JPS5945915A - Preparation of beta-type silicon carbide powder - Google Patents

Preparation of beta-type silicon carbide powder

Info

Publication number
JPS5945915A
JPS5945915A JP57157024A JP15702482A JPS5945915A JP S5945915 A JPS5945915 A JP S5945915A JP 57157024 A JP57157024 A JP 57157024A JP 15702482 A JP15702482 A JP 15702482A JP S5945915 A JPS5945915 A JP S5945915A
Authority
JP
Japan
Prior art keywords
powder
silicon carbide
sic
average particle
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57157024A
Other languages
Japanese (ja)
Inventor
Takao Oota
多禾夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57157024A priority Critical patent/JPS5945915A/en
Publication of JPS5945915A publication Critical patent/JPS5945915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare beta-type SiC powder in high yield, by reacting a powdery mixture of SiO powder, C powder and metallic silicon powder in Ar atmosphere, and heating the resultant SiC in an oxidizing atmosphere. CONSTITUTION:Powdery SiO having an average particle diameter of <=1mum is mixed with C powder having an average particle diameter of <=1mum and metallic silicon powder having an average particle diameter of <=10mum at a weight ratio of 1:(0.2-2.0):(0.01-1.0), and the obtained powdery mixture is thermally reacted at 600-700 deg.C in an oxidizing atmosphere to remove the residual carbon. A high-quality beta-type SiC powder suitable for the preparation of a sintered SiC product required to have high strength at high temperature, can be prepared by this process in high yield.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はβ型炭化珪素粉末の製造方法の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a method for producing β-type silicon carbide powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えば炭化珪累−ホウ素系(8iC−B系)もしくは炭
化珪累−酸化マグネシウム系(5ic−MgO系)の焼
結体は機械的強要が篩(、かつ耐熱性も優れているため
、調泥ガスタービン部材への飛出が試みられている。こ
うした焼結体f:高高温地応力材料して実用に9(する
場合に6よ高温1片におけるq)/)理的、化学的安定
住と1g相性が廠して要求される。とりわけ、棋要な因
子である熱的、機緘的特性は、出911原相の<tK 
6*不桃物含有電t(大きぐ影響さ)L、炭化珪素につ
いてはβ型粉末全多く智んだ原料を用いることが望まし
い。
For example, sintered bodies of silicon carbide-boron system (8iC-B system) or silicon carbide-magnesium oxide system (5ic-MgO system) are difficult to mechanically compel (and have excellent heat resistance), so Attempts have been made to eject into gas turbine components.These sintered bodies (f) are used as high-temperature geostress materials in practical use. and 1g compatibility is required. In particular, the thermal and mechanical characteristics, which are important factors in chess, are
6* It is desirable to use a raw material that contains a large amount of β-type powder for silicon carbide.

ところで、炭化珪素粉末の合成方法としてtit 。By the way, tit is a method for synthesizing silicon carbide powder.

従来、以下に示す方法が知られている。Conventionally, the following methods are known.

■ 金属シリコン粉末全炭化させる方法。■ Method of completely carbonizing metal silicon powder.

Sl+C−+SIC ■ 四境仕珪索やメチル塩化ンジンと炭rヒ氷水と水と
′t−原料とした気相反応法。
Sl+C-+SIC ■ Gas-phase reaction method using Shikyoushi silica, methyl chloride, charcoal, ice water, and water as raw materials.

S 1C24+ CrnHn 十H2→S IC+HC
LCH,581Ct5−)−CmHn +H2−+ S
 ic −1−HC6■ シリカ(sio2)を反応量
論比程度のカーdζンでアルゴン雰囲気中にて反応させ
る°方法。
S 1C24+ CrnHn 10H2→S IC+HC
LCH, 581Ct5-)-CmHn +H2-+ S
ic -1-HC6 ■ A method in which silica (sio2) is reacted in an argon atmosphere at a reaction stoichiometric ratio.

S 102 + 2  C−+ S iC+ CO2し
かしながら、上ddq尺ンカン方法fsIの炭化が%熱
反比、であるため、その!6熱反しt fbll側1す
るためのノロセス上の工夫ヲ要し、例えばStとして比
較的粗粒のものを選び、炭化後に微粉砕している。その
結果、この粉砕過程での不純物の混入が避けられず、耐
火レンがなどの一般耐熱材料としての使用には支障ない
が、高温ガスタービン用などには適さない。また、上記
■の方法では、例えば半導体素子の表面波1.jなどに
は適するが、無機耐熱材料にけ蓋産的とはいえず、工業
製造には適さない。更に上記■の方法では反応操作上の
煩雑さを委しないという利点を有する反面、β型SIC
,α型810% 5102などの混合系でβ型SiCの
収率が低いという欠点がある。
S 102 + 2 C-+ S iC+ CO2 However, since the carbonization of the upper ddq method fsI is % heat reaction ratio, its! It is necessary to take some measures in order to heat and heat, for example, relatively coarse grains are selected as St, and after carbonization, they are finely pulverized. As a result, the contamination of impurities during this pulverization process is unavoidable, and although there is no problem in using it as a general heat-resistant material such as refractory brick, it is not suitable for applications such as high-temperature gas turbines. In addition, in the method (2) above, for example, surface waves of a semiconductor device 1. However, it cannot be said to be useful for inorganic heat-resistant materials and is not suitable for industrial manufacturing. Furthermore, while the above method (■) has the advantage of not incurring the complexity of reaction operations,
, α-type 810% 5102, etc. have a drawback that the yield of β-type SiC is low.

〔発明の目的〕[Purpose of the invention]

本発明は微細なβ型炭化珪素粉末を収率よ〈製造し得る
方法を提供しようとするものである。
The present invention aims to provide a method that can produce fine β-type silicon carbide powder with good yield.

〔発明の概要〕 本発明は電M比にて一酸化珪素粉末l、カー、」−ン粉
末0.2〜2.0及び金属シリコン粉末0.01〜1.
0の割合の混合粉末をアルゴン雰囲気中にて加熱反応さ
せて炭化珪素全生成した後、欧化性雰囲気中で加熱処理
せしめることを%徴とするものである。
[Summary of the Invention] The present invention provides silicon monoxide powder l, carbon powder, carbon powder 0.2 to 2.0 and metal silicon powder 0.01 to 1.
The percentage indicates that a mixed powder having a ratio of 0 is subjected to a heat reaction in an argon atmosphere to completely produce silicon carbide, and then heat-treated in a European atmosphere.

不発明において出兄原第1である混合粉末の配合割合を
限定した層重は次の通りである。即ち、8101当9C
を()2未満にすると、β型炭化珪素以外の生成物層が
多くなり該炭化珪累の収率が低下し、かといってCが2
.0 ’、i、越えると、カー +I−ンの工胃鼠に対
するシカ呆が1められないばかりか、β型炭化珪素の純
ぼ、収車低下を招く。
The layer weight that limits the blending ratio of the mixed powder, which is the first principle in the invention, is as follows. That is, 8101 9C
If C is less than 2, the product layer other than β-type silicon carbide will increase, and the yield of the silicon carbide will decrease.
.. If it exceeds 0', i, not only will carn's deer be less susceptible to factory rats, but the purity of β-type silicon carbide will lead to a decrease in car collection.

一方、5101に対して旧の比i (1,01未満にす
ると、β型炭化珪素の11・ζ率低下1「招き、かとい
つ−(、s+が1.0を越え、槍、と、枝仕1μmロリ
下のfi′りl!111なβ型炭化珪素粉末が得られl
i# <、最44的には粉砕工程を要するfcめ他の不
Jab lI’y〕の混入を招く。
On the other hand, when the old ratio i (less than 1,01) is used for 5101, the 11 ζ rate of β-type silicon carbide decreases by 1. β-type silicon carbide powder with a thickness of less than 1 μm was obtained.
This leads to the contamination of fc and other substances which require a grinding process.

こうしたJO% 0% $1工いずノlも99%以」こ
の高純朋のものが好゛ましく、かつ粒径についてはSI
O及びCは平均粒径が1μ+l+以下、Siま平均粒径
が10μm以下のものが好゛ましい。
These JO% 0% $1 milling particles are 99% or higher, which is preferable, and the particle size is SI
It is preferable that O and C have an average particle size of 1 μm+l+ or less, and that Si has an average particle size of 10 μm or less.

本発明における加熱反16時の温度条件は1350〜1
480℃の範囲にすることが望′ましい。この層重は上
記温虻範囲を逸脱すると、他の副生成物が認められ、結
局、所望の高温高応力材に適するβ型炭化珪素粉末が得
難くなるからである。
In the present invention, the temperature condition at 16:00 is 1350~1
It is desirable that the temperature be within the range of 480°C. This is because if this layer weight exceeds the above temperature range, other by-products will be observed, making it difficult to obtain β-type silicon carbide powder suitable for the desired high-temperature, high-stress material.

本発明における加熱反応炊〜の酸化性雰囲気中での加熱
処理は残留カーdrンの除去を目的としたものである。
The purpose of the heat treatment in an oxidizing atmosphere during the heating reaction cooking in the present invention is to remove residual carbon.

かかる加熱処理の温IWは600〜700℃の範囲にす
ることが望ましい。このノ」山は600℃未満にすると
、残留カー2」−ンを十分除去できず、かといって70
0℃を越えるとβ型炭化珪素粉末の酸化を招くからであ
る。
The temperature IW of this heat treatment is preferably in the range of 600 to 700°C. If this temperature is lower than 600℃, residual carbon cannot be removed sufficiently, and even
This is because if the temperature exceeds 0°C, the β-type silicon carbide powder will be oxidized.

しかして、本発明方法によればSIOに還元、炭化反応
時の反応量論比をはるかに越えた過剰のCを加えると共
に、所定−鼠の81を共存させることによって、SlO
の還元が促進され、かつStの炭化も円?Mに進行して
β型SICの會壱mlが多く、尚温扁応力性の要求され
るSIC系焼結体の製造に適した筒品位のβ型SiC系
粉末全局収率で得ることができる。このようなβ型SI
C系粉末が得られるのは次のような機構によるものと考
えられる。
According to the method of the present invention, an excess of C far exceeding the reaction stoichiometric ratio during the reduction and carbonization reaction is added to SIO, and a predetermined amount of 81 is allowed to coexist.
The reduction of St is promoted, and the carbonization of St is also yen? As the process progresses to M, the total yield of β-type SiC powder is large, and the overall yield of β-type SiC powder is suitable for producing SIC-based sintered bodies that require high thermal stress properties. . Such β-type SI
The reason why C-based powder is obtained is considered to be due to the following mechanism.

即ち、反応はC/SiO比が而い程、相対的に速くなり
、かつ810はC,!:谷躬に反応する。この反応にお
いて810とCは気相状態で存在できるので、C蒸気の
占める割合が還元、炭化反応を左右する。しかるに、こ
の場合C鼠が反応11i tm!m相比或いは若干過剰
程度でt、1s1c以外の生成物が多くみとめられるが
、Clitが反応量論比に較べて大過剰であるため、β
型SICが容易に生成できる。こうしたCの過剰存在は
β型SICの生成を円滑に進めるが、一方でt、rsi
cSIC以外酸化物の混在を招き、相対的にβ型SIC
の含有fitを低下させる。そこで、不発明においては
更に所定祉の81を共存させる。こhによってSl粉末
はそ脣1体炭化されるが、む1.ろSIO粉表面表面化
膜(810のをS10ン1− S l→2Sム0の反L
6によりSIO蒸気を発生し易くして以鏝の5IO−)
−Cによるβ型炭化珪素の生成′?i:谷易に容易させ
、所望の微細なβ型炭化珪素の生成収率を飛躍的に向上
せしめると共に、SIC以外の副生成物の混入を防止す
るものと考えられる。
That is, the reaction becomes relatively faster as the C/SiO ratio decreases, and 810 is C,! :Reacts to Taniman. In this reaction, 810 and C can exist in a gaseous state, so the proportion occupied by C vapor influences the reduction and carbonization reactions. However, in this case C rat responds 11i tm! Many products other than t and 1s1c are observed in the m phase ratio or in slight excess, but since Clit is in large excess compared to the reaction stoichiometric ratio, β
Type SIC can be easily generated. The excessive presence of C facilitates the formation of β-type SIC, but on the other hand, t, rsi
It causes the mixture of oxides other than cSIC, and is relatively β-type SIC.
The contained fit is lowered. Therefore, in non-invention, the predetermined welfare 81 is made to coexist. By this process, part of the Sl powder is carbonized, but 1. filtration SIO powder surface coating film
6 makes it easier to generate SIO steam, and the 5IO-)
Formation of β-type silicon carbide by -C'? i: It is thought that this makes it easier to produce the desired fine β-type silicon carbide, dramatically improving the production yield of the desired fine β-type silicon carbide, and preventing the contamination of by-products other than SIC.

〔発明の実織例〕[Example of actual invention]

実す市しυ1〜14 平均粒径15μmのsio@末、平均粒径30μmのC
粉末及び平均粒径2.0μmの別粉末を下Hr2表に示
す割合で混合して14種の混合粉末20にノを調製した
。次いで、これら混合粉末をArl囲気中にて同表に示
す条件で夫々加熱炭化した後、空気中で700℃の温度
下にて8時間夫々熱処理してsic系粉米粉末た。
Misuichishi υ1-14 sio @ powder with an average particle size of 15 μm, C with an average particle size of 30 μm
The powder and another powder having an average particle size of 2.0 μm were mixed in the proportions shown in the Hr2 table below to prepare 14 kinds of mixed powders 20. Next, these mixed powders were heated and carbonized in an Arl atmosphere under the conditions shown in the same table, and then heat-treated in air at a temperature of 700° C. for 8 hours to obtain SIC-based rice flour powder.

得られた各々のSiC系粉末の平均粒tW1β型SIC
の′冴有率(重量%)、X線回折によシ確認した81な
どの金属不純物量(重量%)を求めた。
Average grain tW1β type SIC of each SiC-based powder obtained
The content of metal impurities such as 81 (weight %) confirmed by X-ray diffraction was determined.

その結果を、同表にuト記した。なお、表中には比較例
1〜6を併記した。
The results are listed in the same table. In addition, Comparative Examples 1 to 6 are also listed in the table.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く1,4: ’rb明によれば煩雑な操
作や装置dを殻せずに、篩1易高応カ性の要求されるS
IC系焼結体の製造に適した倣^411なβ型SiC粉
末を篩収率で得ることができる等顕著な効果を有する。
As explained in detail above, 1, 4: According to 'RB Ming, it is possible to use sieves without complicated operations or equipment d.
It has remarkable effects such as being able to obtain β-type SiC powder with a high sieve yield that is suitable for producing IC-based sintered bodies.

Claims (1)

【特許請求の範囲】[Claims] mu比にて一酸化珪素扮末1、カーd?ン粉末0.2〜
2.0及び金属シリコン粉末001〜1.0の割合の混
合粉末をアルゴン雰囲気中にて加熱反応させて炭化珪素
を生成した後、献化性d囲気中で加熱処理を施すことを
特徴とするβ型炭化珪素粉末の製造方法。
MU ratio of silicon monoxide powder 1, car d? powder 0.2~
2.0 and metal silicon powder at a ratio of 001 to 1.0 is subjected to a heating reaction in an argon atmosphere to produce silicon carbide, and then heat treatment is performed in an atmosphere with oxidation properties. A method for producing β-type silicon carbide powder.
JP57157024A 1982-09-09 1982-09-09 Preparation of beta-type silicon carbide powder Pending JPS5945915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157024A JPS5945915A (en) 1982-09-09 1982-09-09 Preparation of beta-type silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157024A JPS5945915A (en) 1982-09-09 1982-09-09 Preparation of beta-type silicon carbide powder

Publications (1)

Publication Number Publication Date
JPS5945915A true JPS5945915A (en) 1984-03-15

Family

ID=15640513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157024A Pending JPS5945915A (en) 1982-09-09 1982-09-09 Preparation of beta-type silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS5945915A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569886A (en) * 1984-06-18 1986-02-11 The United States Of America As Represented By The Secretary Of The Navy Fabrication of novel whisker reinforced ceramics
JPS61141611A (en) * 1984-12-13 1986-06-28 Tokai Carbon Co Ltd Method for suppressing oxidation of sic substance
JPS62252309A (en) * 1986-04-25 1987-11-04 Mamoru Omori Production of cubic sic
JPH02203197A (en) * 1989-01-31 1990-08-13 Ohbayashi Corp Heat transportation method
JP2015086101A (en) * 2013-10-30 2015-05-07 太平洋セメント株式会社 Method of producing silicon carbide
JP2015086100A (en) * 2013-10-30 2015-05-07 太平洋セメント株式会社 Method of producing silicon carbide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569886A (en) * 1984-06-18 1986-02-11 The United States Of America As Represented By The Secretary Of The Navy Fabrication of novel whisker reinforced ceramics
JPS61141611A (en) * 1984-12-13 1986-06-28 Tokai Carbon Co Ltd Method for suppressing oxidation of sic substance
JPH0151444B2 (en) * 1984-12-13 1989-11-02 Tokai Carbon Kk
JPS62252309A (en) * 1986-04-25 1987-11-04 Mamoru Omori Production of cubic sic
JPH02203197A (en) * 1989-01-31 1990-08-13 Ohbayashi Corp Heat transportation method
JP2015086101A (en) * 2013-10-30 2015-05-07 太平洋セメント株式会社 Method of producing silicon carbide
JP2015086100A (en) * 2013-10-30 2015-05-07 太平洋セメント株式会社 Method of producing silicon carbide

Similar Documents

Publication Publication Date Title
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
US4117095A (en) Method of making α type silicon nitride powder
JPS5814391B2 (en) Manufacturing method of ceramic material
EP0015422B1 (en) Method for producing powder of alpha-silicon nitride
JPS61151006A (en) Production of aluminum nitride powder
JPS5945915A (en) Preparation of beta-type silicon carbide powder
JPH05279125A (en) Production of sintered silicon nitride ceramic
JPS58213617A (en) Production of titanium carbonitride powder
JP2022136391A (en) Al4SiC4 COMPOSITION OR Al4SiC4 POWDER, AND METHOD OF PRODUCING THE SAME
EP0371770B1 (en) Process for producing silicon carbide platelets and the platelets so-produced
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS616110A (en) Manufacture of silicon carbide
JPS61132509A (en) Production of silicon carbide
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPS63147811A (en) Production of fine sic powder
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPS6042209A (en) Manufacture of fine isometric silicon nitride powder of high purity
JP2548191B2 (en) Method for producing non-oxide ceramics
JPS61168567A (en) Manufacture of silicon carbide sintered body
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JPS6146403B2 (en)
JPS60195099A (en) Production of silicon nitride whisker
JPS5891028A (en) Manufacture of silicon carbide powder
JPS61251573A (en) Manufacture of silicon carbide sintered body