JPS63147811A - Production of fine sic powder - Google Patents
Production of fine sic powderInfo
- Publication number
- JPS63147811A JPS63147811A JP61293456A JP29345686A JPS63147811A JP S63147811 A JPS63147811 A JP S63147811A JP 61293456 A JP61293456 A JP 61293456A JP 29345686 A JP29345686 A JP 29345686A JP S63147811 A JPS63147811 A JP S63147811A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sio
- sic
- fine
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 27
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 7
- 238000009833 condensation Methods 0.000 abstract description 3
- 230000005494 condensation Effects 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 239000012808 vapor phase Substances 0.000 abstract description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 239000011164 primary particle Substances 0.000 abstract 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 50
- 229910010271 silicon carbide Inorganic materials 0.000 description 46
- 239000007789 gas Substances 0.000 description 33
- 239000002994 raw material Substances 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 10
- 239000011812 mixed powder Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- -1 and conversely Chemical compound 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、炭化けい素粉末の製造方法に関するものであ
り、特にβ−5iCの含有率が高くかつ微細で粒径の揃
った高徒度の炭化けい素(SiC)の製造技術について
の提案である。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing silicon carbide powder, and in particular to a method for producing silicon carbide powder, which has a high β-5iC content and is fine and uniform in particle size. This is a proposal regarding silicon carbide (SiC) manufacturing technology.
かかる炭化けい素(SiC)は、高温安定性、高温強度
、高熱伝導性等の面で侵れた機能を有するセラミックス
の一種であり、エネルギー材料、化学装置、高温ガス処
理・電気加熱要素あるいは;気砥抗器等の分野に供せら
れ、特に高温構造用材料としての使途においては、−省
エネルギー、省資源化の目的に良く適合する材料として
存用である。Such silicon carbide (SiC) is a type of ceramics that has excellent functions in terms of high temperature stability, high temperature strength, high thermal conductivity, etc., and can be used as energy materials, chemical equipment, high temperature gas processing/electric heating elements, or; It is used in fields such as air abrasives, and especially when used as a material for high-temperature structures, it is a material that is well suited for the purpose of saving energy and saving resources.
〈従来の技術〉
従来、SiC粉末の工業的′4遣方法巳こついては、す
でに多くの技術が提案されている0例えば、特開昭52
−46398号においては、SiO□とCの混合物を形
成し、これをタンマン炉に充填し、温度1600℃以上
の高温に加熱し、次式
%式%[11
の反応を行わせてSiCクリンカーとし、これを粉砕精
製する方法を開示している。すなわち、この方法をさら
に詳しく説明すると、上記(1)式のSiC生成反応は
通常、
SiO□−C−” S i O= Co −
−−−−−−一・−・−、−、、1Qj5i0 ↓
2 C−SiC+ Co 山−一−−
−・・−−−−−・・−−+31の2段反応により進行
する。<Prior art> Conventionally, many techniques have already been proposed regarding the industrial use of SiC powder.
In No. 46398, a mixture of SiO , discloses a method for pulverizing and refining this. That is, to explain this method in more detail, the SiC production reaction of the above formula (1) is usually as follows: SiO□-C-'' SiO=Co-
−−−−−−1・−・−、−、、1Qj5i0 ↓
2 C-SiC+ Co Yama-1--
The reaction proceeds through a two-step reaction of -...------...-+31.
要するにこの従来方法は、(2)式の反応で生成するS
iOガスの発生を遅らせることにより炭素にSiQガス
を吸収させ、さらに原料が炉内を滑らかに流れるように
するために微粉末の珪石と炭素とを予め成形しておき、
これを加熱し反応させる技術である。In short, this conventional method is based on the S produced in the reaction of equation (2).
In order to make carbon absorb SiQ gas by delaying the generation of iO gas, and to allow the raw material to flow smoothly in the furnace, finely powdered silica stone and carbon are preformed,
This is a technology that heats this and causes it to react.
また、特開昭54−122312号においては、重量で
カーボンブラック 100部とSiOガス 170〜2
10部とを10n+Hg以下の減圧下、1200−15
00℃の温度で反応させる方法について提案している。Furthermore, in JP-A-54-122312, 100 parts by weight of carbon black and 170 to 2 parts by weight of SiO gas
10 parts under reduced pressure of 10n+Hg or less, 1200-15
A method is proposed in which the reaction is carried out at a temperature of 00°C.
さらに、特開昭59−227706号においては、非酸
化性ガス中に浮遊させた炭素微粉末とSiOガスを温f
f 1500℃以上で反応させる方法について提案して
いる。Furthermore, in JP-A No. 59-227706, fine carbon powder suspended in non-oxidizing gas and SiO gas were heated to a high temperature.
f A method of reacting at 1500°C or higher is proposed.
〈発明が解決しようとする問題点〉
しかしながら、上記各従来技術の場合、解決を必要とす
る次のような問題点を抱えていた。まず特開昭52−4
6398号の方法においては、得られたSiCクリンカ
ー中のS ’r Cは互いに焼結し、微粉来状のSiC
を得るためには長時間粉砕する必要があり、経済的でな
い、また特開昭54−122312号の方法においては
、減圧上高温反応をさせるためには、操作が繁雑であり
、実用的でない。<Problems to be Solved by the Invention> However, each of the above-mentioned conventional techniques has the following problems that need to be solved. First, JP-A-52-4
In the method of No. 6398, the S'rC in the obtained SiC clinker sinters with each other, and the SiC in the form of fine powder
In order to obtain this, it is necessary to pulverize for a long time, which is not economical, and the method of JP-A-54-122312 requires complicated operations and is not practical in order to carry out the reaction under reduced pressure and at high temperature.
さらに、特開昭59−227706号で提案の方法にお
いては、非酸化性雰囲気中に浮遊させた炭素微粉末にS
tOガスを導入してSiCを得る装置として、Cを浮遊
させる設備、さらにCとSiOのモル比を浮遊層中でC
/SiO′42に保つ設備等が不可欠と考えられるので
製造装置が煩雑となる欠点が挙げられる。Furthermore, in the method proposed in JP-A No. 59-227706, S
As a device to obtain SiC by introducing tO gas, equipment for suspending C is used, and the molar ratio of C and SiO is changed in the floating layer.
/SiO'42 is considered to be indispensable, resulting in a disadvantage that the manufacturing equipment becomes complicated.
本発明者らは、上述した従来技術が抱える問題点に対し
て鋭意研究した結果、先に、特願昭60−265080
号、265081号において開示した技術を開発した。As a result of intensive research into the problems faced by the above-mentioned prior art, the inventors of the present invention have previously published the patent application No. 60-265080.
The technology disclosed in No. 265081 was developed.
すなわち、SiO微粉末、炭素含を物材料およびSiC
粉末とを混合し、この混合物あるいはその成形体を原料
として、これをAr 、 )l、 、 COガスまたは
これらの混合ガスのもとて1400〜2000℃の温度
範囲で熱処理する方法を開発したのであり、この方法に
よれば高純度で微細なSiC粉末が高収率で得られる。That is, SiO fine powder, carbon-containing material and SiC
We have developed a method in which this mixture or its compact is used as a raw material and heat-treated in a temperature range of 1400 to 2000°C under Ar, )l, CO gas, or a mixture of these gases. According to this method, highly pure and fine SiC powder can be obtained in high yield.
ところが、本発明者らが本発明に先行して出願した先願
発明の場合、増産するときに原料の配合組成や混合条件
、熱処理条件などの選択によっては、SiC粉中にSi
O□が残留したりして結果的に低い純度のSiC粉末し
か得られないこともあるという点でさらに解決すべき問
題点があった。However, in the case of the prior invention filed by the present inventors prior to the present invention, when increasing production, depending on the selection of raw material composition, mixing conditions, heat treatment conditions, etc., SiC powder may contain Si.
There is a further problem to be solved in that O□ may remain and as a result only SiC powder of low purity can be obtained.
この対策として、特開昭59−13616号に開示され
た従°来技術があり、この技術によればSiO□と炭素
もしくは金属けい素の混合物を熱処理してSiO蒸気を
発生させ、断熱膨張によりSiO垣微粉を製造し、得ら
れたその、 5ill微扮をC1,などの還元炭化性雰
囲気中で熱処理して高純凌のSiC超徽扮をN造できる
としている。As a countermeasure against this problem, there is a conventional technique disclosed in JP-A-59-13616. According to this technique, a mixture of SiO□ and carbon or metal silicon is heat-treated to generate SiO vapor, which is caused by adiabatic expansion. It is said that by producing SiO fine powder and heat-treating the resulting 5ill fine powder in a reducing carbonizing atmosphere such as C1, it is possible to produce N of high purity SiC super fine powder.
しかしながら、SiO蒸気も還元窒化雰囲気内または還
元窒化雰囲気内に断熱膨張で噴射させるというSiO微
粉末の従来製造技術は、少量生産の場合であれば良いが
、多量に製造しようとすると、5iOz気をL)送する
1こめのパイ″プが、疑縮したSlOによって閉塞した
りする。しかも、断熱膨張で噴射させるためのノズルが
5iQ莫’iによって侵食されてノズルとしての役割を
果たさなくなりたり、反応物がノズルの部分に蓄積して
閉鎖してしまう場合もあり、本発明が目指すような真に
工業化・量産化に適した製造方法とは言えない。However, the conventional manufacturing technology for SiO fine powder, in which SiO vapor is also injected into a reducing nitriding atmosphere or into a reducing nitriding atmosphere by adiabatic expansion, is fine for small-scale production, but when producing large quantities, it requires 5iOz gas. L) The 1-piece pipe that sends the slO becomes clogged with the pseudo-condensed SlO. Moreover, the nozzle for injecting it through adiabatic expansion is eroded by the 5iQ mo'i and no longer functions as a nozzle. In some cases, the reactants accumulate in the nozzle and the nozzle closes, so it cannot be said that this is a manufacturing method that is truly suitable for industrialization and mass production as the present invention aims to achieve.
本発明は、こうした従来技術か抱えている問題点を克服
することを目的とする。The present invention aims to overcome these problems faced by the prior art.
く問題点を解決するための手段〉
本発明者らは、前述のような実情に鑑み鋭意研究を重ね
た結果、原料として用いるSiO扮末粉末り微細なもの
を用いれば、製造量を増加しても微細で高純度のSiC
粉末を高収率で得゛られるとの知見をえ、この知見にも
とづいてこの発明をなすに至った。Means for Solving the Problems> The inventors of the present invention have conducted intensive research in view of the above-mentioned circumstances, and have found that if a fine SiO powder is used as a raw material, the production amount can be increased. Very fine and high purity SiC
We have found that powder can be obtained in high yield, and based on this knowledge, we have made this invention.
本発明は、SiO,粉末または5in2を含む酸化物粉
末と炭素含有物および/または金属けい素粉末からなる
混合物またはその成形体を、減圧下で熱処理して得たS
iO蒸気からSiO微扮末粉末収し、このSiO微粉末
と炭素含有物およびSiC′FA末とからなる混合物ま
たはその成形体を、Ar 、 t(2,(Qガスまたは
これらの混合ガス中で熱処理する5iCi扮末の製造方
法である。The present invention provides S
Fine SiO powder is collected from iO vapor, and a mixture of this fine SiO powder, carbon-containing material, and SiC'FA powder or a molded product thereof is heated in Ar, t(2, (Q gas) or a mixed gas thereof. This is a method for producing 5iCi powder that undergoes heat treatment.
本発明の着想の特1りは、原料として用いるSiC粉末
についての生成過程まで遡って究明したところにあり、
いわゆる5in2粉末もしくはムライト(3A 1 z
O* ・2SiO1) 、ワラストナイト(CaO−5
iO□)、ジルコン(ZrOz・SiO□)などのSi
O□を含む酸化物粉末と炭素含を物もしくは炭素含を物
の代わり二二金溪けい素粉末とからなる混合粉末、ある
いはその成形体を′減圧下で熱処理し、その際に発生し
た5iOi気から気相凝縮によりSiO′FA末を得る
こととした点にある。こうして得たSiO扮末粉末−次
粒子が、0.1 μm(1000人)以下の非常に微細
な超微粉末である。The unique idea behind the present invention lies in the fact that we traced back to the process of producing SiC powder used as a raw material.
So-called 5in2 powder or mullite (3A 1 z
O* ・2SiO1), wollastonite (CaO-5
Si such as iO□) and zircon (ZrOz・SiO□)
A mixed powder consisting of an oxide powder containing O□ and a carbon-containing material or 22K silicon powder in place of the carbon-containing material, or a molded product thereof, is heat-treated under reduced pressure, and the 5iOi generated at that time is The point is that SiO'FA powder is obtained from air by vapor phase condensation. The thus obtained SiO powder secondary particles are extremely fine ultrafine powders of 0.1 μm (1000 particles) or less.
第2の特徴は、前記SiO超微粉末と炭素含有物とを、
SiO超微粉末と炭素含有物中の炭素との混合比をモル
比(C/5iO)で表して、1.0〜3.0の範囲内と
なるように混合し、かつ、種子結晶としてSiC粉末を
配合した混合粉末あるいはその成形体を、Ar 、 H
2、COガスまたはこれらの混合ガス(以下Arガスな
どと略す)中で熱処理することにある。The second feature is that the SiO ultrafine powder and the carbon-containing material are
The mixing ratio of SiO ultrafine powder and carbon in the carbon-containing material is expressed as a molar ratio (C/5iO), and is mixed so that it is within the range of 1.0 to 3.0, and SiC is used as a seed crystal. A mixed powder containing powders or a molded product thereof is heated by Ar, H
2. Heat treatment in CO gas or a mixed gas thereof (hereinafter abbreviated as Ar gas, etc.).
こうした方法の採用により、高純度で微細なS+C扮末
粉末産化した場合でも安定して製造できるのである。By adopting such a method, it is possible to stably produce a highly purified and fine S+C powder.
上述した第1の特徴である本発明のなかで採用するSi
O超微粉末の製造は、前述の従来製造方法における断熱
膨張で嘆射させるという製造技術上の煩雑さや困難さな
しに容易に0.1μm以下のSiO超微粉末が得られる
。すなわち、前記混合原料粉末等を減圧下で熱処理して
SiO蒸気を発生させ、その5iO7%気をArガスな
どを用いて気相中で凝F搬送させることにより、0.1
μm以下の極めて微細なSiC粉末を安定して量産化で
きる。The Si adopted in the present invention, which is the first feature mentioned above,
In the production of ultrafine O powder, ultrafine SiO powder of 0.1 μm or less can be easily obtained without the complicated and difficult manufacturing technology of adiabatic expansion and squirting in the conventional manufacturing method described above. That is, by heat-treating the mixed raw material powder etc. under reduced pressure to generate SiO vapor, and transporting the 5iO7% gas in the gas phase using Ar gas etc., 0.1
Extremely fine SiC powder of micrometers or less can be stably mass-produced.
いわゆる、前述の特開昭59−13616号に於いて開
示されている方法によって得られるS i Cyi末C
二ついては、少量の製造であればガスとの接潴が十男に
確保され、SiC華味のものが得られる場合もある。し
かじ、製造量が多くなってくると還元ガスが不足してガ
スとの接層が不十分となってSiQの不均化反応によっ
て生成したかなりのSiO□を含んだSiC粉末しか得
られないことが多い。この点、本発明は微細なSiC粉
末と炭素含有物さらに、SiC粉末とを混合したものを
Arガスなどの中で熱処理するので、混合さえ十分にお
こなえば大量製造の場合でも還元不十分になってSiO
□が生成するというような間Jをなくすことができる。So-called S i Cyi powder C obtained by the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 59-13616
Second, in the case of small-scale production, contact with gas can be ensured, and products with a SiC flavor can sometimes be obtained. However, as the production volume increases, there is a shortage of reducing gas and the contact layer with the gas becomes insufficient, resulting in only SiC powder containing a considerable amount of SiO□ produced by the disproportionation reaction of SiQ. There are many things. In this regard, in the present invention, a mixture of fine SiC powder, carbon-containing material, and SiC powder is heat-treated in Ar gas, etc., so that sufficient mixing will prevent insufficient reduction even in mass production. SiO
It is possible to eliminate the interval J that is generated by □.
巳かも、得られるSiCの粉末も、原料として0.1μ
m以下の非常に微細なSiO超徽扮を使用するので1μ
m以下の微細なものを安定的に製造することが可能であ
る。The SiC powder obtained is also 0.1μ as a raw material.
1 μm as we use very fine SiO crystals with a diameter of less than 1 μm.
It is possible to stably produce fine particles of m or less.
く作 用〉
以下に本発明製造方法で採用する条件について具体的に
説明する。Effect> The conditions employed in the production method of the present invention will be specifically explained below.
はじめに、本発明製造方法において用いる原料のうちS
iO□粉末については、市販のものが使用可能である。First, among the raw materials used in the production method of the present invention, S
Commercially available iO□ powders can be used.
また、SiO□を含む酸化物粉末としては、ジルコン(
ZrOz ・5iOz) ムライト (3A 1 z
Oi ’2S10□)、ワラストナイト(Can・Si
O□)などといった各種の布板のSiO□を含む酸化物
粉末でよい。とく−二、ジルコン(Z r 13□・S
iO□)粉末を用いた場合には、良質のジルコニア粉末
を製造することができると同時にSiO超微粉が得られ
、本発明にはとりわけ好適である。In addition, as an oxide powder containing SiO□, zircon (
ZrOz ・5iOz) Mullite (3A 1 z
Oi '2S10□), wollastonite (Can・Si
Oxide powder containing SiO□ of various cloth plates such as O□) may be used. Toku-2, Zircon (Z r 13□・S
When iO□) powder is used, it is possible to produce high-quality zirconia powder and at the same time obtain ultrafine SiO powder, which is particularly suitable for the present invention.
次に本発明においては、上記SiO□系原料に対して炭
素含有物を混合するが、炭素含有物としては石油コーク
スや石炭ピッチ、カーボンブラック、各種有機樹脂など
いずれを用いても本発明の目的は達成される。Next, in the present invention, a carbon-containing material is mixed with the SiO□-based raw material, but petroleum coke, coal pitch, carbon black, various organic resins, etc. may be used as the carbon-containing material for the purpose of the present invention. is achieved.
また、炭素含を吻のかわりに金属けい素粉末を用いても
同様であり、さらには炭素含有物と金属けい素粉末を同
時に混合しても同様である。Further, the same effect can be obtained even if a metal silicon powder is used in place of the carbon-containing material, or even if the carbon-containing material and the metal silicon powder are mixed at the same time.
次に、5iOi粉末を得る方法について説明する。Next, a method for obtaining 5iOi powder will be explained.
この段階では、上記SiO□系原料と炭素含を吻および
/または金属けい素粉末とを十分に混合し、混合粉末の
ままあるいはそれを成形体にして、減圧下で熱処理を行
うことによって5iOi気を発生させる。好適な減圧熱
処理の条件は、0.1気圧以下で1300〜2000℃
の温度範囲である。ま1こ、残玉熱処理の際の雰囲気と
しては、原μ混合吻中の炭素あるいは金1けい素の酸化
防止のだ力己こ、Arガスなどを採用することが望マし
い。このような八三熱処理条件下でSing気を発生さ
せ、気相凝縮させてSiO超微粉末を回収する。At this stage, the above-mentioned SiO□-based raw material and carbon-containing powder and/or metal silicon powder are thoroughly mixed, the mixed powder is used as it is, or it is made into a compact, and heat-treated under reduced pressure to form 5iOi. to occur. Suitable conditions for reduced pressure heat treatment are 1300 to 2000°C at 0.1 atmosphere or less.
temperature range. As for the atmosphere during the residual heat treatment, it is desirable to use Ar gas, a gas that prevents the oxidation of carbon or gold and silicon in the raw μ mixture. Under these heat treatment conditions, Sing gas is generated, and the SiO ultrafine powder is recovered by vapor phase condensation.
こうして得たSiO超微粉末は、粒径が0.1μm以下
という非常に微細なもので、大気中に取り出した場合に
は、表面のみが酸化した状態になる。The thus obtained SiO ultrafine powder has a very fine particle size of 0.1 μm or less, and when taken out into the atmosphere, only the surface becomes oxidized.
次に本発明は、上述のようにして得られたSiO垣微粉
末に対し、炭素含有物および炭化けい素粉束を混合し、
それらの混合粉末あるいはその成形体をArガスなどの
中にて熱処理して5iC1i扮末を得る。SiO超微粉
末と混合する炭素含有物としては、特に限定しないが、
前述の5i02系原料と混合した炭素含有物と同種のも
のを用いることができる。Next, the present invention mixes a carbon-containing substance and a silicon carbide powder bundle with the SiO fence fine powder obtained as described above,
The mixed powder or its compact is heat treated in Ar gas or the like to obtain a 5iC1i powder. The carbon-containing substance to be mixed with the SiO ultrafine powder is not particularly limited, but may include the following:
The same kind of carbon-containing material mixed with the above-mentioned 5i02-based raw material can be used.
さて、本発明においてSiC粉末と炭素含有材料中の炭
素との混合は、モル比(C/5iO)で1.0〜3,0
の範囲を示すように配合することにより、SiC粉末の
収率向上が期待できる。これは次の理由による。SiO
:1モルあたりCが1.0モル未満ではSingの生成
が認められ、SiCの収率が低下する。Now, in the present invention, the mixture of SiC powder and carbon in the carbon-containing material has a molar ratio (C/5iO) of 1.0 to 3.0
By blending so as to show the range of , it is expected that the yield of SiC powder will be improved. This is due to the following reason. SiO
: If the amount of C per mol is less than 1.0 mol, Sing formation is observed and the yield of SiC decreases.
一方、Sin 1モルあたりCが3.0モルを超える
と未反応のフリーCが増加し、結局SiCの収率が減少
するからである。On the other hand, if the amount of C exceeds 3.0 mol per mol of Sin, the amount of unreacted free C will increase, resulting in a decrease in the yield of SiC.
本発明においては上記SiC粉末とC含有材料に、さら
にSiC粉末を混合するが、この目的は、SiC粉末の
収率を高めることにある。使用する原料用SiC粉末と
しては、高純度で粒径の小さいβ−5iC粉末が好まし
い、配合量としては、s i Ct53末の量をSiC
粉末とCAE−存材料の総重量100重量部に対して、
0.1〜100重量部の範囲とするのが好ましい、その
理由は、SiC粉末が0.1重量部未満の場合、少量の
SiO□の生成が認められ、その結果としてSiC粉末
の生成量が減少する。逆に100重量部よりも多いと必
要以上配合することになり、経済的でなくなるからであ
る。In the present invention, SiC powder is further mixed with the SiC powder and C-containing material, and the purpose of this is to increase the yield of SiC powder. As the raw material SiC powder to be used, β-5iC powder with high purity and small particle size is preferable.
For 100 parts by weight of the total weight of powder and CAE-based material,
The range is preferably from 0.1 to 100 parts by weight, because if the amount of SiC powder is less than 0.1 parts by weight, a small amount of SiO□ will be produced, and as a result, the amount of SiC powder produced will be reduced. Decrease. On the other hand, if the amount is more than 100 parts by weight, more than necessary will be added, making it uneconomical.
本発明にお、いては、上記5iOi粉末とC含有材料と
、SiC粉末との混合粉末を用いるが、使用の形態とし
ては混合粉末のままあるいはそれらの混合粉末を金型成
型機などで成形体にしたものなどがよい、成形体の場合
は、成形体寥度を1.5g/ali以下にすることが望
ましい。1.5g/calを超えると、生成物中に一部
SiO□が生成し、SiCの収率が減少する場合がある
が、成形体回度が1.5g/−以下の場合、成形体内で
容易にSiOの還元炭化反応が進みSiCを高収率で微
細粉末を得るのに好適である。In the present invention, a mixed powder of the above-mentioned 5iOi powder, C-containing material, and SiC powder is used, but the mixed powder may be used as it is, or the mixed powder may be molded into a molded product using a molding machine or the like. In the case of a molded product, it is desirable to have a molded product density of 1.5 g/ali or less. If it exceeds 1.5 g/cal, some SiO□ may be generated in the product and the yield of SiC may decrease. The reduction carbonization reaction of SiO proceeds easily and is suitable for obtaining fine powder of SiC at a high yield.
ついで、上記SiC粉末とC含有材料およびSiC粉末
との混合粉末もしくはその成形体原料は、Arガスなど
を充填した雰囲気中で加熱焼成する。Next, the mixed powder of the SiC powder, the C-containing material, and the SiC powder or the raw material for the compact is heated and fired in an atmosphere filled with Ar gas or the like.
ガス雰囲気としてはAr 、 J 、 CO、Heガス
またはこれらの混合ガス雰囲気が好適である。The gas atmosphere is preferably Ar, J, CO, He gas, or a mixed gas atmosphere thereof.
加熱焼成の温度は、1400〜2000℃の範囲が望ま
しい。1400℃未満ではSiCの生成が難しく、逆に
SiO□等が生成しやすく、また2000℃を超えると
生成粉末の焼結がおこり、微細なSiCが得られないの
で、1400℃〜2000℃の温度範囲とする。The heating and firing temperature is preferably in the range of 1400 to 2000°C. At temperatures below 1400°C, it is difficult to generate SiC, and conversely, SiO□, etc. are likely to be produced, and at temperatures above 2000°C, sintering of the resulting powder occurs, making it impossible to obtain fine SiC. range.
本発明において、原料の配合比(C/5iO)が大きい
場合、焼成後麦素が残留することがある。そうした場合
、さらに、酸化性雰囲気中で焼成−1歿留した炭素を燃
焼させることにより除去することができる。酸化性雰囲
気中での焼成温度としては=700℃以下が好適である
。In the present invention, if the blending ratio (C/5iO) of the raw materials is large, barley may remain after firing. In such a case, the fired carbon can be further removed by burning it in an oxidizing atmosphere. The firing temperature in an oxidizing atmosphere is preferably 700° C. or lower.
なお、本発明方法の採用により、SiOからSiCを生
成する反応は、混合物あるいは成形体内でおこるため、
反応装置は雰囲気を調整できる炉を使用するだけでよく
、非常に簡便な炉を用いてSiC微粉末を得ることがで
きる。In addition, by adopting the method of the present invention, the reaction to generate SiC from SiO occurs within the mixture or the molded body.
As a reactor, it is only necessary to use a furnace whose atmosphere can be adjusted, and fine SiC powder can be obtained using a very simple furnace.
〈実施例〉
以下、本発明実施例について比較例の記述にあわせ説明
する。<Examples> Examples of the present invention will be described below along with descriptions of comparative examples.
(1)SiO製造(第1表)
第1表に示すSiO2系酸化物と還元剤からなる各種混
合粉末から調製した混合成形体約10kgを、同じく第
1表に示す減圧条件により真空炉を用いて熱処理を行い
、SiO蒸気を発生させ、その後気相凝縮法により S
iO超微粉末とし、この超微粉をハゲフィルターを用い
て回収した。得られたSiO超微粉末の量は、原14混
合物の種類によって2〜7 k+rの範囲内で変動した
。(1) SiO production (Table 1) Approximately 10 kg of mixed molded bodies prepared from various mixed powders consisting of SiO2-based oxides and reducing agents shown in Table 1 were used in a vacuum furnace under the reduced pressure conditions also shown in Table 1. Heat treatment is performed to generate SiO vapor, and then S
An iO ultrafine powder was obtained, and this ultrafine powder was collected using a bald filter. The amount of SiO ultrafine powder obtained varied within the range of 2 to 7 k+r depending on the type of original 14 mixture.
以上の方法によって得られた5iOi徽扮末のS過電子
顕微境写真の例を第1図に示す。この第1図から明らか
なように大部分が100〜300 人程度の非常に微細
な超微粉となっていた。なお、これについては、黄土色
の状態の粉末が大気中で焼成することにより、純白色の
粉末に変化し、その時の重量増加量と、純白色の粉末の
赤外線吸収スペクトルを測定した結果、非晶質シリカと
全く同一の吸収スペクトルを与えることから、かかる超
微粉末がSiO粉末であることを確認した。また、第1
表の各踵原料力1ら得られた粉末はいずれも、第1図の
電子顕徽境写真とほぼ同等の粉末が得られたので、以下
のSiC粉末の合成については第1表の方法隘5で得ら
れたSiO粉末で行った。FIG. 1 shows an example of an S electron micrograph of the 5iOi powder obtained by the above method. As is clear from FIG. 1, most of the powder was extremely fine particles of about 100 to 300 particles. Regarding this, when the ocher powder is fired in the atmosphere, it changes to a pure white powder, and the weight increase at that time and the infrared absorption spectrum of the pure white powder were measured. The ultrafine powder was confirmed to be SiO powder since it gave an absorption spectrum exactly the same as that of crystalline silica. Also, the first
All of the powders obtained from each heel raw material force 1 in the table were powders that were almost equivalent to those shown in the electron microscopy photograph in Figure 1, so for the synthesis of the following SiC powder, the method in Table 1 was used. The SiO powder obtained in step 5 was used.
(2) SiC製造
第2表に示す混合比で5ill末とカーボンブラック等
から成る混合粉末とから、各々約1 kgの混合成形体
を調整し、1600℃、Arガス中で熱処理を行った。(2) SiC production Mixed compacts weighing approximately 1 kg each were prepared from a mixed powder of 5ill powder, carbon black, etc. at the mixing ratio shown in Table 2, and heat-treated at 1600° C. in Ar gas.
この熱処理を経て得られた生成物について、粉末X線回
折による同定結果、SiC生成;およびその50%平均
粒径をしらぺたので、それらを同し第2表に示す。Regarding the product obtained through this heat treatment, the identification results by powder X-ray diffraction, SiC formation, and the 50% average particle size were determined and are shown in Table 2.
また、比較例3として、特開昭59−13616号に示
された方法で得られたと同じSiO粉末を1400℃。In addition, as Comparative Example 3, the same SiO powder obtained by the method shown in JP-A-59-13616 was heated at 1400°C.
CH,中で熱処理した結果も第2表に併せて示す。Table 2 also shows the results of heat treatment in CH.
この第2表かられかるように本発明によれば、0.6μ
m以下の非常に微細なSiC粉末が得られる。As can be seen from Table 2, according to the present invention, 0.6μ
A very fine SiC powder of less than m is obtained.
これに対し、比較例として示した特開昭59−1361
6号に示される方法によっては、還元、炭化が不十分で
あり、非晶質のSingを含んだSiC粉末しか得られ
なかった。On the other hand, JP-A-59-1361 shown as a comparative example
Depending on the method shown in No. 6, reduction and carbonization were insufficient and only SiC powder containing amorphous Sing was obtained.
〈発明の効果〉
本発明によれば、S iQz含有酸化物を減圧下で炭素
もしく二よ金属けい素によって還元し発生させたSiO
?8気を、気相凝縮することで得たSiOの超微粉を原
料とすることにより、微細で高純変のSiC微粉末を工
業的にしかも大量生産することができる。<Effects of the Invention> According to the present invention, SiO generated by reducing an SiQz-containing oxide with carbon or dimetallic silicon under reduced pressure
? By using ultrafine SiO powder obtained by condensing 8 gas in the gas phase as a raw material, fine and highly purified SiC fine powder can be industrially produced in large quantities.
第1図は、SiO微粉末の粒子構造を示す透過電子顕微
鏡写真である。
特許出願人 川崎調鉄株式会社
第 1 図
0.1 pmFIG. 1 is a transmission electron micrograph showing the particle structure of SiO fine powder. Patent applicant Kawasaki Chotetsu Co., Ltd. No. 1 Figure 0.1 pm
Claims (1)
末と炭素含有物および/または金属けい素粉末とからな
る混合物またはその成形体を、減圧下で熱処理して得た
SiO蒸気からSiO微粉末を回収し、このSiO微粉
末と炭素含有物およびSiC粉末とからなる混合物また
はその成形体をAr、H_2、COガスまたはこれらの
混合ガス中において熱処理することを特徴とするSiC
微粉末の製造方法。(1) A mixture of SiO_2 powder or an oxide powder containing SiO_2 and a carbon-containing material and/or metal silicon powder, or a molded product thereof, is heat-treated under reduced pressure, and SiO fine powder is recovered from SiO vapor obtained. , a mixture of this SiO fine powder, a carbon-containing material, and SiC powder, or a molded product thereof, is heat-treated in Ar, H_2, CO gas, or a mixed gas thereof.
Method for producing fine powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61293456A JPS63147811A (en) | 1986-12-11 | 1986-12-11 | Production of fine sic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61293456A JPS63147811A (en) | 1986-12-11 | 1986-12-11 | Production of fine sic powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63147811A true JPS63147811A (en) | 1988-06-20 |
Family
ID=17794987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61293456A Pending JPS63147811A (en) | 1986-12-11 | 1986-12-11 | Production of fine sic powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63147811A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02180710A (en) * | 1988-11-10 | 1990-07-13 | Pechiney Electrometall | Preparation of finely powdered alpha- or beta- silicon carbide |
JPH06177225A (en) * | 1992-08-31 | 1994-06-24 | Matsushita Electric Ind Co Ltd | Environmental controller |
JP2001291758A (en) * | 2000-11-27 | 2001-10-19 | Tokyo Electron Ltd | Vacuum processing equipment |
WO2008018782A1 (en) * | 2006-08-10 | 2008-02-14 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Single crystal silicon carbaide nanowire, method of preparation thereof, and filter comprising the same |
JP2013503099A (en) * | 2009-08-26 | 2013-01-31 | エルジー イノテック カンパニー リミテッド | Silicon carbide powder manufacturing method and system |
-
1986
- 1986-12-11 JP JP61293456A patent/JPS63147811A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02180710A (en) * | 1988-11-10 | 1990-07-13 | Pechiney Electrometall | Preparation of finely powdered alpha- or beta- silicon carbide |
JPH06177225A (en) * | 1992-08-31 | 1994-06-24 | Matsushita Electric Ind Co Ltd | Environmental controller |
JP2001291758A (en) * | 2000-11-27 | 2001-10-19 | Tokyo Electron Ltd | Vacuum processing equipment |
WO2008018782A1 (en) * | 2006-08-10 | 2008-02-14 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Single crystal silicon carbaide nanowire, method of preparation thereof, and filter comprising the same |
JP2013503099A (en) * | 2009-08-26 | 2013-01-31 | エルジー イノテック カンパニー リミテッド | Silicon carbide powder manufacturing method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5340417A (en) | Process for preparing silicon carbide by carbothermal reduction | |
Weimer et al. | Kinetics of carbothermal reduction synthesis of beta silicon carbide | |
Krstic | Production of fine, high‐purity beta silicon carbide powders | |
Koc et al. | Synthesis of beta silicon carbide powders using carbon coated fumed silica | |
JPH0481524B2 (en) | ||
US4117095A (en) | Method of making α type silicon nitride powder | |
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
CA1145919A (en) | METHOD FOR PRODUCING POWDER OF .alpha.-SILICON NITRIDE | |
US4217335A (en) | Process for producing β-silicon carbide fine powder | |
US4619905A (en) | Process for the synthesis of silicon nitride | |
JPS5913442B2 (en) | Manufacturing method of high purity type silicon nitride | |
JPS63147811A (en) | Production of fine sic powder | |
JPS58120599A (en) | Production of beta-silicon carbide whisker | |
EP0453516B1 (en) | Process for preparing silicon carbide | |
JPS6225605B2 (en) | ||
JPS5945915A (en) | Preparation of beta-type silicon carbide powder | |
JPH02180710A (en) | Preparation of finely powdered alpha- or beta- silicon carbide | |
JPH0649565B2 (en) | Method for producing α-type silicon nitride powder | |
JPS6042164B2 (en) | Powder manufacturing method | |
RU2789998C1 (en) | Method for obtaining silicon carbide | |
JPS6350307A (en) | Production of fine silicon nitride powder | |
JPS62212213A (en) | Production of beta-silicon carbide | |
JPS62128913A (en) | Production of silicon carbide powder | |
JPH0218310A (en) | Preparation of zirconium-containing ceramic powder | |
JPH068166B2 (en) | Method for producing silicon carbide powder |