、1)天然シリカ
−アルミナ系鉱物、たとえば力、オリナイトを主成分と
する粘土粉末にカーボン粉末を乾式混合したのち、窒素
気流中で焼成する方法、 2)シリカにAA金金属乾式混合1−だのち、窒素気流
中で焼成する方法、 3)シリコンアルコキシドおよびアルミニウムアルコキ
シドに有機溶剤を加えて加水分解して得たシリカ−アル
ミナ共沈物とカーボン粉末を湿式混合したのち、乾燥し
、窒素気流中で焼成する方法、 がある。とれら従来法のうち1)、2)に共通する欠点
は、原料が乾式混合であるため、長時間混合を実施して
も、その分散状態は不完全でありその後の焼成工程にお
いて反応が均一に行われず未反応酸化物、窒化アルミニ
ウム、窒化けい素が残存あるいは生成し、高純度のβサ
イアロンが得られないことである。更に1)の欠点は出
発原料として天然の粘土粉末を用いるため、アルカリ金
属が不可避的に混入し、一層βサイアロン粉末の純度が
悪いことである。また3)は湿式強制攪拌を行なうため
前二者に比し純度の高いβサイアロンが得られるが、使
用する原料が極めて高価なため、工業化が困難であると
いう欠点を有する。
Conventional methods for producing β-SiAlON powder include: 1) Dry mixing carbon powder with clay powder mainly composed of natural silica-alumina minerals, such as olinite, and then firing it in a nitrogen stream; 2) Silica AA gold metal dry mixing 1- Then firing in a nitrogen stream; 3) Wet mixing silica-alumina coprecipitate obtained by hydrolyzing silicon alkoxide and aluminum alkoxide with an organic solvent and carbon powder. There is a method in which the material is then dried and fired in a nitrogen stream. The common disadvantage of 1) and 2) of these conventional methods is that the raw materials are dry mixed, so even if mixing is performed for a long time, the dispersion state is incomplete and the reaction is not uniform during the subsequent firing process. If this process is not carried out, unreacted oxides, aluminum nitride, and silicon nitride remain or are generated, making it impossible to obtain highly pure β-sialon. A further drawback of 1) is that since natural clay powder is used as a starting material, alkali metals are inevitably mixed in, making the purity of the β-sialon powder even worse. In addition, method 3) uses forced wet stirring and can obtain β-sialon with higher purity than the first two methods, but has the drawback that the raw materials used are extremely expensive and it is difficult to industrialize.

本発明者らは上記従来法の有する欠点を解決すべく鋭意
研究したところ、使用原料および還元剤に分散剤および
p l−1調整液を添加、混合することにより高純度の
βサイアロン粉末を容易に製造できるとの知見を得て本
発明を完成した。
The present inventors conducted intensive research to solve the drawbacks of the conventional method described above, and found that high-purity β-SiAlON powder can be easily produced by adding and mixing a dispersant and a Pl-1 adjustment liquid to the raw materials and reducing agent used. The present invention was completed based on the knowledge that it could be manufactured in a number of ways.

すなわち本発明はシリカ粉末、アルミナ粉末および炭素
含有物質粉末に、分散剤およびpH調整液を添加、混合
して得た泥漿物を乾燥したのち、窒素気流中で炬成して
βサイアロン粉末を製造することを要旨とするものであ
る。
That is, in the present invention, a slurry obtained by adding and mixing a dispersant and a pH adjusting liquid to silica powder, alumina powder, and carbon-containing substance powder is dried and then smelted in a nitrogen stream to produce β-sialon powder. The gist of this is to

本発明の特徴はシリカ粉末およびアルミナ粉末の出発原
料に還元剤である炭素含有物質粉末を加えた泥漿物に、
分散剤およびpH調整液を混合攪拌することによって各
出発原料および還元剤の二次粒子を一次粒子の状態に脣
で分散させることができるのできわめて均一なM1合状
琥となり、非常に純度の高いβサイアロン粉末が碍られ
るのである。
The feature of the present invention is that a slurry obtained by adding carbon-containing substance powder as a reducing agent to the starting materials of silica powder and alumina powder,
By mixing and stirring the dispersant and pH adjustment liquid, the secondary particles of each starting material and reducing agent can be dispersed almost to the state of primary particles, resulting in an extremely uniform M1 agglomerate with extremely high purity. The β-sialon powder is crushed.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で泥漿物を得るのに使用さね、る分散奴は水であ
る。
The dispersing agent used in the present invention to obtain the slurry is water.

本発明に使用される分散剤はノ・つ酸ア7−■−ニウム
、ノニオン系界面活性剤である。前者←1主にシリカ粉
末およびアルミナ粉末に、また後者は炭素含有物質粉末
に作用してそれぞハ、胃]1ii張力を下げ、分散を向
−ヒさせると考えらね5るが、その作用機構については
詳かではない。無機粉末用の分散剤として一般に/ユウ
酸すl−’Jウノ2、ンーウ酸カリウム、ヘキサノタリ
ノ酸プトリウムなどが常用されるが、これらのアルカリ
金属化合物を使用した場合、これら金属類がβ−ソイア
ロン粉末中に残存するため好IL(なく、Uって本発明
においてはシュウ酸アノ千、−ウノ、が好適である。1
だノニオン系界面活性剤にはアルカリによって分解する
ことのない高級アルコールエチレンオキザイド付加物、
アルキルフユーノールエチレンオキダイド付加物、ポリ
プロピレンクリコールエチレンオキサイト付加物などポ
リエチレングリコール系が挙げられる。
The dispersant used in the present invention is a7-■-nium oxalate, a nonionic surfactant. The former acts mainly on silica powder and alumina powder, and the latter acts on carbon-containing substance powder, respectively, to lower the tension and promote dispersion. I don't know much about the mechanism. As a dispersant for inorganic powders, oxalic acid, potassium oxalate, puttrium hexanotalinoate, etc. are commonly used, but when these alkali metal compounds are used, these metals are Since it remains in the powder, it is preferable to use oxalic acid in the present invention.1
Nonionic surfactants include higher alcohol ethylene oxide adducts that do not decompose with alkali,
Examples include polyethylene glycol-based adducts such as alkyl funol ethylene oxide adducts and polypropylene glycol ethylene oxide adducts.

分散剤の使用量は、シーウ酸アンモニウムについてはシ
リカ粉末およびアルミナ粉末の合計11(に対して好1
しくは0,3重量%以上、ノニオン系界面活性剤につい
ては炭素含有物質粉末に★=j して0)重N %以−
ヒである。より好ましい範囲は前者が1.0〜6.0重
量%、後者が0.2〜2.0重fTtφである。使用量
が0.3重量%未満、あるいは0.1重5’r 4未満
の場合は分散効果が小さい。
For ammonium oxalate, the amount of dispersant used is 11 (preferably 11) for the total of silica powder and alumina powder.
or 0.3% by weight or more, and for nonionic surfactants, 0) weight N% or more in the carbon-containing material powder.
It's Hi. A more preferable range is 1.0 to 6.0% by weight for the former and 0.2 to 2.0% by weight fTtφ for the latter. If the amount used is less than 0.3% by weight or less than 0.1 weight 5'r4, the dispersion effect will be small.

逆にンーウ酸アンモニウムを6.0重量%を超え″C使
用してもそれ以上の分散効果は見られないから、過剰に
添加するたけ不経済である。ノニオン系界面活性剤は2
.0重量%を超えて使用すると連行空気量が過多と、な
り、原料粒子間距離が大きくなり一部原料は反応できず
、原料が未反応の11焼成物中に残存するのでbf−4
+−< tcい。
On the other hand, even if more than 6.0% by weight of ammonium phosphate is used, no further dispersion effect is observed, so it is uneconomical to add it in excess.
.. If it is used in excess of 0% by weight, the amount of entrained air will be excessive, and the distance between raw material particles will become large, and some raw materials will not be able to react, and the raw materials will remain in the unreacted 11 fired product, resulting in bf-4.
+-<tc.

pl−1調整液としてはアンモニア水が使用さfl−1
泥漿物のpHが8.0〜9.5の範囲になるように添加
する。アンモニア水は自らも分散イ′1川をイJするが
、上記p l−1域にすることによ−、て粉末の分散を
安定的に保持する。従、て1記1)II域をはずれると
原料、還元剤等の粉末はSt集り、 +5.tじめ、特
にpfll、Q以−にではそれがづ醇になり、分散が著
しく悪くなる。I)11調整沿としてアルカリ金属化合
物は前述の分散剤の場合と回l〕即由て使用できない。
Ammonia water is used as the pl-1 adjustment liquid.fl-1
Add so that the pH of the slurry is in the range of 8.0 to 9.5. Although ammonia water itself has a dispersion effect, the dispersion of the powder can be stably maintained by setting the aqueous ammonia to the above-mentioned pl-1 range. Therefore, 1) When outside the II region, the powder of raw materials, reducing agents, etc. collects in St, +5. In addition, especially in the case of pflll, Q and above, it becomes concentrated and the dispersion deteriorates significantly. I) In accordance with 11, alkali metal compounds cannot be used as in the case of the dispersant described above.

本発明に使用する片オ・1としてノリ力粉末Q1ホワイ
トカーホ゛ノ、/リカゲルなど商糾・冒■の/′リカが
用いられ、その−平均粒径rJ 311m、Lゾ1が好
士しく、それより大きいと得られるβ→ノイア11ノ粉
末中に未反応物として残イjするのでIT :4 L 
<ない。
As the material 1 used in the present invention, Noriyoku Powder Q1 white carbonate, commercially available /'lika such as licagel is used, and the average particle size rJ 311 m, Lzo 1 is preferred. If it is larger than that, it will remain as an unreacted substance in the obtained β→Noia 11 powder, so IT: 4 L
<No.

アルミナ粉末もシリカ粉末と同じく高純度のものが望ま
しく、特に気相法で合成さ力た゛アルミナが最適であり
、たとえば日本アエロジル社製の「AIuminium
 0xide Clが挙げられる。
Like silica powder, it is desirable that alumina powder be of high purity. In particular, high-purity alumina synthesized by a gas phase method is most suitable.
Oxide Cl is mentioned.

アルミナ粉末の平均粒径も3μm以下が好ましく、それ
より大きいと焼成物中に未反応物として残存するので好
ましくない。
The average particle diameter of the alumina powder is also preferably 3 μm or less; if it is larger than that, it remains unreacted in the fired product, which is not preferred.

炭素含有物質は前記2原料の還元剤として添加されるも
ので、ファーネスブラック、アセチレンブランク、ラン
プブラックのような無定形炭素粉末のほか還元雰囲気で
の加熱時に分解して遊離炭素を生成する有機化合物粉末
が使用でき、これに該当するものとしてたとえばフェノ
ール樹脂、ユリア樹脂、エポキシ樹脂の粉末などが挙げ
られる。上記カーボンブラックの平均粒径は1μIll
以下、有機化合物粉末は10μm以下がそれぞれ好捷し
ぐ、それら以上の平均粒径の場合には還元作用が不十分
で、前記原料が未分解のitβサイアロン粉末中末生存
するので好壕しくない。
Carbon-containing substances are added as reducing agents for the above two raw materials, and include amorphous carbon powders such as furnace black, acetylene blank, and lamp black, as well as organic compounds that decompose and generate free carbon when heated in a reducing atmosphere. Powders can be used, such as powders of phenolic resins, urea resins, and epoxy resins. The average particle size of the above carbon black is 1μIll
Below, it is preferable that the organic compound powder has an average particle size of 10 μm or less, but if the average particle size is larger than that, the reducing effect is insufficient and the raw material remains in the undecomposed it β sialon powder, which is not preferable. .

前記2原料の配合は、βサイアロンが5i6−2A t
z Oz N8− zなる構造T O< Z ≦4.2
 (7)範囲°の連続固溶体であるため、その範囲にな
るように行われる。すなわち2原料を配合したときSi
/At原子比が0.45〜5.5(理論量は0.429
〜6.(+)、5in2、At20B ノーEニル比テ
示セfd”0.9 <、 5i02/At203≦11
になるように配合する。好ましくは1.0 ≦5i02
7Az203<、 10 テある。上記モル比が0.9
未満の場合、焼成物中に窒化アルミニウムなどの不純物
が生成し好捷しぐない。一方J1を超えると窒化けい素
が生成しゃすぐ、やはり好ましくない。
The composition of the two raw materials is as follows: βsialon is 5i6-2A t
z Oz N8- z structure T O < Z ≦4.2
(7) Since it is a continuous solid solution in the range °, it is carried out so that it falls within that range. That is, when the two raw materials are blended, Si
/At atomic ratio is 0.45 to 5.5 (theoretical amount is 0.429
~6. (+), 5in2, At20B No E Nil ratio display fd”0.9 <, 5i02/At203≦11
Blend so that Preferably 1.0≦5i02
There are 7Az203<, 10 te. The above molar ratio is 0.9
If it is less than that, impurities such as aluminum nitride will be produced in the fired product, which is not good. On the other hand, if it exceeds J1, silicon nitride will be generated quickly, which is also not preferable.

炭素含有物質の配合量は理論的には、それに含まれる炭
素量が前記2原料の合計量を還元する量だけ配合されれ
ばよいが、実際にはその相当量より少し多く加える。し
かし前記合計量が同一であってもS i02 /kl−
20s (モル比)が違えば、使用炭素量も異なってく
る。たとえば5lo2/A t 2’ Os (モル比
)−1の場合、前記合計htに対して炭素量は21〜2
5重量係で重量が、モル比が4の場合(は31〜34重
量係、重量にモル比10の場合には35〜38重量係が
重量ぞれ好ましい量となる。炭素量が前記各最適量より
相当多く配合された場合、反応が進みすぎて1′5R−
サイアロンのような不純物を多く含む焼成物を生成する
傾向がある上、残存する余剰炭素の酸化処理工程を要し
、経済的不利を招くので過剰すぎる量の使用は好ましく
ない。なお炭素含有物質として有機化合物粉末を用いる
場合、それに含有される炭素量を考慮して配合量を決め
ればよい。
Theoretically, the amount of carbon-containing material to be blended should be such that the amount of carbon contained therein reduces the total amount of the two raw materials, but in reality, it is added a little more than the equivalent amount. However, even if the total amount is the same, S i02 /kl-
If the 20s (molar ratio) is different, the amount of carbon used will also be different. For example, in the case of 5lo2/A t 2'Os (molar ratio)-1, the amount of carbon is 21 to 2 with respect to the total ht.
When the weight is 5 and the molar ratio is 4 (31 to 34 weight), and when the weight and molar ratio is 10, the preferable amount is 35 to 38 weight. If much more than the amount is added, the reaction will proceed too much and 1'5R-
It is not preferable to use an excessive amount because it tends to produce a fired product containing many impurities such as Sialon and requires an oxidation treatment step for the remaining excess carbon, which causes economic disadvantage. Note that when using organic compound powder as the carbon-containing substance, the amount to be blended may be determined by considering the amount of carbon contained therein.

次に本発明のβサイアロン粉末の製造方法について述べ
る。
Next, the method for producing β-sialon powder of the present invention will be described.

前記原料の配合順序、添加、混合方法は公知の方法でよ
く、使用装置などは慣用のものが採゛用される。−!だ
分散剤およびpH調整液は使用恒が少量なので、水に予
め゛溶解させたのち、原料および炭素含有物質粉末に添
加、混合するなど、場合に応じて種々の方法が採られる
が、いずれの方法に従っても分散効果上に差異はない。
The mixing order, addition, and mixing method of the raw materials may be any known method, and conventional equipment may be used. -! Since dispersants and pH adjustment liquids are used only in small quantities, various methods are used depending on the case, such as dissolving them in water before adding them to the raw materials and carbon-containing substance powder, and mixing them. There is no difference in the dispersion effect depending on the method.

得られた泥漿物はそのまま脱水乾燥後はぐしてもよく、
あるいはある程度脱水しだ後湿潤状態のま捷成形(ある
いは数謹に造粒)してからのち乾燥してもよい。得られ
た乾燥物を窒素あるいはアンモニア気流中で1350〜
15oo℃、0.2〜20時間焼成する、とβサイアロ
ンが生成する。もし焼成温度が1000℃以上では還元
窒化反応の制御が難かしく、窒化アルミニウムその他の
不純物が生成し、1350℃以下ではβサイアロンの生
成が不十分となる。
The resulting slurry may be removed after dehydration and drying.
Alternatively, it may be dehydrated to some extent, then kneaded in a wet state (or granulated several times), and then dried. The obtained dried product was heated in a nitrogen or ammonia stream at 1350~
When baked at 150° C. for 0.2 to 20 hours, β-sialon is generated. If the firing temperature is 1000° C. or higher, it is difficult to control the reductive nitriding reaction and aluminum nitride and other impurities are generated, and if the firing temperature is 1350° C. or lower, β-sialon is insufficiently generated.

以上説明した本発明の方法にしたがえば原料および炭素
含有物質粉末が十分に分散混合された状態になるので、
従来法のように未反応物が残存したり、窒化アルミニウ
ムなどが生成したりして純度を低下させることはなく、
純粋なβサイアロン粉末が得られる。
According to the method of the present invention explained above, the raw material and the carbon-containing substance powder are sufficiently dispersed and mixed, so that
Unlike conventional methods, there is no unreacted material left behind or aluminum nitride produced, which reduces purity.
Pure β-sialon powder is obtained.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

実施例1〜5.比較例1〜2 下記の原料および炭素含有物質粉末を用いて分散剤の効
果に関する各種の実験を行った。
Examples 1-5. Comparative Examples 1 and 2 Various experiments regarding the effects of dispersants were conducted using the following raw materials and carbon-containing substance powders.

1シリカ粉末 ホワイトカーボン 日本アエロジル社製
1’−AERO]L−380J平均粒径3.Qmμ 2アルミナ粉末 酸化アルミニウム 日本アエロジル社
製I Aluminium Oxide CJ平平均粒径2田 試薬)25mμ 4分散剤 イ./ユウ酸アンモニウム(1級試薬)ロ.
ホリエチレングリコールアルキルエーテル第一薬品工業
社製1−ノイゲンET 135J ハ.シュウ酸ナトリウム(1級試薬) 二.ヘキサメタリン酸ナトリウム(1級試薬)5、 p
H調整液 アンモニア水 シリカ粉末100重量部、アルミナ粉末100重に部お
よび炭素含有物質40重量部の合計量に対しその4倍量
の水を加えて泥漿物をつくり、さらに第1表に示すよう
に分散剤をそれぞれ添加し、さらにpH調整液を用いて
pi(9,Qの泥漿物を調製した。この泥漿物を遠心脱
水後、約6鰭φに造粒し、約90℃で乾燥した。この造
粒物を黒鉛ルツボに入れ、5 0 9 cc/minの
窒素気流を伴った電気炉で1450℃、6時間焼成l−
た3。
1 Silica powder White carbon Manufactured by Nippon Aerosil Co., Ltd. 1'-AERO] L-380J Average particle size 3. Qmμ 2 Alumina powder Aluminum oxide Made by Nippon Aerosil Co., Ltd. I Aluminum Oxide CJ average particle size 2Tada reagent) 25mμ 4 Dispersant i. /Ammonium oxalate (first class reagent) b.
Polyethylene glycol alkyl ether 1-Neogen ET 135J manufactured by Daiichi Yakuhin Kogyo Co., Ltd. c. Sodium oxalate (first class reagent) 2. Sodium hexametaphosphate (first class reagent) 5, p
H Adjustment Solution To the total amount of 100 parts by weight of ammonia water silica powder, 100 parts by weight of alumina powder, and 40 parts by weight of carbon-containing substance, add 4 times the amount of water to make a slurry, and then make a slurry as shown in Table 1. A dispersant was added to each, and a pH adjustment solution was used to prepare a slurry with pi (9, Q). After centrifugal dehydration, this slurry was granulated to about 6 fin diameters and dried at about 90°C. The granules were placed in a graphite crucible and fired at 1450°C for 6 hours in an electric furnace with a nitrogen flow of 509 cc/min.
3.

得られた焼成物を室温1で冷却したのち、X線回折を行
い、確認できた生成鉱物を第2表VC示した。
After the obtained fired product was cooled to room temperature 1, it was subjected to X-ray diffraction, and the confirmed minerals are shown in Table 2 VC.

得られた結果から本発明の分散剤を用いたとき未反応原
料の残存や他の化合物の生成がないこと、およびンユウ
酸アンモニウムtri O 、 3 1ilI+iチ以
し、ノニオン系界面活性剤60.1重:1:憾以上の添
加が効果的であることが判明した.2(以F全白) ゛ 実施例6〜8.比較例3〜5 アンモニア水を加減して泥漿物のpHを種々に変え、分
散剤ハおよび二を除いた実施例1の原料および炭素含有
物質粉末を用い、かつ同様の操作手順にしたがって実験
を行った。その際比較としてアンモニア水無添加の場合
およびカセイソーダを用いた場合についても併せて行い
、得られた結果を第3表に示しだ。その結果泥漿物のp
Hはアンモニア水を用いて8.0〜9.5に制御した本
実施例のみ純粋なβサイアロンが得られることが確認さ
れた。
The obtained results show that when the dispersant of the present invention is used, there is no residual unreacted raw material or generation of other compounds, and ammonium oxalate triO, 3ilI+i, nonionic surfactant 60.1 It was found that adding a weight of 1:1 or more is effective. 2 (Full white hereafter) ゛ Examples 6 to 8. Comparative Examples 3 to 5 The pH of the slurry was varied by varying the amount of ammonia water, and experiments were conducted using the raw materials and carbon-containing powder of Example 1 except for dispersants C and 2, and following the same operating procedure. went. At that time, for comparison, a case where no ammonia water was added and a case where caustic soda was used were also conducted, and the obtained results are shown in Table 3. As a result, the slurry p
It was confirmed that pure β-sialon was obtained only in this example, in which H was controlled to 8.0 to 9.5 using aqueous ammonia.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] シリカ粉末、アルミナ粉末および炭素誉有物質粉末に、
分散剤およびpH調整液を添加、混合して得た泥箕物を
乾燥したのち、窒素黴流中で焼成することを特徴とす−
るβサイアロン粉末の製造方法
Silica powder, alumina powder and carbon honorable material powder,
It is characterized by adding and mixing a dispersing agent and a pH adjusting liquid, drying the slurry, and then firing it in a nitrogen stream.
Method for producing β-sialon powder
JP59113963A 1984-06-05 1984-06-05 Manufacture of beta-sialon powder Granted JPS60260410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59113963A JPS60260410A (en) 1984-06-05 1984-06-05 Manufacture of beta-sialon powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59113963A JPS60260410A (en) 1984-06-05 1984-06-05 Manufacture of beta-sialon powder

Publications (2)

Publication Number Publication Date
JPS60260410A true JPS60260410A (en) 1985-12-23
JPH0425204B2 JPH0425204B2 (en) 1992-04-30

Family

ID=14625587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59113963A Granted JPS60260410A (en) 1984-06-05 1984-06-05 Manufacture of beta-sialon powder

Country Status (1)

Country Link
JP (1) JPS60260410A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851205A (en) * 1986-01-17 1989-07-25 National Institute For Researches In Inorganic Materials Alpha-sialon powder and process for its production
WO1990002705A1 (en) * 1988-09-07 1990-03-22 Nihon Cement Co., Ltd. PROCESS FOR PRODUCING β-SIALON POWDER
DE3991023T1 (en) * 1989-08-22 1990-09-20 Nihon Cement METHOD FOR PRODUCING (BETA) SIALON POWDER
US4977113A (en) * 1989-05-15 1990-12-11 Aluminum Company Of America Process for producing silicon aluminum oxynitride by carbothermic reaction
US5108967A (en) * 1989-05-15 1992-04-28 Aluminum Company Of America Process for producing nonequiaxed silicon aluminum oxynitride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645033U (en) * 1979-09-14 1981-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645033U (en) * 1979-09-14 1981-04-23

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851205A (en) * 1986-01-17 1989-07-25 National Institute For Researches In Inorganic Materials Alpha-sialon powder and process for its production
WO1990002705A1 (en) * 1988-09-07 1990-03-22 Nihon Cement Co., Ltd. PROCESS FOR PRODUCING β-SIALON POWDER
US4977113A (en) * 1989-05-15 1990-12-11 Aluminum Company Of America Process for producing silicon aluminum oxynitride by carbothermic reaction
US5108967A (en) * 1989-05-15 1992-04-28 Aluminum Company Of America Process for producing nonequiaxed silicon aluminum oxynitride
DE3991023T1 (en) * 1989-08-22 1990-09-20 Nihon Cement METHOD FOR PRODUCING (BETA) SIALON POWDER

Also Published As

Publication number Publication date
JPH0425204B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
JPWO2020032060A1 (en) Hexagonal Boron Nitride Powder and Method for Producing Hexagonal Boron Nitride Powder
JP2019182737A (en) Hexagonal boron nitride powder and manufacturing method therefor
US4612297A (en) Process for preparation of silicon nitride powder of good sintering property
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
JPS62167209A (en) Alpha-sialon powder and its production
JPS60260410A (en) Manufacture of beta-sialon powder
JPH0647447B2 (en) Method for producing aluminum nitride powder
CN113292053B (en) Process for preparing high-dispersity aluminum nitride powder by carbothermic method based on polymer dispersant
JPS63274603A (en) Method for elevating purity of hexagonal boron nitride to high level
JPH0339968B2 (en)
JPH0553723B2 (en)
US2733134A (en) Method for making titanium carbide
JPH0481521B2 (en)
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JP3105622B2 (en) Aluminum borate-based whisker aggregate and method for producing the same
JP2706883B2 (en) Manufacturing method of aluminum borate whisker
JP2660199B2 (en) Method for producing β-sialon powder
JP2567041B2 (en) Method for producing ultrafine aluminum nitride particles
JPH0151443B2 (en)
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS60145902A (en) Production of sialon powder
JPS62153171A (en) Manufacture of composite sintered body
JPH0610082B2 (en) Method for producing α-type silicon nitride fine powder
JPS6395113A (en) Production of fine powder comprising metallic boride as main component
JPS59223214A (en) Manufacture of hyperfine-grained sic powder