JPS59223214A - Manufacture of hyperfine-grained sic powder - Google Patents

Manufacture of hyperfine-grained sic powder

Info

Publication number
JPS59223214A
JPS59223214A JP58093365A JP9336583A JPS59223214A JP S59223214 A JPS59223214 A JP S59223214A JP 58093365 A JP58093365 A JP 58093365A JP 9336583 A JP9336583 A JP 9336583A JP S59223214 A JPS59223214 A JP S59223214A
Authority
JP
Japan
Prior art keywords
powder
boron
particle size
hyperfine
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58093365A
Other languages
Japanese (ja)
Other versions
JPS6362450B2 (en
Inventor
Toru Kuramoto
倉本 透
Kazushi Tsukuda
佃 一志
Hiroshi Ono
浩 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP58093365A priority Critical patent/JPS59223214A/en
Publication of JPS59223214A publication Critical patent/JPS59223214A/en
Publication of JPS6362450B2 publication Critical patent/JPS6362450B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture easily hyperfine-grained SiC powder at a low cost by adding boron or a boron compound to a mixture of SiO2 powder with carbon powder by a specified amount basing on the amount of SiO2 and by carrying out reduction and carbonization at a high temp. CONSTITUTION:Boron or a boron compound is added to a mixture of SiO2 powder of <=10mum particle size with carbon powder of <=1mum particle size in 0.004-0.4 atomic ratio of B/Si. The resulting mixture is subjected to reduction and carbonization at 1,500-2,000 deg.C. Hyperfine beta-SiC powder of <=about 0.1mum particle size is manufactured by a solid phase reaction.

Description

【発明の詳細な説明】 本発明は炭化ケイ素粉末の新規な製造法に関し、*に超
微粒子状の炭化ケイ素粉末の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing silicon carbide powder, and particularly to a method for producing ultrafine silicon carbide powder.

近年、省エネルギーおよび省資源の立場から。In recent years, from the standpoint of energy and resource conservation.

高温構造材料としてのセラミックスが注目されている。Ceramics are attracting attention as high-temperature structural materials.

中でも窒化ケイ素とともに炭化ケイ素が最も有望な材料
であると期待されている。さらに、炭化ケイ素は特殊な
電子材料としても重要な役割を果している。
Among them, silicon carbide is expected to be the most promising material along with silicon nitride. Furthermore, silicon carbide plays an important role as a special electronic material.

従来、炭化ケイ素は主として次の三つの方法で製造され
てきた。
Conventionally, silicon carbide has been mainly produced by the following three methods.

(リ 炭素によるシリカの還元炭化反応〜2500℃ St O,+30− SiO+ 2 C0(2)  ハ
ロゲン化珪素と炭化水素との気相反応>1500℃ SiX4+OH4SiO+ 4HX (x:ハロゲン原子) (3)有機珪素化合物の熱分解反応 +31(OH,)4−≧コ≦トリ’KL−SIC! +
30H4このうち方法(りはa型炭化ケイ素を製造する
目的のAches釦法として古くから知られている製法
であるが、  2000℃以上の高温で製造され、エネ
ルギー原単位が高い欠点があシ、また。高純度の微粒を
得るのは困難であるため、エンジニアリングセラミック
ス、エレクトロセラミックス用原料粉末としては、長時
間の粉砕、精製が必要であ)、最終的には非常に高価な
製品とならざるを得ない。方法(2)および(3)では
粒径がサブミクロン以下の微粒を得ることは可能である
が原料が入手し難く、収率も低く経済的プロセスとはな
p難い。
(Reduction carbonization reaction of silica with carbon ~ 2500°C St O, +30- SiO+ 2 C0 (2) Gas phase reaction between silicon halide and hydrocarbon > 1500°C SiX4+OH4SiO+ 4HX (x: halogen atom) (3) Organosilicon Thermal decomposition reaction of compound +31(OH,)4-≧ko≦tri'KL-SIC!+
30H4 Among these methods, the method has been known for a long time as the Aches button method for producing A-type silicon carbide, but it has the disadvantage of being produced at a high temperature of 2000°C or more and having a high energy consumption rate. In addition, it is difficult to obtain high-purity fine particles, so long hours of grinding and purification are required for raw material powder for engineering ceramics and electroceramics), resulting in a very expensive product. I don't get it. Although it is possible to obtain fine particles with a particle size of submicron or less using methods (2) and (3), the raw materials are difficult to obtain and the yield is low, making it difficult to be an economical process.

また、シリカの還元炭化法によるβ−8iO粉末の製造
方法に関しては多数の提案がなされているが、いずれも
得られるSiO粉末は粒径が1μ以上あシ、焼結用原料
としては好ましくなく。
Furthermore, many proposals have been made regarding the production method of β-8iO powder by the reduction carbonization method of silica, but in all of them the resulting SiO powder has a particle size of 1 μm or more, which is not preferable as a raw material for sintering.

微粒化工程が必要であり、ACheIllOrI法と同
様粉砕には多大のエネルギーが必要であシ、また粉砕装
置からの不純物汚染も問題となる場合がある。
An atomization step is required, and like the ACheIllOrI method, a large amount of energy is required for pulverization, and impurity contamination from the pulverizer may also be a problem.

このように、従来よシ、原料面等で便利な製法であるシ
リカの還元炭化法では、焼結用原料粉末をはじめとして
、超精密研磨材、摺動部材への分散めっきへの応用など
の各種用途に共通して要求される超微粒子状のSiOを
得ることができないものであった。
In this way, the reduction carbonization method of silica, which is a convenient manufacturing method in terms of raw materials, has many applications including raw material powder for sintering, ultra-precision abrasives, and dispersion plating for sliding parts. It was not possible to obtain ultrafine particle SiO, which is commonly required for various uses.

本発明者らは、かかる問題点に鑑み、シリカの還元炭化
法によp、超微粒子状のSiO粉末を得る方法について
鋭意検討した結果、シリカ−炭素からなる原料混合物に
ホウ素またはホウ素化合物を添加することでこの目的が
達成されることを見い出したものであジ、特に、焼結体
原、料として用いた場合に、焼結体密度が理論密度(3
,21r/11)の97%以上となり、各種用途に良好
に用いることのできるBET表面積17rr?/f以上
(BET相当径0.1μm以下)のSiOが容易に得ら
れることを見出し、本発明に到達したものである。
In view of these problems, the present inventors have conducted intensive studies on a method for obtaining ultrafine SiO powder using a silica reduction carbonization method, and have found that boron or a boron compound is added to a raw material mixture consisting of silica and carbon. We have discovered that this objective can be achieved by
, 21r/11), and the BET surface area is 17rr?, which can be used satisfactorily for various purposes. The present invention was achieved by discovering that SiO having a diameter of /f or more (BET equivalent diameter of 0.1 μm or less) can be easily obtained.

本発明の要旨は粒径lOμ以下のシリカ粉末と粒径lμ
以下の炭素粉末の混合物にホウ素またはホウ素化合物を
シリカに対してB/Si (原子比)= 0.004〜
0.4の範囲となるよう添加し、 1500〜2000
℃の温度で還元炭化反応をおこなうことを特徴とする超
微粒子状SiO粉末の製造法である。
The gist of the present invention is to provide silica powder with a particle size of lOμ or less and a particle size of lμ or less.
Add boron or a boron compound to the following carbon powder mixture to silica (B/Si (atomic ratio) = 0.004~
Add so that it is in the range of 0.4, 1500-2000
This is a method for producing ultrafine SiO powder, which is characterized by carrying out a reduction carbonization reaction at a temperature of .degree.

本発明において使用するシリカ粉末は結晶質。The silica powder used in the present invention is crystalline.

非晶質を問わないが1粒径は10μ以下が好捷しい。ま
た、炭素粉末は粒径lμ以下が好ましく。
It does not matter whether the particles are amorphous or not, but it is preferable that the particle size is 10 μm or less. Further, the particle size of the carbon powder is preferably lμ or less.

かかる点からカーボンブラックが好適である。From this point of view, carbon black is suitable.

シリカ粉末、炭素粉末とも、上記粒径を超えると得られ
るSICのBET表面積は小さいものとなる。また1本
発明においては、シリカ源はシリカ粉末、炭素源は炭素
粉末であることが必要であり、  SiとCの均一分散
を意図して、両原料のうち少くとも一方が液状の原料を
用いる方法が提案されているが、かかる方法による場合
には。
When the particle size of both silica powder and carbon powder exceeds the above range, the BET surface area of the resulting SIC becomes small. In addition, in the present invention, the silica source needs to be silica powder and the carbon source needs to be carbon powder, and in order to uniformly disperse Si and C, at least one of the two raw materials is used in a liquid state. Although a method is proposed, if such a method is used.

ホウ素添加による生成810粒子の微粒化の効果はない
There is no effect of atomization of the produced 810 particles due to the addition of boron.

また、  SiO粉末製造時にホウ素を添加するものと
して阻Oの焼結助剤として知られているB、A1をSi
O中に均一混合するために、  sia粉末製造時予め
珪素原料、および炭素原料に添加する方法が提案されて
いるが(4I公昭57−59208号)。
In addition, B and A1, which are known as anti-O sintering aids, are added to SiO powder during the production of SiO powder.
In order to uniformly mix it into O, a method has been proposed in which it is added to silicon raw materials and carbon raw materials in advance during the production of sia powder (4I Publication No. 57-59208).

アルミニウムの存在社粒成長を促進する傾向を有し、微
粒化の効果は全くないものである。
The presence of aluminum tends to promote grain growth and has no effect on grain atomization.

本発明において用いられるホウ素源としては。The boron source used in the present invention includes:

ホウ素のほかにホウ素化合物が用いられ、A体的には、
 B4O5B!01s HsBO,、5iB4などが挙
げられる。
In addition to boron, boron compounds are used, and in A-isomer,
B4O5B! 01s HsBO, 5iB4, etc.

ホウ素(化合物)の添加量は、原料シリカに対してB/
B iの原子比で0.004から0.4の範囲であり、
より好適にはo、ooaから061の範囲が好ましい。
The amount of boron (compound) added is B/
The atomic ratio of B i is in the range of 0.004 to 0.4,
More preferably, the range is from o, ooa to 061.

ホウ素添加量が原子比0.004未満では微粒子化の効
果がほとんど見られず、また原子比0.4を超えると焼
結体とした場合に高温強度の低下がみられる等の悪影響
を与えホウ素材料の費用も高価なものとなシ、好ましく
ない。
If the atomic ratio of boron is less than 0.004, there will be almost no effect of making the particles fine, and if the atomic ratio exceeds 0.4, there will be negative effects such as a decrease in high temperature strength when made into a sintered body. The materials are also expensive, which is not desirable.

上述のようにして調製されたケイ素、炭素およびホウ素
を含む原料系を固相反応法によって常法に従って焼成す
ればBIT表面積17m’/を以上(BET相当径0.
1μ以下)で、SEM写真観察による平均粒子径で0.
Jμ以下の主としてβ型から成る炭化ケイ素粉末を得る
ことができる。これまで、0.1μ以下のβ−81a粉
末はプラズマあるいはレーザー等を使用した気相法での
み製造されることが知られていたが1本発明はシリカの
固相反応法によって0.1μ以下のβ−8iO粉末が容
易に且つ安価に製造できるものである。
If the raw material system containing silicon, carbon, and boron prepared as described above is fired in a conventional manner using a solid-phase reaction method, a BIT surface area of 17 m'/ or more (BET equivalent diameter of 0.5 m') can be obtained.
1μ or less), and the average particle diameter by SEM photograph observation is 0.
It is possible to obtain a silicon carbide powder mainly composed of β type having a particle diameter of Jμ or less. Until now, it was known that β-81a powder with a particle size of 0.1 μ or less could only be produced by a gas phase method using plasma or laser, etc.; β-8iO powder can be easily and inexpensively produced.

以下、実施例、比較例によりさらに詳細に説明する。This will be explained in more detail below using Examples and Comparative Examples.

実施例1〜8 表1に示すようなシリカ、炭素およびホウ素(化合物)
を、  c/5io2(モル比)=3.0となるよう配
合後、プラスチック製ボールミルにて10時間混合を行
なった。この混合物をタンマン炉中にてArガス雰囲気
下、  1650℃で1.5時間焼成することによって
、第1表に示すような超微粒子状のβ−5ic粉末が得
られた。
Examples 1-8 Silica, carbon and boron (compounds) as shown in Table 1
were blended so that c/5io2 (mole ratio) = 3.0, and then mixed in a plastic ball mill for 10 hours. This mixture was fired in a Tammann furnace at 1650° C. for 1.5 hours under an Ar gas atmosphere to obtain ultrafine β-5ic powder as shown in Table 1.

BIT相当径は、 611M写真観察による平均粒子径
とほぼ同じであることが確認された。以下比較例におい
ても原料以外は同様の条件によシSiO粉末を製造した
It was confirmed that the BIT equivalent diameter was almost the same as the average particle diameter based on 611M photographic observation. In the following comparative example, SiO powder was produced under the same conditions except for the raw materials.

比較例1〜3 ホウ素を添加しない場合、シリカおよび炭素の粒子径を
変化させた場合の結果を第1表に示す。
Comparative Examples 1 to 3 Table 1 shows the results when boron was not added and when the particle sizes of silica and carbon were changed.

比較何種 100 mの水にloo tのショ糖と1fのH,BO
Comparison of several kinds: 100 m of water with 100 m of sucrose and 1 f of H, BO
.

を溶かした溶液を100fのテトラエチルシリケートに
加え加水分解して均一なゲルを得た。
A solution of the above was added to 100f of tetraethyl silicate and hydrolyzed to obtain a uniform gel.

このものを予備乾燥後タンマン炉に入れ、除徐に昇温し
、実施例1と同様の焼成を行なった。この結果を第1表
に示す。
After preliminary drying, this product was placed in a Tamman furnace, and the temperature was gradually raised, and the same firing as in Example 1 was performed. The results are shown in Table 1.

比較例5 ホウ素の添加量がB/s1= o、 oo lと少なく
シ。
Comparative Example 5 The amount of boron added was small, B/s1 = o, oo l.

実施例1と同様の焼成をおこなった。この結果を第1表
に示す。
Firing was carried out in the same manner as in Example 1. The results are shown in Table 1.

比較例6 表1に示すシリカ、炭素、ホウ素およびアルミニウムの
組成とし、実施例1と同様の焼成をおこなった。この結
果を第1表に示す。
Comparative Example 6 The compositions of silica, carbon, boron, and aluminum shown in Table 1 were used, and the same firing as in Example 1 was performed. The results are shown in Table 1.

手続補正書 昭和59年8月俸日 特許庁長官 志賀  学 殿 l、 事件の表示 昭和58年特許M第93365号 2、 発明の名称 超微粒子状810粉末の製造法 3、補正をする者 4、代理人 住所  東京都千代田区神田錦町三丁目7査地l(興和
−橋ビル) 5、補正命令の日付   自発補正 7、 補正の対象 明細書の「発明の詳細な説明」の欄 8、 補正の内存 (リ 明細書第5頁、第15行のJ 5iB4Jを[s
IB、Jに訂正する。
Procedural amendments, August 1982, Director General of the Patent Office, Manabu Shiga, Indication of the case, 1982 Patent M No. 933652, Name of the invention, Process for manufacturing ultrafine 810 powder, 3, Person making the amendment, 4, Agent Address: 3-7 Kanda Nishiki-cho, Chiyoda-ku, Tokyo (Kowa-Hashi Building) 5. Date of amendment order: Voluntary amendment 7. Column 8 of "Detailed description of the invention" in the specification subject to amendment: Existence of amendment (Replace J5iB4J on page 5, line 15 of the specification with [s
IB, correct J.

(2)同第6頁、第15行の「09.である。」の次に
[妊らに、原料系にホウ素を予め添加して焼成するもう
一つの優位点は2Hαの低減化である。
(2) On page 6, line 15, "09. is." .

一般に、焼結用原料粉末としては、純相のみで構成され
ているのが理想とされるが、シリカ還元法によるβ−S
′Ia @末の製造においては、焼成温度に対応して2
Hαを含有するが、本発明によるホウ素添加によって2
Hαの割合を著しく低減化し得る特長をも有する。
In general, it is considered ideal that raw material powder for sintering should consist of only pure phases, but β-S
In the production of 'Ia @ powder, 2
contains Hα, but by boron addition according to the present invention, 2
It also has the feature of being able to significantly reduce the proportion of Hα.

従って、同一程度の2)1αの含有量においては従来法
より低い温度で製造が可能となるものである。」を挿入
する。
Therefore, with the same content of 2)1α, production can be performed at a lower temperature than in the conventional method. ” is inserted.

(3)  同第9頁、第1表の実施例11比較例呈、比
較例5の備考欄にそれぞれ121(α=I9XJ、「2
Hα=26%」、「2Hα=25刃」を挿入し、第1表
の欄外下方に[(注) 2Hαは、粉末X線回折に基づ
き、鈴木ら(窯業協会誌871979 P576)の式
から求めた。」を挿入する。
(3) 121 (α=I9XJ, “2
Insert ``Hα=26%'' and ``2Hα=25 blades'' below the margin of Table 1. [(Note) 2Hα is calculated from the formula of Suzuki et al. Ta. ” is inserted.

Claims (1)

【特許請求の範囲】[Claims] (リ 粒径10μ以下のシリカ粉末と粒径lμ以下の炭
素粉末の混合物にホウ素またはホウ素化合物をシリカに
対してB/Si (原子比)=0.004〜0.4の範
囲となるよう添加し、  1500〜2000℃の温度
で還元炭化反応をおこなうことを特徴とする超微粒子状
SiO粉末の製造法。
(Li) Boron or a boron compound is added to a mixture of silica powder with a particle size of 10 μ or less and carbon powder with a particle size of 1 μ or less so that B/Si (atomic ratio) to silica is in the range of 0.004 to 0.4. A method for producing ultrafine SiO powder, characterized in that a reduction carbonization reaction is carried out at a temperature of 1500 to 2000°C.
JP58093365A 1983-05-28 1983-05-28 Manufacture of hyperfine-grained sic powder Granted JPS59223214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093365A JPS59223214A (en) 1983-05-28 1983-05-28 Manufacture of hyperfine-grained sic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093365A JPS59223214A (en) 1983-05-28 1983-05-28 Manufacture of hyperfine-grained sic powder

Publications (2)

Publication Number Publication Date
JPS59223214A true JPS59223214A (en) 1984-12-15
JPS6362450B2 JPS6362450B2 (en) 1988-12-02

Family

ID=14080259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093365A Granted JPS59223214A (en) 1983-05-28 1983-05-28 Manufacture of hyperfine-grained sic powder

Country Status (1)

Country Link
JP (1) JPS59223214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008609A2 (en) * 1988-03-11 1989-09-21 Deere & Company Production of silicon carbide, manganese carbide and ferrous alloys
JPH0316909A (en) * 1988-12-29 1991-01-24 Union Carbide Corp Alloy powder and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008609A2 (en) * 1988-03-11 1989-09-21 Deere & Company Production of silicon carbide, manganese carbide and ferrous alloys
US5401464A (en) * 1988-03-11 1995-03-28 Deere & Company Solid state reaction of silicon or manganese oxides to carbides and their alloying with ferrous melts
JPH0316909A (en) * 1988-12-29 1991-01-24 Union Carbide Corp Alloy powder and preparation thereof

Also Published As

Publication number Publication date
JPS6362450B2 (en) 1988-12-02

Similar Documents

Publication Publication Date Title
Lu et al. Growth of SiC nanorods at low temperature
KR101678622B1 (en) - - A porous composite of silicon dioxide-carbon and a method for preparing granules of -phase silicon carbide powder with a high purity by using it
US4226841A (en) Method of producing silicon carbide powder
KR101678624B1 (en) A method for preparing silicon carbide powder of ultra-high purity
JPS5891005A (en) Production of silicon nitride powder
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
JP2617822B2 (en) Method for producing non-sintered cristobalite particles
JP7096315B2 (en) Method for manufacturing high-purity granule α-phase silicon carbide powder
JPS59223214A (en) Manufacture of hyperfine-grained sic powder
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
JPS60501855A (en) Production method of yttrium silicon oxynitride
JP2660650B2 (en) Manufacturing method of α-type silicon carbide
JPS63274603A (en) Method for elevating purity of hexagonal boron nitride to high level
JP4111478B2 (en) Method for producing silicon carbide microspheres
JPS60260410A (en) Manufacture of beta-sialon powder
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JP2798684B2 (en) Purification method of silicon carbide powder
JP3896452B2 (en) Method for producing silicon magnesium nitride powder and product thereof
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JPS60131863A (en) Electrical insulating silicon carbide sintered body
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JPS6227004B2 (en)
JP4297578B2 (en) Method for producing opaque quartz glass
JPS61168514A (en) Production of easily sinterable silicon carbide
JP3224406B2 (en) Method for producing silicon carbide single crystal