JPH0481521B2 - - Google Patents

Info

Publication number
JPH0481521B2
JPH0481521B2 JP60194871A JP19487185A JPH0481521B2 JP H0481521 B2 JPH0481521 B2 JP H0481521B2 JP 60194871 A JP60194871 A JP 60194871A JP 19487185 A JP19487185 A JP 19487185A JP H0481521 B2 JPH0481521 B2 JP H0481521B2
Authority
JP
Japan
Prior art keywords
powder
boron
boron nitride
nitride
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60194871A
Other languages
Japanese (ja)
Other versions
JPS6256307A (en
Inventor
Yoshihiko Numata
Kazuya Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60194871A priority Critical patent/JPS6256307A/en
Publication of JPS6256307A publication Critical patent/JPS6256307A/en
Publication of JPH0481521B2 publication Critical patent/JPH0481521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は窒化ほう素と他のセラミツクス粉末と
の混合粉末の製造方法に関する。更に詳しくは、
窒化ほう素以外の非酸化物セラミツクス粉末とほ
う素又はほう素化合物とを、窒化ほう素と非酸化
物セラミツクス粉末との混合粉末中に該非酸化物
セラミツクス粉末が95〜10重量%含有されるよう
に混合し、該混合物を窒素又は窒素化合物と接触
させほう素又はほう素化合物を窒化し窒化ほう素
に変換することを特徴とする窒化ほう素と他の非
酸化物セラミツクスとの混合粉末の製造方法に関
する。 (従来の技術) 窒化ほう素は、耐熱性、電気絶縁性、潤滑性、
耐化学薬品性、熱伝導性等のすぐれた諸特性を有
するため、それぞれの特性を利用した各分野に於
て粉末状で、又はルツボ等の成形体の形で利用さ
れている。 このような窒化ほう素を様々なセラミクスに混
合することにより、該セラミクスの特性を向上さ
せようとする試みが行なわれている。例えば窒化
けい素に窒化ほう素を混合することにより、窒化
けい素焼結体の摩擦、摩耗特性を改良しようとす
る試みなどがある。このように窒化ほう素と種々
のセラミクス粉末との混合粉末は複合焼結体の原
料など色々な面で利用されはじめている。上記の
ような窒化ほう素と種々のセラミクス粉末との混
合粉末は、従来窒化ほう素粉末と種々のセラミク
ス粉末をそれぞれ個別に合成し、得られた窒化ほ
う素粉末と種々のセラミクス粉末を公知の手段に
より混合する製造方法が一般的にとられている。 (発明が解決しようとする問題点) しかし、市販の窒化ほう素粉末は一般に六方晶
の晶癖が発達した結晶粒子であり、その結晶形を
反映して板状粒子となつているため形状異方性が
非常に大きい。また、上記の窒化ほう素粉末は一
般的に一次粒子が凝集して大きい凝集粒を作りや
すい性質をもつている。 このため、窒化ほう素粉末と種々のセラミクス
粉末を混合することにより、両者が均一に分散し
た混合粉末を得ることは困難であつた。 窒化ほう素粉末と種々のセラミクス粉末の両者
が均一に分散していない場合、それぞれのケース
によつて該混合粉末の焼結性が悪いあるいは又、
該混合粉末を焼結して得られる複合焼結体の物性
がそれれ程向上しないなどの様々な不都合が生ず
る。 (問題点を解決するための手段) 本発明者等は上記事情に鑑み、窒化ほう素粉末
と種々のセラミクス粉末が均一に分散した混合粉
末を得るべく鋭意研究を進めた結果、種々のセラ
ミクス粉末の存在下で合成した窒化ほう素は、
種々のセラミクス粉末の窒化ほう素粉末が均一に
分散している状態が或はセラミクス粉末の表面を
窒化ほう素が被覆した状態であることを見出し、
本発明を完成することに至つた。 すなわち、本発明は窒化ほう素以外の非酸化物
セラミツクス粉末とほう素又はほう素化合物と
を、窒化ほう素と非酸化物セラミツクス粉末との
混合粉末中に該非酸化物セラミツクス粉末が95〜
10重量%含有されるように混合し、該混合物を窒
素又は窒素化合物と接触させほう素又はほう素化
合物を窒化し窒化ほう素に変換することを特徴と
する窒化ほう素と他の非酸化物セラミツクスとの
混合粉末の製造方法である。 以下、本発明について更に詳しく説明する。本
発明で使用する原料の一種はほう素又はほう素化
合物であり、このうち、ほう素はほう素単体であ
り、結晶性及び非晶性のいずれれれをも使用でき
る。また、上記ほう素化合物も公知の物質が特に
限定されず使用できる。一般にはほう素、酸化ほ
う素、ほう酸塩、ハロゲン化ほう素、金属ほう化
物等が本発明に於いて好適に使用できる。このう
ち、ほう酸塩としては、ほう酸アンモニウム、ほ
う砂、ほう酸カリウム、ほう酸リチウム、ほう酸
カルシウム、ほう酸マグネシウム等のほう酸のア
ンモニウム塩、アルカリ金属塩、アルカリ土類金
属塩やほう酸亜鉛等が好適に使用できる。またハ
ロゲン化ほう素としては、三塩化ほう素、三フツ
化ほう素、三臭化ほう素等が好適に使用でき金属
ほう化物としてはほう化カルシウム等が好適に使
用できる。 本発明で使用する一方の原料である窒素及び含
窒素化合物としては窒化ホウ素の製造に使用され
る公知の物質が特に限定されず使用できる。この
うち、含窒素化合物は、一般にアンモニア、尿
素、塩化アンモニウム、ジシアンジアミド、メラ
ミン等が好適に使用できる。 本発明で使用するセラミクス粉末も窒化ほう素
以外の非酸化物セラミツクス粉末であれば良く特
に限定されず公知のいかなるものでも使用でき
る。 本発明で好適に使用される非酸化物セラミクス
粉末は、下記一般式 MmXn (但し、Xはほう素、窒素、けい素及び炭素か
らなる群から選ばれた1種であり、Mはアルミニ
ウム、ほう素、けい素、ベリリウム、希土類元素
及び耐火性遷移金属からなる群から選ばれれた1
種でX以外のものであり、mはXの原子価を示
し、nはMの原子価を示す。) で示されるものである。 なお本明細書において用いられる「耐火性遷移
金属」という用語は、周期律表の第4族、第5族
および第6族の遷移金属、即ちチタン、ジルコニ
ウム、ハフニウム、トリウム、バナジウム、ニオ
ブ、タンタル、プロトアクチニウム、クロム、モ
リブデン、タングステンおよびウラニウムを意味
する。本発明に於いて好適なセラミクス粉末とし
ては、例えば窒化アルミニウム、窒化ケイ素、炭
化ケイ素、ほう化チタン、ほう化アルミニウム、
ほう化ジルコニウム、窒化チタン、炭化ほう素、
などが好適に使用できる。これらセラミクス粉末
は粒径が細かく高純度であることが望ましい。一
般的には該セラミクス粉末の平均粒子径が5μm以
下で、不純物(陰イオン及び陽イオン不純物を含
む)が5重量%以下であることが好ましい。この
ようなセラミクス粉末を用いた場合は本発明によ
つて得られる該セラミクス粉末を含有する窒化ほ
う素混合粉末の焼結性が良い。あるいは又該窒化
ほう素混合粉末より得られる複合焼結体の特性が
すぐれているなど、本発明による効果を明確に発
現することができる。特に、該セラミクス粉末と
して窒化アルミニウム粉末を用いたときは、窒化
ほう素混合粉末を原料として得られる複合焼結体
の熱伝導率が優れているために好ましい。 好適に用いられる窒化アルミニウム粉末として
は次のようなものが挙げられる。 平均粒子径(遠心式粒度分布測定装置、例えば
堀場制作所製のCAPA500など測定した凝集粒子
の平均粒径を言う)が5μm以下であり、好適には
3μm以下、最も好適には2μm以下の粉末が好まし
い。特に3μm以下の粒子を70容量%以上含む粉末
が好適である。また、高熱伝導性の複合焼結体を
得る場合はAlNの含有量(AlN粉末の窒素の含
有量から計算される)は90重量%以上の窒化アル
ミニウム粉末が好程に採用され、更には94重量%
以上、また、さらに好適には97重量%以上の粉末
が採用される。 本発明に於いて好適に使用される窒化アルミニ
ウム粉末としては、平均粒子径が2μm以下の粉末
で、3μm以下の粒子を70容量%以上含み、酸素含
有量が3.0重量%以下、且つ窒化アルミニウム組
成をAlNとするとき含有する陽イオン不純物が
0.5重量%以下である窒化アルミニウム粉末であ
る。このような窒化アルミニウム粉末を用いた場
合は、得られる複合焼結体の熱伝導率の向上と共
に高温での機械的強度の低下を抑制することがで
きるために本発明で好適に使用される。就中、平
均粒子径が2μm以下の粉末で、3μm以下の粒子を
70容量%以上含み、酸素含有量が1.5重量%以下、
且つ窒化アルミニウム組成をAlNとするとき含
有する陽イオン不純物が0.3重量%以下である窒
化アルミニウム粉末を用いた場合には、得られる
複合焼結体の熱伝導率の向上と高温での機械的強
度の低下の抑制効果とが著しいため、本発明では
特に好適に使用される。 以上に述べたほう素又はほう素化合物と窒素又
は含窒素化合物とを反応させる方法としては、公
知の方法が何ら制限なく採用することができる。
このような公知の反応方法としては、例えば、次
のような方法を挙げることができる。 1 単体ほう素と窒素又はアンモニアを直接反応
させる方法。 この場合反応をすみやかに進行させるために
1500℃以上に加熱するとよい。 2 ほう酸、酸化ほう素又はほう酸塩等の原料を
窒素又はアンモニア気流中で加熱する方法。 この場合、ほう酸などは加熱により溶解して
粘稠な液体となり、アンモニアガスとの反応が
阻害されるので、通常工業的にはリン酸カルシ
ウム等のフイラーをほう酸等に加え、ほう酸等
が溶融してフイラーの表面を薄く覆うような状
態でアンモニアガスと反応させる。 反応終了後はフイラーを塩酸等で溶解除去し
窒化ほう素を分離する。 3 ほう酸塩又はほう酸等と尿素などの含窒素化
合物の混合物を窒素又はアンモニア気流中で加
熱する方法。 4 ほう酸や酸化ほう素等に炭素、マグネシウム
等の還元剤を添加し、アンモニア又は窒素中で
反応させる方法。 5 三塩化ほう素等のハロゲン化ほう素とアンモ
ニアよりイミド等の化合物を合成し、これを加
熱分解することにより、窒化ほう素を得る方
法。 これらの方法のうち、1)〜4)の方法と5)
の方法の二つに分けて以下に更に詳しく説明す
る。 1)〜4)の方法について説明すると、まずほ
う素又はほう素化合物と非酸化物セラミクス粉末
が混合される。この混合比は、本発明により製造
される非酸化物セラミクス粉末を含有する窒化ほ
う素混合粉末に要求される性状に応じて広い範囲
から選択できる。本発明の方法で得られる窒化ほ
う素混合粉末の均一性による効果が明確に現われ
るには、一般に、ほう素又はほう素化合物を窒化
ほう素に換算して5〜95重量%、非酸化物セラミ
クス粉末が95〜5重量%の範囲であることが好ま
しい。さらには、ほう素又はほう素化合物を窒化
ほう素に換算して10〜90重量%で、非酸化物セラ
ミクス粉末が90〜10重量%であることがより好ま
しい。但し、2)又は4)の方法を用いる場合、
原料混合物中の窒素又は含窒素化合物の通気性を
良好にし、ほう素又はほう素化合物の窒化反応を
進行させるために、非酸化物セラミクス粉末の量
は40重量%以上であることが好ましい。 本発明に於いて、さらに1)〜4)の各方法に
従つて、所定の含窒素化合物又は還元剤等の成分
がさらに混合される。 また、2)の方法で、ほう素又はほう素化合物
が加熱により溶解して液体となり、窒素又は含窒
素化合物との反応が阻害されるので、通常リン酸
カルシウム等のフイラーを加えて反応を行なわせ
ているが、本発明の場合、添加する非酸化物セラ
ミクス粉末がフイラーの役目を果たすので、リン
酸カルシウム等のフイラーは必ずしも加える必要
はない。 ほう素又はほう素化合物と非酸化物セラミクス
粉末、さらに必要に応じて加えられる含窒素化合
物又は還元剤の混合方法は特に限定されず、乾式
混合、液体分散媒体中で混合する湿式混合等の公
知の方法を採用すればよい。特に好適な実施態様
は湿式混合である。該液体分散媒体は特に限定さ
れず、一般に水、アルコール類、炭化水素類また
はこれらの混合物が好適に使用される。特に工業
的に最も好適に採用されるのはメタノール、エタ
ノール、ブタノールなどの炭素数4以下の低級ア
ルコール類である。 また、混合の条件及び装置は特に限定されず不
可避的に混入する不純物成分を抑制できるもので
あれば好適である。 このようにして得られた混合物はそのまま或い
は必要により乾燥を行なう。次の窒化反応に供す
る際の混合物の形状は粉状でもよいし、また、ペ
レツト状又はブロツク状に成型されていてもよ
い。このようにして得た混合物を次に窒素又は含
窒素化合物の雰囲気下で焼成する。該焼成温度は
各セラミクス粉末の種類によつて異なるが、一般
には700℃〜1500℃の範囲が好適である。 焼成時間は通常2〜12時間の範囲から選択すれ
ば十分である。 前記焼成の際には焼成炉の炉材や焼成ボートな
どの材質について不純物の原因とならないように
配慮するのが好ましい。また焼成の雰囲気はアン
モニアを含む雰囲気、通常は純アンモニアガスか
あるいはそれに窒素ガスなどを加えたガスが好適
であり、通常これらの反応ガスを窒化反応が十分
進行するだけの量を連続的に又は間欠的に供給し
つつ焼成すると良い。 次に5)の方法について説明する。 液体アンモニアに非酸化物セラミクス粉末を加
える。非酸化物セラミクス粉末の添加量は、得ら
れる窒化ほう素混合粉末中に占める割合が5〜95
重量%好ましくは、10〜90重量%となるように選
択することが好適である。撹拌等の方法により非
酸化物セラミクス粉末を均一に分散させながら三
塩化ほう素等のハロゲン化ほう素を滴下する。生
成したほう素のイミドと非酸化物セラミクス粉末
のスラリーを撹拌しながらロ過し、乾燥させる。
なお上記反応操作は乾燥した雰囲気、例えば窒素
ガス雰囲気下において行なうのが望ましい。なぜ
ならば三塩化ほう素等のハロゲン化ほう素及び反
応生成物であるほう素のイミドは水と簡単に反応
して分解してしまうからである。 上記のようにして得られたほう素のイミドと非
酸化物セラミクス粉末の混合物を窒素又はアンモ
ニアガス雰囲気下800〜1200℃の温度で加熱し、
ほう素のイミドを熱分解することにより窒化ほう
素と非酸化物セラミクス粉末の混合物を得る。 なお必要ならば、上記のようにして得られた窒
化ほう素混合粉末を窒素ガスなどの非酸化性雰囲
気下1200〜1700℃の温度で更に加熱することによ
り窒化ほう素の結晶化度を高くすることができ
る。 以上のようにして、種々の非酸化物セラミクス
粉末と窒化ほう素粉末とが均一に分散した窒化ほ
う素混合粉末を得ることができる。 本発明により得られる種々の非酸化物セラミク
ス粉末を含有する窒化ほう素混合粉末は、そのま
ま粉末の形態で他の物質に添加するなどして利用
できるし、また複合焼結体の原料としても利用で
きる。複合焼結体の原料とする場合は、本発明に
より得られる種々のセラミクス粉末を含有する窒
化ほう素混合粉末をそのまま又はこれに焼結助剤
を配合し焼結することにより複合焼結体を得るこ
とができる。 以下、本発明の窒化ほう素混合粉末を複合焼結
体の原料として利用する場合について、更に詳し
く説明する。先ず、焼結助剤は、特に限定されず
公知のものを使用できるが、一般に窒化ほう素お
よび使用したセラミクス粉末の焼結に好適な物質
の中から選べば良い。例えば、前記セラミクス粉
末が窒化アルミニウム粉末の場合には、周期律表
第a族又は第a族金属の化合物が焼結助剤と
して適当である。より具体的に挙げればベリリウ
ム、カルシウム、ストロンチウム、バリウム、イ
ツトリウム、ランタン、セリウム、ネオジム等の
硝酸塩、炭酸塩、ハロゲン化物、アルミン酸塩、
酸化物等が好適に使用される。 また、セラミクス粉末が窒化ケイ素の場合に
は、マグネシア、アルミナ、イツトリア等の周期
律表第a族又は第a族の金属の酸化物が、さ
らに、セラミクス粉末が炭化ケイ素の場合には、
カーボン及び金属ほう素が焼結助剤として好適に
用いられる。 また、前記の焼結助剤の使用量は、複合焼結体
の組成や該複合焼結体に要求される性状等によつ
て異なるもので、予めそれぞれの場合に応じて好
適な使用量を決定すれば良い。一般には、焼結助
剤はセラミクス粉末に対して0.01〜10重量%、好
ましくは0.05〜5重量%の範囲で使用することが
好適である。また、窒化ほう素の焼結に好適に用
いられる酸化ほう素、酸化カルシウム等の焼結助
剤も、窒化ほう素に対して上記と同様の範囲で用
いることが好ましい。 前記の窒化ほう素混合粉末と焼結助剤の混合方
法は特に限定されず、公知の方法を採用すれば良
い。例えば湿式混合方法が好適に使用できるし、
液体分散媒体を使用しない乾式混合方法を採用す
ることもできる。また、混合装置についても特に
限定されず、公知のものをそのまま使用すればよ
い。 前記の焼結助剤の窒化ほう素混合粉末への分散
方法としては、前記の方法のほかに窒化ほう素混
合粉末を合成する前にその原料に焼結助剤を混合
しておき、その後窒化ほう素混合粉末を合成する
ことによつて窒化ほう素混合粉末に分散させると
いう手段も採用し得る。 焼結は真空又は非酸化性雰囲気下に加圧あるい
は常圧のいずれでも行なうことができる。加圧す
る場合の圧力は20〜500Kg/cm2の圧力を選べば好
適である。 上記、非酸化性雰囲気としては、例えば窒素ガ
ス、アルゴンガス、水素ガスあるいはこれらの混
合ガス雰囲気などが使われる。 焼結温度は、複合焼結体の組成などにより異な
るので、予めそれぞれの場合に応じて最適な焼結
温度を決定すれば良いが、一般には1500〜2300℃
の温度が採用される。 (効果) 本発明の製造方法によると、従来行なわれてい
る窒化ほう素粉末と非酸化物セラミクス粉末を混
合する方法では達成できない均一に窒化ほう素と
非酸化物セラミクス粉末が分散した混合粉末或は
セラミクス粉末の表面を窒化ほう素が被覆した粉
末が得られる。 本発明によつて得られる窒化ほう素混合粉末
は、窒化ほう素粉末と非酸化物セラミクス粉末が
均一に分散混合しているため、例えば窒化ほう素
−窒化アルミニウム系などではシリコーンゴム等
のポリマーとの複合体用粉末として効果的な作用
を有する。 また、該窒化ほう素混合粉末は良好な焼結性を
有し、すぐれた特性を有する複合焼結体を提供す
る。特に本発明によつて得られる窒化ほう素混合
粉末は窒化ほう素粉末と非酸化物セラミクス粉末
が均一に分散した混合粉末であるため該粉末を焼
結することによつて従来得られなかつた非常に均
一な組織を有する窒化ほう素系の複合焼結体を得
ることができる。このため該複合焼結体は、従来
公知の方法、即ち、窒化ほう素粉末と非酸化物セ
ラミクス粉末の単なる混合物を焼結することによ
つて得られる複合焼結体にくらべて様々な面に於
いてすぐれた性質を有し、例えば、一般に高い曲
げ強度を有する。また該複合焼結体は窒化ほう素
が5〜40重量%、非酸化物セラミクス粉末が95〜
60重量%の範囲、より好ましくは窒化ほう素が10
〜30重量%、非酸化物セラミクス粉末が90〜70重
量%の範囲という組成に於いて普通工具により切
削加工ができるいわゆるマシーナブルセラミクス
としての性状をも発揮する。 本発明のような簡単な手段で窒化ほう素粉末と
種々の非酸化物セラミクス粉末が均一に分散した
混合粉末を容易に得ることができ、しかも該粉末
を使用することにより窒化ほう素セラミクスの特
性を大幅に向上させることができるので、本発明
の工業的価値は極めて大きい。 以下、実施例によつて本発明を具体的に例示す
るが本発明はこれらの実施例に限定されるもので
はない。 実施例 1 平均粒径が1.31μmで3μm以下の粒子の含有割
合が90容量%を占め表1に示す組成の窒化アルミ
ニウム160重量部とほう酸(和光純薬製特級試薬)
100重量部とを、ナイロン製ポツトとナイロンコ
ーテイングしたボールを用い、エタノールを液体
分散媒体として湿式混合で均一にボールミル混合
した。 このようにして得られた混合物を乾燥後ナイロ
ン製ポツトにナイロンコーテイングしたボールを
用い乾式粉砕を行なつた。 粉砕後、この混合物をアルミナ製ボートに入
れ、電気炉内に純アンモニアガスを200ml/min
で連続的に供給しながら、1000℃の温度で6時間
加熱した。得られた粉末は白色であつた。この粉
末の窒素含有率は37.5%で、ほう酸の窒化ほう素
への転化率即ち、窒化ほう素の収率は95%であつ
た。また、ホウ酸の未反応物は酸化ほう素になつ
ているものと考えられる。従つて、該粉末の組成
は窒化アルミニウム80%、窒化ほう素19%、酸化
ほう素1%であると考えられる。ま
(Industrial Application Field) The present invention relates to a method for producing a mixed powder of boron nitride and other ceramic powder. For more details,
A non-oxide ceramic powder other than boron nitride and boron or a boron compound are mixed so that the mixed powder of boron nitride and non-oxide ceramic powder contains 95 to 10% by weight of the non-oxide ceramic powder. production of a mixed powder of boron nitride and other non-oxide ceramics, characterized in that the mixture is brought into contact with nitrogen or a nitrogen compound to nitride boron or a boron compound and convert it into boron nitride. Regarding the method. (Conventional technology) Boron nitride has heat resistance, electrical insulation, lubricity,
Because it has excellent properties such as chemical resistance and thermal conductivity, it is used in powder form or in the form of molded bodies such as crucibles in various fields that utilize these properties. Attempts have been made to improve the characteristics of various ceramics by mixing such boron nitride with the ceramics. For example, attempts have been made to improve the friction and wear characteristics of silicon nitride sintered bodies by mixing boron nitride with silicon nitride. In this way, mixed powders of boron nitride and various ceramic powders are beginning to be used in various ways, including as raw materials for composite sintered bodies. The above-mentioned mixed powder of boron nitride and various ceramic powders is conventionally produced by separately synthesizing boron nitride powder and various ceramic powders, and then combining the obtained boron nitride powder and various ceramic powders using known methods. A manufacturing method that involves mixing by means is generally used. (Problem to be solved by the invention) However, commercially available boron nitride powders are generally crystal grains with a developed hexagonal crystal habit, and their shape is irregular because they are plate-like particles reflecting the crystal shape. The orientation is very large. Further, the above-mentioned boron nitride powder generally has the property that the primary particles tend to aggregate to form large aggregate particles. Therefore, it has been difficult to obtain a mixed powder in which boron nitride powder and various ceramic powders are uniformly dispersed by mixing the boron nitride powder and various ceramic powders. If both boron nitride powder and various ceramic powders are not uniformly dispersed, depending on each case, the sinterability of the mixed powder may be poor or
Various disadvantages occur, such as the physical properties of the composite sintered body obtained by sintering the mixed powder are not improved to that extent. (Means for Solving the Problems) In view of the above circumstances, the present inventors conducted intensive research to obtain a mixed powder in which boron nitride powder and various ceramic powders were uniformly dispersed, and as a result, various ceramic powders were obtained. Boron nitride synthesized in the presence of
We have discovered that the boron nitride powder of various ceramic powders is uniformly dispersed or the surface of the ceramic powder is coated with boron nitride,
We have now completed the present invention. That is, in the present invention, a non-oxide ceramic powder other than boron nitride and boron or a boron compound are mixed in a mixed powder of boron nitride and non-oxide ceramic powder so that the non-oxide ceramic powder is 95 to
Boron nitride and other non-oxides are mixed to contain 10% by weight, and the mixture is brought into contact with nitrogen or a nitrogen compound to nitride boron or the boron compound and convert it to boron nitride. This is a method for producing a mixed powder with ceramics. The present invention will be explained in more detail below. One of the raw materials used in the present invention is boron or a boron compound. Among these, boron is a simple substance of boron, and both crystalline and amorphous forms can be used. Moreover, any known substance can be used as the boron compound without particular limitation. In general, boron, boron oxide, borates, boron halides, metal borides, etc. can be suitably used in the present invention. Among these, as the borate, ammonium borate, borax, potassium borate, lithium borate, calcium borate, magnesium borate, etc., ammonium salts of boric acid, alkali metal salts, alkaline earth metal salts, zinc borate, etc. can be preferably used. . As the boron halide, boron trichloride, boron trifluoride, boron tribromide, etc. can be suitably used, and as the metal boride, calcium boride, etc. can be suitably used. As the nitrogen and nitrogen-containing compound which are one of the raw materials used in the present invention, known substances used in the production of boron nitride can be used without particular limitation. Among these, ammonia, urea, ammonium chloride, dicyandiamide, melamine, etc. can be preferably used as the nitrogen-containing compound. The ceramic powder used in the present invention is not particularly limited as long as it is a non-oxide ceramic powder other than boron nitride, and any known ceramic powder can be used. The non-oxide ceramic powder preferably used in the present invention has the following general formula MmXn (where X is one selected from the group consisting of boron, nitrogen, silicon and carbon, and M is aluminum, boron 1 selected from the group consisting of elemental elements, silicon, beryllium, rare earth elements, and refractory transition metals.
It is a species other than X, m represents the valence of X, and n represents the valence of M. ). The term "refractory transition metal" as used herein refers to transition metals in Groups 4, 5, and 6 of the periodic table, namely titanium, zirconium, hafnium, thorium, vanadium, niobium, and tantalum. , meaning protactinium, chromium, molybdenum, tungsten and uranium. Suitable ceramic powders in the present invention include, for example, aluminum nitride, silicon nitride, silicon carbide, titanium boride, aluminum boride,
Zirconium boride, titanium nitride, boron carbide,
etc. can be suitably used. It is desirable that these ceramic powders have small particle sizes and high purity. Generally, it is preferable that the average particle diameter of the ceramic powder is 5 μm or less, and that the content of impurities (including anion and cation impurities) is 5% by weight or less. When such a ceramic powder is used, the boron nitride mixed powder containing the ceramic powder obtained by the present invention has good sinterability. Alternatively, the effects of the present invention can be clearly exhibited, such as the composite sintered body obtained from the boron nitride mixed powder has excellent properties. In particular, it is preferable to use aluminum nitride powder as the ceramic powder because the composite sintered body obtained using the boron nitride mixed powder as a raw material has excellent thermal conductivity. Preferred aluminum nitride powders include the following. The average particle diameter (refers to the average particle diameter of aggregated particles measured using a centrifugal particle size distribution analyzer, for example, CAPA500 manufactured by Horiba) is 5 μm or less, and preferably
Powders of 3 μm or less, most preferably 2 μm or less are preferred. Particularly suitable is a powder containing 70% by volume or more of particles of 3 μm or less. In addition, when obtaining a composite sintered body with high thermal conductivity, aluminum nitride powder with an AlN content (calculated from the nitrogen content of AlN powder) of 90% by weight or more is preferably used, and even 94% by weight or more is used. weight%
As mentioned above, powder of 97% by weight or more is more preferably employed. The aluminum nitride powder preferably used in the present invention has an average particle diameter of 2 μm or less, contains 70% by volume or more of particles of 3 μm or less, has an oxygen content of 3.0% by weight or less, and has an aluminum nitride composition. When is AlN, the cationic impurity contained is
Aluminum nitride powder containing 0.5% by weight or less. When such aluminum nitride powder is used, it is preferably used in the present invention because it can improve the thermal conductivity of the resulting composite sintered body and suppress a decrease in mechanical strength at high temperatures. In particular, powders with an average particle diameter of 2 μm or less, and particles of 3 μm or less
Contains 70% by volume or more, oxygen content 1.5% by weight or less,
In addition, when using aluminum nitride powder containing 0.3% by weight or less of cationic impurities when the aluminum nitride composition is AlN, the resulting composite sintered body has improved thermal conductivity and mechanical strength at high temperatures. It is particularly preferably used in the present invention because it has a remarkable effect of suppressing the decrease in . As a method for reacting boron or a boron compound with nitrogen or a nitrogen-containing compound described above, any known method can be employed without any restriction.
Examples of such known reaction methods include the following methods. 1 A method of directly reacting elemental boron with nitrogen or ammonia. In this case, in order to make the reaction proceed quickly,
It is best to heat it to 1500℃ or higher. 2. A method of heating raw materials such as boric acid, boron oxide, or borate in a nitrogen or ammonia stream. In this case, boric acid, etc. dissolves when heated and becomes a viscous liquid, which inhibits the reaction with ammonia gas. Therefore, in an industrial setting, a filler such as calcium phosphate is usually added to boric acid, etc., and the boric acid, etc. melts and becomes a viscous liquid. React with ammonia gas in such a way that it thinly covers the surface. After the reaction is completed, the filler is dissolved and removed using hydrochloric acid or the like to separate boron nitride. 3. A method in which a mixture of borate or boric acid, etc. and a nitrogen-containing compound such as urea is heated in a nitrogen or ammonia stream. 4. A method in which a reducing agent such as carbon or magnesium is added to boric acid or boron oxide, and the mixture is reacted in ammonia or nitrogen. 5. A method of obtaining boron nitride by synthesizing a compound such as an imide from a boron halide such as boron trichloride and ammonia and thermally decomposing the compound. Among these methods, methods 1) to 4) and 5)
This method will be divided into two methods and will be explained in more detail below. To explain methods 1) to 4), first, boron or a boron compound and non-oxide ceramic powder are mixed. This mixing ratio can be selected from a wide range depending on the properties required of the boron nitride mixed powder containing the non-oxide ceramic powder produced according to the present invention. In order for the effect of the uniformity of the boron nitride mixed powder obtained by the method of the present invention to clearly appear, generally, boron or a boron compound must be contained in an amount of 5 to 95% by weight in terms of boron nitride, and non-oxide ceramics Preferably, the powder is in the range 95-5% by weight. Furthermore, it is more preferable that the boron or boron compound is 10 to 90% by weight in terms of boron nitride, and the non-oxide ceramic powder is 90 to 10% by weight. However, when using method 2) or 4),
In order to improve the air permeability of nitrogen or nitrogen-containing compounds in the raw material mixture and to advance the nitriding reaction of boron or boron compounds, the amount of non-oxide ceramic powder is preferably 40% by weight or more. In the present invention, components such as a predetermined nitrogen-containing compound or reducing agent are further mixed according to methods 1) to 4). In addition, in method 2), boron or a boron compound is dissolved by heating and turns into a liquid, which inhibits the reaction with nitrogen or nitrogen-containing compounds, so a filler such as calcium phosphate is usually added to carry out the reaction. However, in the case of the present invention, the added non-oxide ceramic powder plays the role of a filler, so it is not necessarily necessary to add a filler such as calcium phosphate. The method of mixing boron or a boron compound, non-oxide ceramic powder, and nitrogen-containing compound or reducing agent added as necessary is not particularly limited, and may be any known method such as dry mixing or wet mixing in a liquid dispersion medium. You can use this method. A particularly preferred embodiment is wet mixing. The liquid dispersion medium is not particularly limited, and generally water, alcohols, hydrocarbons, or mixtures thereof are preferably used. In particular, lower alcohols having 4 or less carbon atoms, such as methanol, ethanol, and butanol, are most preferably employed industrially. Further, the mixing conditions and equipment are not particularly limited, and any suitable one can be used as long as it can suppress unavoidably mixed impurity components. The mixture thus obtained may be used as it is or, if necessary, dried. The shape of the mixture when subjected to the next nitriding reaction may be in powder form, or may be formed into pellet form or block form. The mixture thus obtained is then calcined in an atmosphere of nitrogen or a nitrogen-containing compound. The firing temperature varies depending on the type of ceramic powder, but is generally preferably in the range of 700°C to 1500°C. It is usually sufficient to select the firing time from the range of 2 to 12 hours. During the firing, it is preferable to take care to ensure that the materials of the firing furnace and the firing boat do not cause impurities. In addition, the firing atmosphere is preferably an atmosphere containing ammonia, usually pure ammonia gas or a gas in which nitrogen gas is added to it.Usually, these reaction gases are added continuously or in an amount sufficient for the nitriding reaction to proceed. It is best to bake while feeding intermittently. Next, method 5) will be explained. Add non-oxide ceramic powder to liquid ammonia. The amount of non-oxide ceramic powder added is such that the proportion of the resulting boron nitride mixed powder is 5 to 95%.
The weight percent is preferably selected to be 10 to 90 weight percent. A boron halide such as boron trichloride is added dropwise while uniformly dispersing the non-oxide ceramic powder by a method such as stirring. The resulting slurry of boron imide and non-oxide ceramic powder is filtered with stirring and dried.
Note that the above reaction operation is desirably carried out in a dry atmosphere, for example in a nitrogen gas atmosphere. This is because boron halides such as boron trichloride and boron imide which is a reaction product easily react with water and decompose. The mixture of boron imide and non-oxide ceramic powder obtained as described above is heated at a temperature of 800 to 1200°C in a nitrogen or ammonia gas atmosphere,
A mixture of boron nitride and non-oxide ceramic powder is obtained by thermally decomposing boron imide. If necessary, the crystallinity of boron nitride can be increased by further heating the boron nitride mixed powder obtained as above at a temperature of 1200 to 1700°C in a non-oxidizing atmosphere such as nitrogen gas. be able to. In the manner described above, a boron nitride mixed powder in which various non-oxide ceramic powders and boron nitride powder are uniformly dispersed can be obtained. The boron nitride mixed powder containing various non-oxide ceramic powders obtained by the present invention can be used as it is by adding it to other substances in powder form, and can also be used as a raw material for composite sintered bodies. can. When used as a raw material for a composite sintered body, the boron nitride mixed powder containing various ceramic powders obtained by the present invention can be used as it is or mixed with a sintering aid and sintered to form a composite sintered body. Obtainable. Hereinafter, the case where the boron nitride mixed powder of the present invention is used as a raw material for a composite sintered body will be explained in more detail. First, the sintering aid is not particularly limited and any known one may be used, but it may generally be selected from boron nitride and materials suitable for sintering the ceramic powder used. For example, when the ceramic powder is aluminum nitride powder, a compound of a metal of group a or group a of the periodic table is suitable as the sintering aid. More specifically, nitrates, carbonates, halides, aluminates of beryllium, calcium, strontium, barium, yttrium, lanthanum, cerium, neodymium, etc.
Oxides and the like are preferably used. Further, when the ceramic powder is silicon nitride, an oxide of a metal of group a or group a of the periodic table such as magnesia, alumina, or ittria, and when the ceramic powder is silicon carbide,
Carbon and metallic boron are preferably used as sintering aids. Furthermore, the amount of the sintering aid used varies depending on the composition of the composite sintered body, the properties required of the composite sintered body, etc., and the appropriate amount to be used in each case must be determined in advance. All you have to do is decide. Generally, it is suitable to use the sintering aid in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, based on the ceramic powder. Further, sintering aids such as boron oxide and calcium oxide, which are preferably used for sintering boron nitride, are also preferably used in the same range as above for boron nitride. The method of mixing the boron nitride mixed powder and the sintering aid is not particularly limited, and any known method may be used. For example, a wet mixing method can be suitably used,
It is also possible to employ a dry mixing method that does not use a liquid dispersion medium. Further, the mixing device is not particularly limited, and any known mixing device may be used as is. As a method for dispersing the sintering aid into the boron nitride mixed powder, in addition to the method described above, the sintering aid is mixed with the raw material before synthesizing the boron nitride mixed powder, and then the nitriding It is also possible to adopt a method of synthesizing a boron mixed powder and dispersing it into a boron nitride mixed powder. Sintering can be carried out in vacuum or under non-oxidizing atmosphere under pressure or normal pressure. When applying pressure, it is preferable to select a pressure of 20 to 500 kg/cm 2 . As the non-oxidizing atmosphere, for example, nitrogen gas, argon gas, hydrogen gas, or a mixed gas atmosphere thereof is used. The sintering temperature varies depending on the composition of the composite sintered body, so it is best to determine the optimal sintering temperature for each case in advance, but generally it is between 1500 and 2300℃.
temperature is adopted. (Effects) According to the manufacturing method of the present invention, a mixed powder in which boron nitride and non-oxide ceramic powder are uniformly dispersed, which cannot be achieved by the conventional method of mixing boron nitride powder and non-oxide ceramic powder, can be obtained. In this method, a ceramic powder whose surface is coated with boron nitride is obtained. The boron nitride mixed powder obtained by the present invention is a uniformly dispersed mixture of boron nitride powder and non-oxide ceramic powder. It has an effective action as a powder for composites. Further, the boron nitride mixed powder has good sinterability and provides a composite sintered body with excellent properties. In particular, since the boron nitride mixed powder obtained by the present invention is a mixed powder in which boron nitride powder and non-oxide ceramic powder are uniformly dispersed, it can be obtained by sintering the powder. A boron nitride-based composite sintered body having a uniform structure can be obtained. Therefore, the composite sintered body has various aspects compared to a composite sintered body obtained by a conventionally known method, that is, by sintering a simple mixture of boron nitride powder and non-oxide ceramic powder. For example, they generally have high bending strength. In addition, the composite sintered body contains 5 to 40% by weight of boron nitride and 95 to 40% by weight of non-oxide ceramic powder.
In the range of 60% by weight, more preferably boron nitride is 10
~30% by weight and non-oxide ceramic powder in the range of 90 to 70% by weight, it exhibits properties as so-called machinable ceramics that can be cut with ordinary tools. A mixed powder in which boron nitride powder and various non-oxide ceramic powders are uniformly dispersed can be easily obtained by a simple means such as the present invention, and by using the powder, the characteristics of boron nitride ceramics can be improved. The industrial value of the present invention is extremely large because it can significantly improve the performance. EXAMPLES The present invention will be specifically illustrated below with reference to Examples, but the present invention is not limited to these Examples. Example 1 The content of particles with an average particle size of 1.31 μm and 3 μm or less was 90% by volume, and 160 parts by weight of aluminum nitride with the composition shown in Table 1 and boric acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.)
100 parts by weight were uniformly mixed in a ball mill by wet mixing using a nylon pot and a nylon-coated ball with ethanol as a liquid dispersion medium. The mixture thus obtained was dried and then dry-pulverized using a nylon-coated ball in a nylon pot. After pulverization, this mixture is placed in an alumina boat, and pure ammonia gas is added to the electric furnace at 200ml/min.
The mixture was heated at a temperature of 1000° C. for 6 hours while being continuously fed with water. The resulting powder was white. The nitrogen content of this powder was 37.5%, and the conversion rate of boric acid to boron nitride, that is, the yield of boron nitride, was 95%. It is also believed that unreacted boric acid has become boron oxide. Therefore, the composition of the powder is considered to be 80% aluminum nitride, 19% boron nitride, and 1% boron oxide. Ma

【表】 た、該粉末のX線回折による分析の結果、窒化ア
ルミニウムの回折ピークのみで、六方晶窒化ほう
素の明確な回折ピークは認められなかつた。従つ
て、該粉末は窒化アルミニウムと非晶質窒化ほう
素の混合物であると考えられる。走査電子顕微鏡
による観察ではこの粉末の一次粒子の大多数は平
均0.7μm程度でこれら窒化アルミニウムと思われ
る粒子が、非晶質窒化ほう素と思われる不定形物
質でおおわれていた。 上記粉末12gを直径40mmの窒化ほう素でコーテ
イングした黒鉛ダイスに入れ、高周波誘導加熱炉
を用い、1気圧の窒素ガス中、200Kg/cm2の圧力
下で2000℃の温度で3時間加圧焼結した。得られ
た焼結体は白色であつた。この焼結体はX線回折
により、窒化アルミニウムと六方晶窒化ほう素の
2相から成つていることが判つた。アルキメデス
法で測定した密度は2.98g/cm3であつた。 上記焼結体から、約3mm角、長さ約40mmの試験
片を切り出し、1500番のサンドペーパーで磨いた
後、曲げ強度を測定した。測定条件はクロスヘツ
ドスピード0.5mm/min、スパン20mmの3点曲げ
とした。測定値より計算された曲げ強度は52Kg/
mm2であつた。 また上記焼結体の加工性を調べたところ、超硬
ドリルによる窄孔、超硬バイトによる切削のいず
れも容易に行なえ、快削性であることがわかつ
た。 更に上記と同条件で製造した窒化アルミニウム
と窒化ほう素の混合粉末を同条件で加圧焼結した
直径10mm、厚さ2.5mmの焼結体の室温における熱
伝導率を理学電気製レーザー・フラツシユ法熱定
数測定装置PS−7を用いて測定した。その結果、
熱伝導率は75W/m・Kであることがわかつた。 さらに、得られた窒化アルミニウムを含有する
窒化ほう素混合粉末を2%のシランカツプリング
剤(日本ユニカー社製A−172)水溶液と接触さ
せた後、濾過して室温で減圧乾燥した。 加熱加硫型のシリコーンゴム100gをトリクロ
ロエタン700gに溶解させた後、上記シランカツ
プリング剤処理した窒化ほう素混合粉末600gを
加え、均一に撹拌しながら真空脱泡した。得られ
たスラリーをポリエチレンシート上に塗布し、乾
燥後温度165℃で40分間プレス加硫した。得られ
た厚さ0.6mmのシートの熱伝導率は0.009cal/cm・
sec・Kであつた。 比較例 1 実施例1で用いた窒化アルミニウム粉末と、純
度が99.5%で且つ5μm以下の粒子の割合が95容量
%である窒化ほう素とを単に混合した。これを実
施例1と同様に焼結して複合焼結体を得た。該複
合焼結体の密度は、2.75g/cm3、曲げ強度は34
Kg/mm2、熱伝導率は73W/m・Kであつた。 実施例 2〜3 実施例1に於いて、窒化アルミニウム粉末とほ
う酸の混合割合を変え、それ以外は実施例1と全
く同一にして実験を行なつた。 結果を表2にまとめて示す。
[Table] As a result of X-ray diffraction analysis of the powder, only the diffraction peak of aluminum nitride was observed, and no clear diffraction peak of hexagonal boron nitride was observed. Therefore, the powder is believed to be a mixture of aluminum nitride and amorphous boron nitride. Observation using a scanning electron microscope revealed that the majority of the primary particles in this powder had an average size of about 0.7 μm, and these particles, which appeared to be aluminum nitride, were covered with an amorphous substance that appeared to be amorphous boron nitride. 12g of the above powder was placed in a graphite die coated with boron nitride with a diameter of 40mm, and then pressure-sintered at a temperature of 2000℃ for 3 hours under a pressure of 200Kg/cm 2 in nitrogen gas of 1 atm using a high-frequency induction heating furnace. concluded. The obtained sintered body was white. It was found by X-ray diffraction that this sintered body consisted of two phases: aluminum nitride and hexagonal boron nitride. The density measured by the Archimedes method was 2.98 g/cm 3 . A test piece approximately 3 mm square and approximately 40 mm long was cut out from the sintered body, polished with No. 1500 sandpaper, and its bending strength was measured. The measurement conditions were three-point bending with a crosshead speed of 0.5 mm/min and a span of 20 mm. The bending strength calculated from the measured values is 52Kg/
It was warm in mm2 . Further, when the workability of the above-mentioned sintered body was investigated, it was found that it was easy to drill holes with a carbide drill and cut with a carbide cutting tool, and was free-cutting. Furthermore, the thermal conductivity at room temperature of a sintered body with a diameter of 10 mm and a thickness of 2.5 mm, which was produced by pressure sintering a mixed powder of aluminum nitride and boron nitride under the same conditions as above, was measured using a Rigaku Laser Flash. Measurement was performed using a method for measuring thermal constants, PS-7. the result,
The thermal conductivity was found to be 75 W/m·K. Further, the obtained boron nitride mixed powder containing aluminum nitride was brought into contact with a 2% aqueous solution of a silane coupling agent (A-172, manufactured by Nippon Unicar Co., Ltd.), filtered, and dried under reduced pressure at room temperature. After dissolving 100 g of heat-curable silicone rubber in 700 g of trichloroethane, 600 g of the boron nitride mixed powder treated with the silane coupling agent was added thereto, and vacuum defoaming was carried out while stirring uniformly. The obtained slurry was applied onto a polyethylene sheet, and after drying, it was press-vulcanized at a temperature of 165° C. for 40 minutes. The thermal conductivity of the obtained sheet with a thickness of 0.6 mm is 0.009 cal/cm・
It was sec.K. Comparative Example 1 The aluminum nitride powder used in Example 1 was simply mixed with boron nitride having a purity of 99.5% and a proportion of particles of 5 μm or less at 95% by volume. This was sintered in the same manner as in Example 1 to obtain a composite sintered body. The density of the composite sintered body is 2.75 g/cm 3 and the bending strength is 34
Kg/mm 2 and thermal conductivity was 73 W/m·K. Examples 2 to 3 In Example 1, an experiment was conducted in exactly the same manner as in Example 1 except that the mixing ratio of aluminum nitride powder and boric acid was changed. The results are summarized in Table 2.

【表】 実施例 4 実施例1で使用したのと同じ性状の窒化アルミ
ニウム粉末195重量部と硼砂100重量部、尿素80重
量部の混合物を、アルミナ製ボートに入れれ電気
炉内に純アンモニアガスを150ml/minで連続的
に供給しながら、800℃の温度で4時間加熱した。
反応終了後放冷して生成物を素早く水洗し、後エ
タノールにて洗滌し乾燥した。得られた粉末は白
色であつた。該粉末をX線回折により分析した結
果、該粉末は窒化アルミニウムと窒化ほう素の混
合粉末で、化学分析の結果、窒化アルミニウム
80.3%、窒化ほう素19.7%であつた。走査電子顕
微鏡による観察では、窒化アルミニウムと窒化ほ
う素が相互に均一に分散した混合粉末で窒化ほう
素の凝集は見られなかつた。 このようにして得られた混合粉末100重量部と
酸化イツトリウム1重量部とをエタノールを分散
媒体として均一にボールミル混合した。 得られたスラリーを乾燥後、実施例1と同様に
して加圧下の焼結を行なつた。得られた焼結体は
白色で、密度は2.98g/cm3であつた。 実施例1と同様にして上記焼結体の物性を測定
した結果、曲げ強度は50Kg/m2であつた。また室
温における熱伝導率は112W/m・Kであつた。 一方実施例1と同様に上記焼結体の加工性を調
べた結果、実施例1で得たものと同様に快削性で
あることがわかつた。 実施例 5 平均粒径が0.6μmでα相含有率が90重量%の窒
化けい素(東洋曹達工業製TS−7)160重量部と
ホウ酸(和光純薬製、特級試薬)100重量部とを
実施例1と同様に混合及び焼成を行なつた。得ら
れた粉末は淡灰色であつた。窒化ほう素の収率は
96%であつた、またほう酸の未反応物は酸化ほう
素になつているものと考えられる。従つて、該粉
末の組成は窒化けい素80%、窒化ほう素19.2%、
酸化ほう素0.8%であると考えられる。また該粉
末のX線回折による分析の結果、α型窒化けい素
の回折ピークのみで六方晶窒化ほう素の明確な回
折ピークは認められなかつた。従つて該粉末は、
α型窒化けい素と非晶質窒化ほう素の混合物であ
ると考えられる。走査電子顕微鏡による観察で
は、窒化けい素の粒子が非晶質窒化ほう素と思わ
れる不定形物質で均一におおわれていた。 上記の混合粉末100重量部と酸化マグネシウム
5重量部とをエタノールを分散媒体として均一に
ボールミル混合した。 得られたスラリーを乾燥後、1気圧の窒素ガス
中200Kg/cm2の圧力下で1750℃の温度で3時間加
圧焼結した。得られた焼結体は淡灰色であつた。
この焼結体はX線回折により、β型窒化けい素
と、六方晶窒化ほう素の2相から成つていること
が判つた。アルキメデス法で測定した密度は、
2.93g/cm3であつた。 実施例1と同様にして上記焼結体の曲げ強度を
測定した結果、75Kg/mm2であつた。 一方実施例1と同様に上記焼結体の加工性を調
べた結果、実施例1で得たものと同様に快削性で
あることがわかつた。 実施例 6 平均粒径が0.3μmでSiC含量が98重量%である
炭化ケイ素(イビデン製、商品名ベータランダ
ム)160重量部とホウ素(和光純薬製、特級試薬)
100重量部とを実施例1と同様に混合及び焼成を
行なつた。 得られた粉末は灰色であつた。窒化ほう素の収
率は95%であつた。またほう酸の未反応物は酸化
ほう素になつているものと考えられる。従つて該
粉末の組成は炭化けい素80%、窒化ほう素19%、
酸化ほう素1%であると考えられる。また該粉末
のX線回折による分析の結果、β型炭化けい素と
非晶質窒化ほう素の混合物であると考えられる。
走査電子顕微鏡による観察では、炭化けい素の粒
子が非晶質窒化ほう素と思われる不定形物質で均
一におおわれていた。 このようにして得られた粉末100重量部と金属
ほう素1重量部、カーボンブラツク1重量部とを
ヘキサンを分散媒体として均一にボールミル混合
した。 得られたスラリーを乾燥後、40mmφの黒鉛製モ
ールドに充填して高周波誘導加熱方式により、1
気圧のアルゴンガス中、200Kg/cm2の圧力下で、
2000℃の温度で1時間加圧焼結した。得られた焼
結体は、黒色で密度は2.92g/cm3であつた。この
焼結体のX線回折分析の結果窒化ほう素は六方晶
窒化ほう素に転移していた。 実施例1と同様にして上記焼結体の物性を測定
した結果、曲げ強度は51Kg/mm2であつた。また室
温における熱伝導率は70W/m・Kであることが
わかつた。 一方実施例1と同様に上記焼結体の加工性を調
べた結果、実施例1で得たものと同様に怪削性で
あることがわかつた。 実施例 7 実施例1で使用したのと同じ性状の窒化アルミ
ニウム粉末100重量部と純度99%のほう素粉末
(和光純薬製)11重量部の混合物を窒化ほう素製
るつぼに入れ電気炉内に窒化ガスを500ml/min
で連続的に供給しながら1500℃の温度で6時間加
熱した。得られた粉末は白色であつた。窒化ほう
素の収率は99%で、該粉末の組成は窒化アルミニ
ウム80重量%、窒化ほう素19.8重量%、未反応ほ
う素(一部酸化ほう素になつているものと考えら
れる。)0.2重量%であつた。走査電子顕微鏡によ
る観察では、窒化アルミニウムと窒化ほう素が相
互に均一に分散した混合粉末で窒化ほう素の凝集
は見られなかつた。 本実施例で得られた粉末100重量部と酸化イツ
トリウム1重量部とをエタノールを分散媒体とし
て均一にボールミル混合した。 得られたスラリーを乾燥後、実施例1と同様に
して加圧下の焼結を行なつた。得られた焼結体は
白色で密度は2.97g/cm3であつた。 実施例1と同様にして上記焼結体の物性を測定
した結果、曲げ強度は49Kg/mm2であつた。また室
温における熱伝導率は110W/m・Kであつた。 一方実施例1と同様に上記焼結体の加工性を調
べた結果、実施例1で得たものと同様に快削性で
あることがわかつた。 実施例 8 液体アンモニア150mlに実施例1で使用したの
と同じ性状の窒化アルミニウム粉末20gを加え撹
拌する。上記懸濁液を撹拌しながら三塩化ほう素
25gを含むn−ヘキサン溶液を加える。反格終了
後、得られた反応生成物をロ過、洗浄、乾燥後、
電気炉内で窒素ガスを流しながら1500℃で4時間
加熱した。なお、上記反応操作及び反応生成物の
取扱いは全て窒素雰囲気下で行なつた。 得られた粉末は白色でX線回折による分析の結
果、窒化アルミニウムと窒化ほう素による回折ピ
ークのみであつた。化学分析の結果、該粉末の組
成は窒化アルミニウム80重量%,窒化ほう素19.9
重量%であつた。該粉末の走査電子顕微鏡による
観察では窒化アルミニウム粒子と窒化ほう素粒子
が相互に均一に分散した混合粉末であつた。 このようにして得られた混合粉末100重量部と
酸化イツトリウム1重量部とをエタノールを分散
媒体体として均一にボールミル混合した。 得られたスラリーを乾燥後、実施例1と同様に
して加圧下の焼結を行なつた。得られた焼結体は
白色で、密度は2.99g/cm2であつた。 実施例1と同様にして上記焼結体の物性を測定
した結果、曲げげ強度は54Kg/mm2であつた。また
室温における熱伝導率は120W/m・Kであつた。 一方、実施例1と同様に上記焼結体の加工性を
調べた結果、実施例1で得たものと同様に快削性
であることがわかつた。
[Table] Example 4 A mixture of 195 parts by weight of aluminum nitride powder with the same properties as used in Example 1, 100 parts by weight of borax, and 80 parts by weight of urea was placed in an alumina boat, and pure ammonia gas was introduced into an electric furnace. It was heated at a temperature of 800° C. for 4 hours while continuously feeding at 150 ml/min.
After the reaction was completed, the product was allowed to cool and was quickly washed with water, then with ethanol, and dried. The resulting powder was white. Analysis of the powder by X-ray diffraction revealed that the powder was a mixed powder of aluminum nitride and boron nitride, and chemical analysis revealed that it was aluminum nitride.
80.3% and boron nitride 19.7%. Observation using a scanning electron microscope revealed that the powder was a mixed powder in which aluminum nitride and boron nitride were mutually uniformly dispersed, and no agglomeration of boron nitride was observed. 100 parts by weight of the thus obtained mixed powder and 1 part by weight of yttrium oxide were uniformly mixed in a ball mill using ethanol as a dispersion medium. After drying the obtained slurry, it was sintered under pressure in the same manner as in Example 1. The obtained sintered body was white and had a density of 2.98 g/cm 3 . The physical properties of the sintered body were measured in the same manner as in Example 1, and the bending strength was 50 Kg/m 2 . The thermal conductivity at room temperature was 112 W/m·K. On the other hand, as in Example 1, the workability of the sintered body was examined, and it was found that it had the same free machinability as that obtained in Example 1. Example 5 160 parts by weight of silicon nitride (TS-7 manufactured by Toyo Soda Kogyo Co., Ltd.) with an average particle diameter of 0.6 μm and an α phase content of 90% by weight, and 100 parts by weight of boric acid (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent). were mixed and fired in the same manner as in Example 1. The resulting powder was light gray in color. The yield of boron nitride is
It was 96%, and it is thought that unreacted boric acid has become boron oxide. Therefore, the composition of the powder is 80% silicon nitride, 19.2% boron nitride,
It is thought to be 0.8% boron oxide. Further, as a result of X-ray diffraction analysis of the powder, only the diffraction peak of α-type silicon nitride was observed, and no clear diffraction peak of hexagonal boron nitride was observed. Therefore, the powder is
It is thought to be a mixture of α-type silicon nitride and amorphous boron nitride. Observation using a scanning electron microscope revealed that the silicon nitride particles were uniformly covered with an amorphous substance believed to be amorphous boron nitride. 100 parts by weight of the above mixed powder and 5 parts by weight of magnesium oxide were uniformly mixed in a ball mill using ethanol as a dispersion medium. After drying the obtained slurry, it was pressure sintered at a temperature of 1750° C. for 3 hours under a pressure of 200 kg/cm 2 in nitrogen gas of 1 atm. The obtained sintered body was light gray in color.
It was found by X-ray diffraction that this sintered body consisted of two phases: β-type silicon nitride and hexagonal boron nitride. The density measured by Archimedes method is
It was 2.93g/ cm3 . The bending strength of the sintered body was measured in the same manner as in Example 1, and was found to be 75 Kg/mm 2 . On the other hand, as in Example 1, the workability of the sintered body was examined, and it was found that it had the same free machinability as that obtained in Example 1. Example 6 160 parts by weight of silicon carbide (manufactured by IBIDEN, trade name Beta Random) with an average particle size of 0.3 μm and a SiC content of 98% by weight and boron (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent)
100 parts by weight were mixed and fired in the same manner as in Example 1. The resulting powder was gray in color. The yield of boron nitride was 95%. It is also believed that unreacted boric acid has become boron oxide. Therefore, the composition of the powder is 80% silicon carbide, 19% boron nitride,
It is believed to be 1% boron oxide. Furthermore, as a result of X-ray diffraction analysis of the powder, it is considered to be a mixture of β-type silicon carbide and amorphous boron nitride.
Observation using a scanning electron microscope revealed that the silicon carbide particles were uniformly covered with an amorphous substance believed to be amorphous boron nitride. 100 parts by weight of the powder thus obtained, 1 part by weight of metallic boron, and 1 part by weight of carbon black were uniformly mixed in a ball mill using hexane as a dispersion medium. After drying the obtained slurry, it was filled into a 40 mmφ graphite mold and heated by high frequency induction heating.
In argon gas at atmospheric pressure, under a pressure of 200Kg/ cm2 ,
Pressure sintering was performed at a temperature of 2000°C for 1 hour. The obtained sintered body was black and had a density of 2.92 g/cm 3 . As a result of X-ray diffraction analysis of this sintered body, boron nitride was transformed into hexagonal boron nitride. The physical properties of the sintered body were measured in the same manner as in Example 1, and the bending strength was 51 Kg/mm 2 . The thermal conductivity at room temperature was also found to be 70 W/m·K. On the other hand, as in Example 1, the workability of the sintered body was investigated, and it was found that it had poor machinability similar to that obtained in Example 1. Example 7 A mixture of 100 parts by weight of aluminum nitride powder having the same properties as used in Example 1 and 11 parts by weight of boron powder with a purity of 99% (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in a boron nitride crucible and placed in an electric furnace. 500ml/min of nitriding gas
The mixture was heated at a temperature of 1500° C. for 6 hours while being continuously supplied with water. The resulting powder was white. The yield of boron nitride was 99%, and the composition of the powder was 80% by weight of aluminum nitride, 19.8% by weight of boron nitride, and 0.2% of unreacted boron (possibly partially converted to boron oxide). It was in weight%. Observation using a scanning electron microscope revealed that the powder was a mixed powder in which aluminum nitride and boron nitride were mutually uniformly dispersed, and no agglomeration of boron nitride was observed. 100 parts by weight of the powder obtained in this example and 1 part by weight of yttrium oxide were uniformly mixed in a ball mill using ethanol as a dispersion medium. After drying the obtained slurry, it was sintered under pressure in the same manner as in Example 1. The obtained sintered body was white and had a density of 2.97 g/cm 3 . The physical properties of the sintered body were measured in the same manner as in Example 1, and the bending strength was 49 Kg/mm 2 . Moreover, the thermal conductivity at room temperature was 110 W/m·K. On the other hand, as in Example 1, the workability of the sintered body was examined, and it was found that it had the same free machinability as that obtained in Example 1. Example 8 20 g of aluminum nitride powder having the same properties as used in Example 1 was added to 150 ml of liquid ammonia and stirred. While stirring the above suspension, add boron trichloride.
Add a solution containing 25g in n-hexane. After completion of the reaction, the obtained reaction product is filtered, washed, and dried.
It was heated at 1500°C for 4 hours in an electric furnace while flowing nitrogen gas. Note that all of the above reaction operations and handling of the reaction products were performed under a nitrogen atmosphere. The obtained powder was white, and analysis by X-ray diffraction revealed only diffraction peaks due to aluminum nitride and boron nitride. As a result of chemical analysis, the composition of the powder was 80% by weight of aluminum nitride and 19.9% by weight of boron nitride.
It was in weight%. Observation of the powder using a scanning electron microscope revealed that it was a mixed powder in which aluminum nitride particles and boron nitride particles were mutually uniformly dispersed. 100 parts by weight of the thus obtained mixed powder and 1 part by weight of yttrium oxide were uniformly mixed in a ball mill using ethanol as a dispersion medium. After drying the obtained slurry, it was sintered under pressure in the same manner as in Example 1. The obtained sintered body was white and had a density of 2.99 g/cm 2 . The physical properties of the sintered body were measured in the same manner as in Example 1, and the bending strength was 54 Kg/mm 2 . The thermal conductivity at room temperature was 120 W/m·K. On the other hand, as in Example 1, the workability of the sintered body was investigated, and it was found that it had free machinability similar to that obtained in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化ほう素以外の非酸化物セラミツクス粉末
とほう素又はほう素化合物とを、窒化ほう素と非
酸化物セラミツクス粉末との混合粉末中に該非酸
化物セラミツクス粉末が95〜10重量%含有される
ように混合し、該混合物を窒素又は窒素化合物と
接触させほう素又はほう素化合物を窒化し窒化ほ
う素に変換することを特徴とする窒化ほう素と他
の非酸化物セラミツクスとの混合粉末の製造方
法。
1 A non-oxide ceramic powder other than boron nitride and boron or a boron compound are contained in a mixed powder of boron nitride and non-oxide ceramic powder in an amount of 95 to 10% by weight. A mixed powder of boron nitride and other non-oxide ceramics, characterized in that the mixture is brought into contact with nitrogen or a nitrogen compound to nitride boron or a boron compound and convert it into boron nitride. Production method.
JP60194871A 1985-09-05 1985-09-05 Production of powder mixed with boron nitride Granted JPS6256307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60194871A JPS6256307A (en) 1985-09-05 1985-09-05 Production of powder mixed with boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194871A JPS6256307A (en) 1985-09-05 1985-09-05 Production of powder mixed with boron nitride

Publications (2)

Publication Number Publication Date
JPS6256307A JPS6256307A (en) 1987-03-12
JPH0481521B2 true JPH0481521B2 (en) 1992-12-24

Family

ID=16331690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194871A Granted JPS6256307A (en) 1985-09-05 1985-09-05 Production of powder mixed with boron nitride

Country Status (1)

Country Link
JP (1) JPS6256307A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753610B2 (en) * 1986-11-01 1995-06-07 株式会社香蘭社 Method for producing boron nitride sintered body
US5100845A (en) * 1991-03-13 1992-03-31 Union Carbide Coatings Service Technology Corporation Process for producing titanium diboride and boron nitride powders
JP6118667B2 (en) * 2012-07-04 2017-04-19 水島合金鉄株式会社 Hybrid BN aggregated particles, method for producing the same, and polymer material
JP2017107888A (en) * 2014-04-14 2017-06-15 三菱電機株式会社 Method for manufacturing compound for thermally conductive sheet, compound for thermally conductive sheet, and power module
CN108423647B (en) * 2017-02-13 2020-09-01 中国科学院苏州纳米技术与纳米仿生研究所 Method for preparing macroscopic quantity hexagonal boron nitride powder by chemical vapor deposition method
CN109369191B (en) * 2019-01-02 2021-08-03 山东博奥新材料技术有限公司 Preparation method of yttrium-containing boron nitride-aluminum nitride composite powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189412A (en) * 1959-03-19 1965-06-15 United States Borax Chem Method of manufacturing boron nitride
JPS5841706A (en) * 1981-09-07 1983-03-11 Toshiba Monofuratsukusu Kk Preparation of ceramic substance containing boron nitride
JPS5860675A (en) * 1981-09-30 1983-04-11 日本特殊陶業株式会社 Silicon nitride sintered body and manufacture
JPS59107976A (en) * 1982-12-07 1984-06-22 東芝セラミツクス株式会社 Manufacture of readily sinterable silicon nitride powder
JPS60155507A (en) * 1984-01-26 1985-08-15 Shin Etsu Chem Co Ltd Continuous preparation of boron nitride

Also Published As

Publication number Publication date
JPS6256307A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
JP3175483B2 (en) Boron nitride-containing material and method for producing the same
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
CA1216005A (en) Silicon carbide sintered article and process for its production
US4124402A (en) Hot pressing of silicon nitride using magnesium silicide
US4851205A (en) Alpha-sialon powder and process for its production
EP0187431A1 (en) Process for producing silicon aluminum oxynitride
US4845059A (en) Process for producing α-Sialon powder
US4643859A (en) Process for the production of fine non-oxide powders from alkoxides
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
JPH0481521B2 (en)
JPH11322433A (en) Production of composite ceramic sintered body containing boron nitride, and the sintered body
JPH0428645B2 (en)
US4812298A (en) Method for producing sialon powders
Zhang et al. Reaction synthesis of aluminum nitride–boron nitride composites based on the nitridation of aluminum boride
US4122140A (en) Hot pressing of silicon nitride using beryllium additive
JPH0251841B2 (en)
JPS62153171A (en) Manufacture of composite sintered body
JPS638265A (en) Manufacture of composite sintered body
JPH0421605B2 (en)
JP4222716B2 (en) Aluminum oxynitride powder and applications
JPH0425204B2 (en)
JP3472802B2 (en) Manufacturing method of Sialon sintered body
JPH0565467B1 (en)
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JPS6395113A (en) Production of fine powder comprising metallic boride as main component