JPS5950006A - Manufacture of alpha-type silicon nitride powder - Google Patents

Manufacture of alpha-type silicon nitride powder

Info

Publication number
JPS5950006A
JPS5950006A JP15702582A JP15702582A JPS5950006A JP S5950006 A JPS5950006 A JP S5950006A JP 15702582 A JP15702582 A JP 15702582A JP 15702582 A JP15702582 A JP 15702582A JP S5950006 A JPS5950006 A JP S5950006A
Authority
JP
Japan
Prior art keywords
powder
type
alpha
si3n4
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15702582A
Other languages
Japanese (ja)
Inventor
Takao Oota
多禾夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15702582A priority Critical patent/JPS5950006A/en
Publication of JPS5950006A publication Critical patent/JPS5950006A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Abstract

PURPOSE:To manufacture fine alpha-type Si3N4 powder in a high yield by reacting a powdered mixture consisting of SiO, C and Si in an atmosphere contg. N and by heat-treating the resulting Si3N4 in an oxidizing atmosphere. CONSTITUTION:A powdered mixture is prepared by mixing SiO powder having >=99% purity and <=1mum average grain size with C powder having >=99% purity and <=1mum average grain size and Si powder having >=99% purity and <=10mum average grain size in 1: (0.2-2.0):(0.01-1.0) weight ratio. The mixture is heated to 1,350-1,480 deg.C in an atmosphere contg. N such as an NH3 atmosphere to form alpha-type Si3N4 by reduction and nitriding. The residual carbon is removed from the alpha-type Si3N4 by heating to 600-700 deg.C in an oxidizing atmosphere to obtain alpha-type Si3N4 powder suitable for use in the manufacture of a material resistant to high stress at high temp.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はα型窒化珪素(Si3N4)粉末の製造方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a method for producing α-type silicon nitride (Si3N4) powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えば窒化珪素−酸化イツトリウム(813N4−Y2
O2)、窒化珪素一層化マグネシウム(Si3N4−M
gO2)系の焼結体は機械的強度が高く、かつ耐熱性も
優れているため、高温ガスタービン部材への適用が試み
られている。こうした焼結体を高温高応力材料として実
用に供する場合には高温時における物理的、化学的安定
性と信頼性が厳しく要求される。とシわけ重要な因子で
ある熱的9機械的特性は、出発原料の種類、不純物含有
量に大きく影響され、窒化珪素についてはα型粉末を多
く含んだ原料を用いることが望ましい。
For example, silicon nitride-yttrium oxide (813N4-Y2
O2), silicon nitride single layer magnesium (Si3N4-M
Since gO2)-based sintered bodies have high mechanical strength and excellent heat resistance, attempts have been made to apply them to high-temperature gas turbine components. When such a sintered body is put to practical use as a high-temperature, high-stress material, physical and chemical stability and reliability at high temperatures are strictly required. Thermal and mechanical properties, which are especially important factors, are greatly influenced by the type and impurity content of the starting raw material, and for silicon nitride, it is desirable to use a raw material containing a large amount of α-type powder.

ところで、5ixN4粉末の合成法としては、従来より
、 ■ 金属シリコン(St)粉末を窒化させる方法、3S
l+2N2→S!5N4 ■ 加塩化珪素(又はシラン)とアンモニアとを原料と
する気相反応法、 3SIC14+ 4NH3−+ Si 3N4+ 12
HCt■ シリカ(5SO2) @反応量論比程度のカ
ーデン(C)で還元して得たSiOを窒化する方法、3
SiO2+ 60 +2N2−+ 813N4+ 6C
Oが知られている。
By the way, conventional methods for synthesizing 5ixN4 powder include: ■ nitriding metal silicon (St) powder, and 3S.
l+2N2→S! 5N4 ■ Gas phase reaction method using silicon chloride (or silane) and ammonia as raw materials, 3SIC14+ 4NH3-+ Si 3N4+ 12
HCt■ Silica (5SO2) @Method of nitriding SiO obtained by reduction with cardene (C) at reaction stoichiometric ratio, 3
SiO2+ 60 +2N2-+ 813N4+ 6C
O is known.

しかしながら、上記■の方法ではSiの窒化が発熱反応
であるため、その発熱反応を制御するためのプロセス上
の工夫を要し、例えばStとして比較的粗粒のものを選
び、窒化後に微粉砕している。その結果、この粉砕過程
での不純物の混入が避けられず、耐火ンンガなどの一般
耐火物原料としての使用には支障ないが、高温ガスター
ビン用には適さ々い。また、上記■の方法では、例えば
半導体素子の表面被覆などには適するが、無機耐熱材料
には量産的とはいえず、工業製造には適さない。更に上
記■の方法では反応操作上の煩雑さを要しないという利
点を有する反面、α型51sN4 eβ型513N4.
シリコンオキシナイトライドSi2ON2.及びSiC
などの混合系でα型513N4の収率が低いという欠点
がある。
However, in method (2) above, the nitriding of Si is an exothermic reaction, so it is necessary to devise a process to control the exothermic reaction. ing. As a result, the contamination of impurities during this pulverization process is unavoidable, and although it is not a problem for use as a raw material for general refractories such as refractory materials, it is not suitable for use in high-temperature gas turbines. Further, the method (2) above is suitable for, for example, coating the surface of semiconductor elements, but cannot be said to be mass-produced for inorganic heat-resistant materials, and is not suitable for industrial manufacturing. Furthermore, while the above method (2) has the advantage that it does not require complicated reaction operations, it does not require complicated reaction operations;
Silicon oxynitride Si2ON2. and SiC
There is a drawback that the yield of α-type 513N4 is low in mixed systems such as.

〔発明の目的〕[Purpose of the invention]

本発明は微細なα型5t3N4粉末を収率よく製造し得
る方法を提供しようとするものである。
The present invention aims to provide a method for producing fine α-type 5t3N4 powder with good yield.

〔発明の概要〕[Summary of the invention]

本発明は重量比にてStO粉末1.C粉末0.2〜2.
0及びSt粉末0.01〜1.0の割合の混合粉末を窒
素を含む雰囲気中にて加熱し、還元、窒化反応させて5
i3N4Th生成した後、酸化性雰囲気中で加熱処理せ
しめることを特徴とするものである。
The present invention uses StO powder in a weight ratio of 1. C powder 0.2-2.
0 and St powder at a ratio of 0.01 to 1.0 is heated in an atmosphere containing nitrogen to cause a reduction and nitriding reaction.
This method is characterized in that after i3N4Th is generated, it is heat-treated in an oxidizing atmosphere.

本発明において出発原料である混合粉末の配合割合をと
記の如く限定したのは、次のような理由によるものであ
る。即ち、5iO1当りCを0.2未満にすると、5l
o2N2の生成が多くなる反面、α型Si3N4の生成
量が少なくなシ、かといってCが2.0ヲ越えると、カ
ー?ンの増量に対する効果が認められないばかりか、β
型炭化珪素(SiC)の生成が認められ、α型Si、N
4の純度、収率の低下を招く。一方、5lo1に対して
Siの比’i 0.01未満にすると、α型S i 3
N4の高収率化効果が少なく、かといってslが1.0
を越えると、粒径1μm以下の微細なα型S i 3N
4粉末が得られ難く、最終的には粉砕工程を要するため
他の不純物の混入を招く。こうしたSiO、C。
The reason why the blending ratio of the mixed powder, which is the starting material, is limited as described above in the present invention is as follows. That is, if C per 5iO is less than 0.2, 5l
Although the production of o2N2 increases, the amount of α-type Si3N4 produced is small. However, when C exceeds 2.0, car? Not only was there no effect on increasing the amount of
Formation of type silicon carbide (SiC) was observed, and α type Si, N
This results in a decrease in the purity and yield of 4. On the other hand, if the ratio of Si to 5lo1 is less than 0.01, α-type Si 3
The high yield effect of N4 is small, but the sl is 1.0.
If the particle size exceeds 1 μm, fine α-type Si 3N
4 powder is difficult to obtain, and a final pulverization step is required, which leads to the contamination of other impurities. These SiO,C.

Siはいずれも99チ程度以上の高純度のものが好まし
く、かつ粒径についてはSlo及Cは平均粒径1μm以
下、81は平均粒径10μm以下のものが好ましい。
Preferably, Si has a high purity of about 99% or more, and regarding the particle size, Slo and C preferably have an average particle size of 1 μm or less, and 81 preferably has an average particle size of 10 μm or less.

本発明における還元、窒化反応に際しての雰囲気として
は、例えばNH,、N2−N2又はN2−不活性ガスの
系などを挙げることができる。こうした還元、窒化反応
時の加熱温度は1350〜1480℃の範囲にすること
が望ましい。この理由は、1350℃未満では十分な還
元、窒化反応が進行せず、かといって14801:を越
えると、SiCの生成が認められ、結局、所望の高温高
応力材料に適ノ するα型S i 3N4粉末が得難くなるからである。
Examples of the atmosphere for the reduction and nitridation reactions in the present invention include NH, N2-N2, or N2-inert gas systems. The heating temperature during such reduction and nitriding reactions is preferably in the range of 1350 to 1480°C. The reason for this is that sufficient reduction and nitriding reactions do not proceed at temperatures below 1350°C, and on the other hand, at temperatures exceeding 14801°C, the formation of SiC is observed. This is because it becomes difficult to obtain i3N4 powder.

本発明における窒化反応後の酸化性雰囲気中での加熱処
理は残留カーがンの除去を目的としたものである。かか
る加熱処理の温度は600〜700℃の範囲にすること
が望ましい。この理由は600℃未満にすると、残留カ
ーがンの除去効果が低く、かといって7001:’i越
えると、α型S i 、N4の酸化を招くからである。
The purpose of the heat treatment in an oxidizing atmosphere after the nitriding reaction in the present invention is to remove residual carbon. The temperature of such heat treatment is preferably in the range of 600 to 700°C. The reason for this is that if the temperature is less than 600°C, the effect of removing residual carbon is low, whereas if it exceeds 7001:'i, oxidation of α-type S i and N4 will occur.

しかして、本発明方法によればSiOに還元、窒化反応
時の反応量論比をはるかに越えたCを5− 加えると共に、所定量のStを共存させることによって
、SiOの還元が促進され、かつsiの窒化も円滑に進
行し、α型Si3N4の含有量が多く、高温高応力性の
要求されるS i 3N4系焼結体の製造に適した高品
位のα型Si3N4系粉末を収率よく得ることができる
。このようなα型513N4系粉末が得られるのは、次
の如き機構によるものと考えられる。
According to the method of the present invention, the reduction of SiO is promoted by adding C to SiO in an amount that far exceeds the reaction stoichiometric ratio during the reduction and nitriding reactions, and by coexisting with a predetermined amount of St. In addition, the nitridation of Si progresses smoothly, and the yield of high-grade α-type Si3N4-based powder, which has a high content of α-type Si3N4 and is suitable for manufacturing Si3N4-based sintered bodies that require high temperature and high stress properties, is achieved. You can get a good deal. The reason why such α-type 513N4 powder is obtained is considered to be due to the following mechanism.

即ち、反応はc、”sto比が高い程、相対的に速くな
シ、かつS10はN2又はNH3と容易に反応する。こ
の反応において、SIOとN2# NH3は気相状態で
存在できるので、C蒸気の存在がStOの還元、窒化反
応を左右する。しかるに、この場合C量が反応量論比程
度又は若若多い程度では512ON2の生成がみられ、
Si2ON2からα型S l 3N4への転移は著しく
困難となるが、1記の如くC量が反応量論比に較べて天
過剰であるため、512ON2の生成は抑制され、容易
にα型S i 、N4が生成するに至る。とうしたCの
過剰存在はα型5t3N4の生成を円滑に進めるが、一
方ではslc6一 の生成混存、その他不純物の混存を招き、相対的にα型
513N4の含有率の低下となる。そこで、本発明は更
に所定量の3t’l共存させる。これによってgi粉末
はそれ自体窒化されるが、むしろsio粉末表面の酸化
膜(810□)を5so2+si→2810の反応によ
りStO蒸気を発生し易くして以後のSiO十C+ N
2によるα型St、N4の生成を容易に進行させ、所望
の微細なα型Si3N4の生成収率を飛躍的に向上せし
めると共に、SICの生成、その他の不純物の混入を防
止するものと考えられる。
That is, the reaction is relatively faster as the sto ratio is higher, and S10 easily reacts with N2 or NH3. In this reaction, SIO and N2#NH3 can exist in the gas phase, so The presence of C vapor influences the reduction and nitriding reactions of StO.However, in this case, when the amount of C is around the reaction stoichiometric ratio or slightly higher, 512ON2 is generated.
The transition from Si2ON2 to α-type S l 3N4 is extremely difficult, but since the amount of C is in natural excess compared to the reaction stoichiometric ratio as described in 1, the generation of 512ON2 is suppressed and it is easily converted to α-type S i , N4 is generated. The excessive presence of C facilitates the production of α-type 5t3N4, but on the other hand, it leads to the co-production of slc6- and other impurities, resulting in a relative decrease in the content of α-type 513N4. Therefore, the present invention further allows a predetermined amount of 3t'l to coexist. As a result, the gi powder itself is nitrided, but rather the oxide film (810 □) on the surface of the sio powder is made easier to generate StO vapor by the reaction of 5so2 + si → 2810, and the subsequent SiO + C + N
It is thought that the production of α-type St and N4 by 2 can be easily progressed, dramatically improving the production yield of the desired fine α-type Si3N4, and preventing the generation of SIC and the contamination of other impurities. .

〔発明の実施例〕[Embodiments of the invention]

実施例1〜14 平均粒径15μmのsio粉末、平均粒径30μmのC
粉末及び平均粒径2゜0μmのSt粉末を下記表に示す
割合で混合して14種の混合粉末20kgを調整した。
Examples 1 to 14 Sio powder with an average particle size of 15 μm, C with an average particle size of 30 μm
The powder and St powder having an average particle size of 2.0 μm were mixed in the proportions shown in the table below to prepare 20 kg of 14 types of mixed powder.

次いで、これら混合粉末を同表に示す条件で夫々加熱し
、還元、窒化反応させた後、空気中で700℃の温度下
にで8時間夫々熱処理して14種の513N4系粉末を
得た。
Next, these mixed powders were heated under the conditions shown in the same table to cause reduction and nitriding reactions, and then heat treated in air at a temperature of 700° C. for 8 hours to obtain 14 types of 513N4 powders.

得られた脅々のSi3N4系粉末の平均粒径、α型Si
3N4の含有率(重量%)、SiCの含有率、及び金属
不純物の含有率を夫々調べた。その結果を同表に併記し
た。なお、表中には比較例1〜6も併記した。
The average particle size of the obtained Si3N4 powder, α-type Si
The 3N4 content (wt%), the SiC content, and the metal impurity content were examined. The results are also listed in the same table. In addition, Comparative Examples 1 to 6 are also listed in the table.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば煩雑な操作や複雑な
装置t−要せずに、高温高応力性の要求される513N
4系焼結体の製造に適した微細なα型Si3N4粉末を
高収率で得ることができる等顕著な効果を存する。
As detailed above, according to the present invention, 513N, which requires high temperature and high stress properties, can be used without the need for complicated operations or complicated equipment.
It has remarkable effects such as being able to obtain fine α-type Si3N4 powder in high yield, which is suitable for producing 4-series sintered bodies.

出願人代理人  弁理士 鈴 江 武 彦10− 32−Applicant's agent: Patent attorney Suzue Takehiko 10- 32-

Claims (1)

【特許請求の範囲】[Claims] 重量比にて一酸化珪素粉末1、カーデン粉末0.2〜2
.0及び金属シリコン粉末0.01〜1.0の割合の混
合粉末を窒素を含む雰囲気中にて加熱し、還元、窒化反
応させて窒化珪素を生成した後、酸化性雰囲気中で加熱
処理を施すことを特徴とするα型窒化珪素粉末の製造方
法。
Silicon monoxide powder 1, carden powder 0.2-2 in weight ratio
.. 0 and metal silicon powder at a ratio of 0.01 to 1.0 is heated in an atmosphere containing nitrogen to cause a reduction and nitridation reaction to produce silicon nitride, and then heat treatment is performed in an oxidizing atmosphere. A method for producing α-type silicon nitride powder, characterized by:
JP15702582A 1982-09-09 1982-09-09 Manufacture of alpha-type silicon nitride powder Pending JPS5950006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15702582A JPS5950006A (en) 1982-09-09 1982-09-09 Manufacture of alpha-type silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15702582A JPS5950006A (en) 1982-09-09 1982-09-09 Manufacture of alpha-type silicon nitride powder

Publications (1)

Publication Number Publication Date
JPS5950006A true JPS5950006A (en) 1984-03-22

Family

ID=15640535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15702582A Pending JPS5950006A (en) 1982-09-09 1982-09-09 Manufacture of alpha-type silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS5950006A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295212A (en) * 1985-06-24 1986-12-26 Kawasaki Steel Corp Production of silicon nitride powder
EP0206795A2 (en) * 1985-06-24 1986-12-30 Kawasaki Steel Corporation Method of producing silicon nitride powders
EP0618172A1 (en) * 1993-03-30 1994-10-05 Sumitomo Electric Industries, Ltd. Silicon nitride powder and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295212A (en) * 1985-06-24 1986-12-26 Kawasaki Steel Corp Production of silicon nitride powder
EP0206795A2 (en) * 1985-06-24 1986-12-30 Kawasaki Steel Corporation Method of producing silicon nitride powders
AU568982B2 (en) * 1985-06-24 1988-01-14 Kawasaki Steel Corp. Silicon nitride powder
EP0618172A1 (en) * 1993-03-30 1994-10-05 Sumitomo Electric Industries, Ltd. Silicon nitride powder and method for producing the same

Similar Documents

Publication Publication Date Title
US4117095A (en) Method of making α type silicon nitride powder
US4428916A (en) Method of making α-silicon nitride powder
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS5891005A (en) Production of silicon nitride powder
JPS6112844B2 (en)
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS5945915A (en) Preparation of beta-type silicon carbide powder
JPS606884B2 (en) Method for producing α-type silicon nitride powder
JPS6120486B2 (en)
JPS60204672A (en) Manufacture of ceramic powder material
JPS5891011A (en) Manufacture of silicon nitride powder with high alpha-phase content
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JP2835864B2 (en) Method for producing boron-dissolved silicon carbide powder
JPH0240606B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS58176109A (en) Production of alpha-type silicon nitride
JPH0218310A (en) Preparation of zirconium-containing ceramic powder
JPS5891007A (en) Manufacture of alpha-type silicon nitride powder
JPS6272506A (en) Preparation of silicon nitride powder
JPS6270207A (en) Production of silicon nitride powder
JPH03208864A (en) Production of mixed powder of boron nitride and aluminum nitride
JPH03193617A (en) Production of silicon carbide powder
JPS5891008A (en) Manufacture of alpha-type silicon nitride powder
JPS6259049B2 (en)