JPS6047204B2 - Method for manufacturing silicon nitride powder - Google Patents

Method for manufacturing silicon nitride powder

Info

Publication number
JPS6047204B2
JPS6047204B2 JP4647278A JP4647278A JPS6047204B2 JP S6047204 B2 JPS6047204 B2 JP S6047204B2 JP 4647278 A JP4647278 A JP 4647278A JP 4647278 A JP4647278 A JP 4647278A JP S6047204 B2 JPS6047204 B2 JP S6047204B2
Authority
JP
Japan
Prior art keywords
silicon nitride
formula
nitrogen
powder
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4647278A
Other languages
Japanese (ja)
Other versions
JPS54138898A (en
Inventor
博 遠藤
勝 林
勝利 米屋
治男 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4647278A priority Critical patent/JPS6047204B2/en
Publication of JPS54138898A publication Critical patent/JPS54138898A/en
Publication of JPS6047204B2 publication Critical patent/JPS6047204B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は窒化ケイ素粉末の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing silicon nitride powder.

さらに詳しくは、一般式(I): SiR1(R2)3(I) 式中、R゛は炭素数1〜4個のアルキル基を表わし、R
”は水素原子または塩素原子を表わす。
More specifically, general formula (I): SiR1(R2)3(I) In the formula, R represents an alkyl group having 1 to 4 carbon atoms, and R
” represents a hydrogen atom or a chlorine atom.

で示されるケイ素化合物、一般式(Π)■ Si(R3)O(Π) 式中、R゜は水素原子、塩素原子または炭素数J1〜4
個のアルコキシ基を表わす。
A silicon compound represented by the general formula (Π)■ Si(R3)O(Π) In the formula, R゜ is a hydrogen atom, a chlorine atom, or a carbon number J1-4
represents an alkoxy group.

で示されるケイ素化合物の少なくとも1種および炭素粉
末の混合物をPHI山王に調製し、得られた沈澱物を窒
素を含む非酸化性雰囲気中、400〜1100℃て焼成
し、得られた酸素の一部が窒素で置ク換された物質を窒
素を含む非酸化性雰囲気中、1300〜1550℃て焼
成することを特徴とする窒化ケイ素粉末の製造方法に関
する。
A mixture of at least one silicon compound represented by the formula and carbon powder is prepared in PHI Sanno, and the resulting precipitate is calcined at 400 to 1100°C in a non-oxidizing atmosphere containing nitrogen. The present invention relates to a method for producing silicon nitride powder, which comprises firing a substance in which part of the portion has been replaced with nitrogen at 1300 to 1550°C in a non-oxidizing atmosphere containing nitrogen.

窒化ケイ素は高温安定性、高温強度が優れた材料であり
、高温構造材料、特に高温ガスタービン用部材としての
応用が注目されている。
Silicon nitride is a material with excellent high-temperature stability and high-temperature strength, and its application as a high-temperature structural material, particularly as a member for high-temperature gas turbines, is attracting attention.

従来、窒化ケイ素を製造する方法として、(1)金属ケ
イ素を直接窒化させる方法、(2)四塩化ケイ素やシラ
ンとアンモニアを気相で反応させる方法、(3)シリカ
粉末を炭素と窒素で還元・窒化させる方法等が知られて
いる。
Conventionally, methods for producing silicon nitride include (1) directly nitriding metal silicon, (2) reacting silicon tetrachloride or silane with ammonia in the gas phase, and (3) reducing silica powder with carbon and nitrogen.・Nitriding methods are known.

(1)の方法においては、反応が発熱反応であるため、
発熱制御のためプロセス上工夫を要し、例えば、金属ケ
イ素粉末としては、比較的粗粒のものを選ひ、窒化後微
粉砕して窒化ケイ素粉末を得ている。
In method (1), since the reaction is exothermic,
In order to control the heat generation, it is necessary to take some measures in the process. For example, as the metal silicon powder, relatively coarse particles are selected, and after nitriding, they are finely pulverized to obtain silicon nitride powder.

この場合、微粉砕工程における不純物の混入が避けられ
ず、不純物が混入したものは一般耐熱材料の原料として
は使用できるが、高温ガスタービン用部材などの原料と
しては適さない。(2)の方法は気相法てあるため、例
えば半導体素子の表面を窒化ケイ素で被覆するため等に
は適するが、量産性に欠け、無機耐熱材料の工業的製造
法にはなり得ない。(3)の方法は反応操作が簡単であ
るという利点を有する反面、生成物はα型窒化ケイ素、
β型窒化ケイ素、シリコンオキシナイトライド(Si2
ON2)および炭化ケイ素等の混合系であり、α型窒化
ケイ素の収率が低いという欠点があつた。本発明は上記
従来技術とは異なつた新しい窒化ケイ素粉末の製造方法
を提供することを目的とするものてあつて、本発明者等
はより良好な物性を有する窒化ケイ素粉末を得るために
鋭意研究した結果、窒化ケイ素粉末の開発に成功し、本
発明を;完成するに至つた。
In this case, the mixture of impurities during the pulverization process is unavoidable, and although the impurity-containing material can be used as a raw material for general heat-resistant materials, it is not suitable as a raw material for high-temperature gas turbine components. Since method (2) is a vapor phase method, it is suitable for, for example, coating the surface of a semiconductor element with silicon nitride, but it lacks mass productivity and cannot be used as an industrial method for producing inorganic heat-resistant materials. Method (3) has the advantage that the reaction operation is simple, but the product is α-type silicon nitride,
β-type silicon nitride, silicon oxynitride (Si2
It is a mixed system of ON2) and silicon carbide, and has the disadvantage of a low yield of α-type silicon nitride. The present invention aims to provide a new method for producing silicon nitride powder different from the above-mentioned conventional technology, and the inventors have conducted extensive research in order to obtain silicon nitride powder with better physical properties. As a result, they succeeded in developing silicon nitride powder and completed the present invention.

本発明の製造方法に従えば、窒化ケイ素粉末は、以下の
工程によつて製造される。
According to the manufacturing method of the present invention, silicon nitride powder is manufactured by the following steps.

第1段階は、 一般式(1) 5式中、
R1およびR2は前記と同じ意味を表わす。
In the first stage, general formula (1) 5,
R1 and R2 have the same meanings as above.

で示されるケイ素化合物、 一般式(■) 4
−ー \ (
■ノ式中、R3は前記と同じ意味を表わす。
A silicon compound represented by the general formula (■) 4
−ー \ (
In the formula (2), R3 has the same meaning as above.

で示されるケイ素化合物の少なくとも1種および炭素粉
末の混合物をPHl踵下に調製し、得られた酸素が一部
窒素で置換された沈澱物を窒素を含む非酸化性雰囲気中
、400〜1100℃て焼成して中間物質を得る工程で
ある。
A mixture of at least one silicon compound represented by: In this process, the intermediate material is obtained by firing the intermediate material.

原料として用いられる混合物の上記一般式(1)で示さ
れるケイ素化合物としてはトリクロロメチルシラン(C
H3SiCl2)、メチルシラン(CH3SiH3)、
トリクロロエチルシラン(C2l(5SiC13)、エ
チルシラン(C2H5SiH3)等が挙げられる。
Trichloromethylsilane (C
H3SiCl2), methylsilane (CH3SiH3),
Examples include trichloroethylsilane (C2l(5SiC13)) and ethylsilane (C2H5SiH3).

上記一般式(■)て示されるケイ素化つ合物としては、
四塩化ケイ素(SiCl4)、テトラヒドロキシシラン
(SiH4)、テトラエトキシシラン((C2H5O)
4Si)等が挙げられる。これらのケイ素化合物は工業
的に高純度で入手可能である。炭素粉末としては、カー
ボンブラック等が挙げられ、7平均粒径1μ以下である
ことが好ましい。この混合物の割合は、一般式(1)で
示されるケイ素化合物、一般式(■)で示されるケイ素
化合物および炭素粉末の重量比がO〜1.0:0〜1.
0:0.3〜4.0、好ましくは0〜1.0:0〜1.
0:0.4・〜2.0である(ただし、ケイ素化合物は
いずれもSiO2の量として)。この混合物を塩酸、水
酸化アンモニウム、水溶性有機アミン類、例えばメチル
アミン、エチルアミン、プロピルアミン等好ましくは水
酸化アンモニウムでPHを1源下、好ましくは8〜10
に調製して加水分解して沈澱物を得る。
As the silicon compound represented by the above general formula (■),
Silicon tetrachloride (SiCl4), tetrahydroxysilane (SiH4), tetraethoxysilane ((C2H5O)
4Si), etc. These silicon compounds are commercially available in high purity. Examples of the carbon powder include carbon black and the like, and it is preferable that the average particle size is 1 μm or less. The ratio of this mixture is such that the weight ratio of the silicon compound represented by the general formula (1), the silicon compound represented by the general formula (■), and the carbon powder is O~1.0:0~1.0:0.
0:0.3-4.0, preferably 0-1.0:0-1.
0:0.4.~2.0 (however, all silicon compounds are expressed as SiO2). This mixture is mixed with hydrochloric acid, ammonium hydroxide, water-soluble organic amines such as methylamine, ethylamine, propylamine, etc., preferably ammonium hydroxide, to bring the pH to 1, preferably 8 to 10.
prepared and hydrolyzed to obtain a precipitate.

また、酸を用いる場合には心程度まて使用できる。この
ようにして得られた沈澱物では、炭素粒子の周囲に炭化
水素を含有するケイ素化合物が吸着している。このケイ
素化合物は、一般式(■) 式中R4は炭素1〜4個のアルキル基を表わし、!は3
以下の整数を表わし、yは吸着水の量を表わす。
Furthermore, when using an acid, it can be used to a moderate degree. In the precipitate thus obtained, silicon compounds containing hydrocarbons are adsorbed around carbon particles. This silicon compound has the general formula (■), where R4 represents an alkyl group having 1 to 4 carbon atoms, and! is 3
It represents the following integer, and y represents the amount of adsorbed water.

で示されるケイ素化合物と考えられる。It is considered to be a silicon compound represented by

このようにして得られた沈澱物は300℃程度で加熱処
理して脱水しておくことが好ましい。次いてこの沈澱物
を窒素を含む非酸性雰囲気中、400〜1100℃で少
なくとも3扮間程度焼成し中間物質を得る。
Preferably, the precipitate thus obtained is dehydrated by heat treatment at about 300°C. Next, this precipitate is fired in a non-acidic atmosphere containing nitrogen at 400 to 1100° C. for at least three minutes to obtain an intermediate material.

この反応は炭素数1〜4個のアルキル基が窒素に置換し
易いため速やかに行なわれる。窒素を含む非酸化性雰囲
気としては、窒素および/またはアンモニアが好ましい
が、その他に窒素−アルゴン、窒素一水素、窒素−ー酸
化炭素を用いても良い。
This reaction is carried out quickly because an alkyl group having 1 to 4 carbon atoms is easily substituted with nitrogen. The non-oxidizing atmosphere containing nitrogen is preferably nitrogen and/or ammonia, but nitrogen-argon, nitrogen-hydrogen, or nitrogen-carbon oxide may also be used.

また窒素および/またはアンモニアをプラズマ法により
活性化した雰囲気を用いることが特に好ましい。焼成温
度は400〜1100℃好ましくは600〜900℃で
行なう。400℃未満ではほとんど窒素が置換せず、1
100℃を越える温度では中間物質の粒子寸法が増大し
、窒化ケイ素の生成に支障を来たす。
Further, it is particularly preferable to use an atmosphere in which nitrogen and/or ammonia is activated by a plasma method. The firing temperature is 400 to 1100°C, preferably 600 to 900°C. At temperatures below 400°C, almost no nitrogen is substituted, and 1
At temperatures above 100° C., the particle size of the intermediate increases, impeding the formation of silicon nitride.

このようにして得られた中間物質は、炭素粉末粒子の周
囲に一部窒化したケイ素酸化物を吸着しており、窒素を
Oより多く8重量%より少ない量好ましくは0.5〜7
.5重量%含有し、水素を固溶していても良い。
The intermediate material thus obtained has a partially nitrided silicon oxide adsorbed around the carbon powder particles, and contains more nitrogen than O and less than 8% by weight, preferably 0.5 to 7% by weight.
.. The content may be 5% by weight, and hydrogen may be dissolved in solid solution.

またこの中間物質は窒化ケイ素製造用の好適な原料とな
り、この中間物質を単離することもできる。なお、この
中間物質は一般式(■)式中X1は0より大きく0.5
より小さい値を表わす。
This intermediate is also a suitable raw material for the production of silicon nitride and can also be isolated. In addition, this intermediate substance has the general formula (■) in which X1 is greater than 0 and 0.5
Represents a smaller value.

で示される物質が炭素粉末粒子の周囲に吸着した構造に
なつていると考えられる。次にこの中間物質を窒素を含
む非酸化性雰囲気中、1300〜1550℃て焼成する
It is thought that the structure is such that the substance shown in is adsorbed around the carbon powder particles. Next, this intermediate material is fired at 1300 to 1550°C in a non-oxidizing atmosphere containing nitrogen.

窒素を含む非酸化性雰囲気は前記と同じである。焼成温
度は1300〜15500C好ましくは1350〜14
80℃て行なう。1300℃以下ては窒化ケイ素の収率
が低く、1550゜C以上では炭化ケイ素が生成するた
め好ましくない。
The non-oxidizing atmosphere containing nitrogen is the same as above. Firing temperature is 1300-15500C, preferably 1350-14
Perform at 80°C. If the temperature is below 1300°C, the yield of silicon nitride will be low, and if it is above 1550°C, silicon carbide will be produced, which is not preferable.

この窒化反応は、中間体化合物が窒素を含んでおり、こ
の窒素を核として反応が速やかに進行する。また、微細
な炭素粉末に中間体化合物が吸着しているため接触面積
が大きく、炭素還元が円滑に進み、その結果窒化反応が
速やかに進行する。なお炭素粉末を過剰に添加した場合
には炭素が残留するので600〜700℃で加熱して酸
化除去することができる。このようにして得られた窒化
ケイ素粉末は、α型窒化ケイ素が高収率で得られ、一般
的に平均粒径1μ以下の微細な粉末であり、焼結原料と
して高品質の粉末である。
In this nitriding reaction, the intermediate compound contains nitrogen, and the reaction rapidly proceeds with this nitrogen as a core. Furthermore, since the intermediate compound is adsorbed on the fine carbon powder, the contact area is large, and carbon reduction proceeds smoothly, resulting in a rapid nitriding reaction. Note that if carbon powder is added in excess, carbon remains and can be removed by oxidation by heating at 600 to 700°C. The silicon nitride powder thus obtained is a fine powder with a high yield of α-type silicon nitride, generally having an average particle size of 1 μm or less, and is a high-quality powder as a sintering raw material.

以下、実施例を掲げて本発明をさらに詳細に説明する。
実施例1トリクロロメチルシラン溶液、テトラエトキシ
シラン溶液および炭素粉末を種々の割合で混合して混合
物を調製した。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
Example 1 A mixture was prepared by mixing a trichloromethylsilane solution, a tetraethoxysilane solution, and carbon powder in various proportions.

これらの混合物を水酸化アノンモニウムでPHを10に
調製し、加水分解させ、得られた沈澱物を枦過し、25
0〜300′Cで5時間加熱処理後、アンモニアー窒素
雰囲気、もしくはプラズマ法によるアンモニアー窒素活
性雰囲気下、400〜1100゜Cで2〜5時間加熱処
理して中間物質5を得た。この中間物質の平均粒度、窒
素含有率(重量%)および金属不純物量を調べた。結果
を第1表に示す。実施例2 実施例1で得られた中間物質を種々の割合に訓製して、
窒素を含む非酸化性雰囲気下1350〜1551℃で2
〜5時間加熱処理した後、700℃で空気雰ゞ囲気下8
時間加熱処理して窒化ケイ素粉末を得た。
The mixture was adjusted to pH 10 with anonmonium hydroxide, hydrolyzed, and the resulting precipitate was filtered.
After heat treatment at 0 to 300'C for 5 hours, intermediate material 5 was obtained by heat treatment at 400 to 1100C for 2 to 5 hours in an ammonia-nitrogen atmosphere or an ammonia-nitrogen active atmosphere by plasma method. The average particle size, nitrogen content (wt%), and amount of metal impurities of this intermediate material were investigated. The results are shown in Table 1. Example 2 The intermediate material obtained in Example 1 was prepared in various proportions,
2 at 1350-1551°C in a non-oxidizing atmosphere containing nitrogen
After heat treatment for ~5 hours, heat treatment was performed at 700°C under an air atmosphere for 8 hours.
A silicon nitride powder was obtained by heat treatment for a period of time.

この粉末の平均粒径、窒素含有率、金属不純物を測定し
た。結果を第2表に示す。また比較例を併せて示す。以
上の実施例から明らかなように本発明の方法に従えば、
窒化ケイ素の微細な粉末が得られ、優秀な焼結材料とな
るものである。
The average particle size, nitrogen content, and metal impurities of this powder were measured. The results are shown in Table 2. Comparative examples are also shown. As is clear from the above examples, if the method of the present invention is followed,
A fine powder of silicon nitride is obtained, which is an excellent sintering material.

Claims (1)

【特許請求の範囲】 1 次式: SiR^1(R^2)_3 式中、R^1は炭素数1〜4個のアルキル基を表わし、
R^2は水素原子または塩素原子を表わす。 で示されるケイ素化合物、次式: Si(R^3)_4 式中、R^3は水素原子、塩素原子または炭素数1〜4
個のアルコキシ基を表わす。 で示されるケイ素化合物の少なくとも1種および炭素粉
末の混合物をpH12以下に調製し、得られた沈澱物を
窒素を含む非酸化性雰囲気中、400〜1100℃で焼
成し、得られた酸素の一部が窒素で置換された物質を窒
素を含む非酸化性雰囲気中、1300〜1550℃で焼
成することを特徴とする窒化ケイ素粉末の製造方法。 2 次式: Si_3O_6_−_3_x__1N_2_x__1式
中、x_1は0より大きく0.5より小さい数を表わす
。 で示される化合物を炭素粉末に担持させて得られた物質
を窒素を含む非酸化性雰囲気中、1300〜1550℃
で焼成することを特徴とする窒化ケイ素粉末の製造方法
[Claims] Primary formula: SiR^1(R^2)_3 In the formula, R^1 represents an alkyl group having 1 to 4 carbon atoms,
R^2 represents a hydrogen atom or a chlorine atom. A silicon compound represented by the following formula: Si(R^3)_4 where R^3 is a hydrogen atom, a chlorine atom, or a carbon number of 1 to 4
represents an alkoxy group. A mixture of at least one silicon compound represented by the formula and carbon powder is adjusted to a pH of 12 or less, and the resulting precipitate is calcined at 400 to 1100°C in a non-oxidizing atmosphere containing nitrogen. 1. A method for producing silicon nitride powder, which comprises firing a substance in which a portion of the material is substituted with nitrogen at 1,300 to 1,550° C. in a non-oxidizing atmosphere containing nitrogen. Quadratic formula: Si_3O_6_−_3_x__1N_2_x__1 In the formula, x_1 represents a number greater than 0 and less than 0.5. A substance obtained by supporting the compound represented by on carbon powder was heated at 1300 to 1550°C in a non-oxidizing atmosphere containing nitrogen.
1. A method for producing silicon nitride powder, the method comprising firing the silicon nitride powder at
JP4647278A 1978-04-21 1978-04-21 Method for manufacturing silicon nitride powder Expired JPS6047204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4647278A JPS6047204B2 (en) 1978-04-21 1978-04-21 Method for manufacturing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4647278A JPS6047204B2 (en) 1978-04-21 1978-04-21 Method for manufacturing silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS54138898A JPS54138898A (en) 1979-10-27
JPS6047204B2 true JPS6047204B2 (en) 1985-10-21

Family

ID=12748120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4647278A Expired JPS6047204B2 (en) 1978-04-21 1978-04-21 Method for manufacturing silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS6047204B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104006A (en) * 1981-12-11 1983-06-21 Central Glass Co Ltd Preparation of silicon nitride powder
JPS616104A (en) * 1984-06-19 1986-01-11 Tokuyama Soda Co Ltd Manufacture of aluminum nitride powder
JPS61183108A (en) * 1985-02-09 1986-08-15 Natl Inst For Res In Inorg Mater Preparation of fine powder of aluminium nitride
JPS61174106A (en) * 1985-01-26 1986-08-05 Natl Inst For Res In Inorg Mater Production of fine silicon nitride powder
JPS61232208A (en) * 1985-04-08 1986-10-16 Toshiba Tungaloy Co Ltd Production of metallic nitride powder or metallic carbon nitride powder

Also Published As

Publication number Publication date
JPS54138898A (en) 1979-10-27

Similar Documents

Publication Publication Date Title
US4117095A (en) Method of making α type silicon nitride powder
CA1145919A (en) METHOD FOR PRODUCING POWDER OF .alpha.-SILICON NITRIDE
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS5891005A (en) Production of silicon nitride powder
EP0063272B1 (en) Synthesis of silicon nitride
JPS6112844B2 (en)
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JPS6047205B2 (en) Method for producing silicon nitride powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS62108719A (en) Preparation of silicon nitride
JPS6126485B2 (en)
JPS61151005A (en) Production of alpha type crystalline silicon nitride
JPS58176109A (en) Production of alpha-type silicon nitride
JPS60122706A (en) Manufacture of silicon nitride powder
JP3620909B2 (en) Process for producing silanes
JPS5891006A (en) Manufacture of alpha-type silicon nitride powder
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JPH0313166B2 (en)
JPS6120486B2 (en)
JPH02208211A (en) Production of fine silicon nitride powder
JPS59223214A (en) Manufacture of hyperfine-grained sic powder
JPS60166212A (en) Production of silicon carbide
JPH0416564A (en) Production of beta-sialon powder