JPH0649565B2 - Method for producing α-type silicon nitride powder - Google Patents

Method for producing α-type silicon nitride powder

Info

Publication number
JPH0649565B2
JPH0649565B2 JP60082575A JP8257585A JPH0649565B2 JP H0649565 B2 JPH0649565 B2 JP H0649565B2 JP 60082575 A JP60082575 A JP 60082575A JP 8257585 A JP8257585 A JP 8257585A JP H0649565 B2 JPH0649565 B2 JP H0649565B2
Authority
JP
Japan
Prior art keywords
powder
sio
reaction
silicon nitride
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60082575A
Other languages
Japanese (ja)
Other versions
JPS61242905A (en
Inventor
寛 井上
佳之 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60082575A priority Critical patent/JPH0649565B2/en
Publication of JPS61242905A publication Critical patent/JPS61242905A/en
Publication of JPH0649565B2 publication Critical patent/JPH0649565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はα型窒化ケイ素(α型Si3N4)粉末の製造方法
に係り、高い品位のα型Si3N4粉末を高い収率で得られ
る製造方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing α-type silicon nitride (α-type Si 3 N 4 ) powder, and provides high-quality α-type Si 3 N 4 powder at high yield. The obtained manufacturing method is related.

〔発明の技術的背景とその問題点〕 例えば窒化ケイ素一酸化イットリウムもしくは酸化マグ
ネシウム(Si3N4−Y2O3もしくはSi3N4−MgO系)焼結体
は機械的強度が高く且つ耐熱性もすぐれているため高温
がスターヒン部材への適用が試みられている。しかして
上記Si3N4系焼結体を高温高応力材料として実用に供す
る場合には高温時における物理的,化学的安定性と信頼
性が厳しく要求される。そのため焼結体の製造工程には
きびしい工程管理,品質管理が不可欠となるが,とりわ
け原料の窒化ケイ素粉末は工程の原点として重視されて
いる。例えば原料粉体特性は単に高純度,微粉末であれ
ばいいと云うものではなく影響を与える特性が狭い適正
範囲内にあることが必要とされる。
[Technical background of the invention and its problems] For example, a silicon nitride yttrium monoxide or magnesium oxide (Si 3 N 4 -Y 2 O 3 or Si 3 N 4 -MgO system) sintered body has high mechanical strength and heat resistance. Due to its excellent properties, application of high temperature to Starhin members has been attempted. However, when the above-mentioned Si 3 N 4 system sintered body is put to practical use as a high temperature and high stress material, physical and chemical stability and reliability at high temperature are strictly required. For this reason, strict process control and quality control are indispensable in the manufacturing process of the sintered body, but the raw material silicon nitride powder is particularly important as the starting point of the process. For example, the characteristics of the raw material powder are not simply high-purity and fine powders, but the characteristics that have an influence must be within a narrow proper range.

ところでSi3N4粉末の合成法としては一般に (1)金属ケイ素粉末を窒化させる方法 3Si+2N2→Si3N4 (2)四塩化ケイ素やシランとアンモニアを原料とする気
相反応法 3SiCl4+4NH3→Si3N4+12HClなど (3)シリカ(SiO2)を反応量論比程度のカーボン(C)で還
元して得たSiOを窒化する方法 3SiO2+6C+2N2→Si3N4+6COが採られている。
By the way, as a synthesis method of Si 3 N 4 powder, (1) a method of nitriding metallic silicon powder 3Si + 2N 2 → Si 3 N 4 (2) a gas phase reaction method using silicon tetrachloride or silane and ammonia as a raw material 3SiCl 4 + 4NH 3 → Si 3 N 4 + 12HCl etc. (3) Method of nitriding SiO obtained by reducing silica (SiO 2 ) with carbon (C) in a stoichiometric ratio 3 SiO 2 + 6C + 2N 2 → Si 3 N 4 + 6CO Has been.

しかし(1)の場合のSiの窒化が発熱反応で、その発熱制
御のためプロセス上工夫を要し例えばSiとしては比較的
粗粒のものを選び窒化後微粉砕化している。このため不
純物の混入が避けられず(粉砕過程),耐化レンガなど
一般耐熱材料としての使用には支障ないが高温ガスター
ビン用などには適さない。
However, in the case of (1), nitriding of Si is an exothermic reaction, and it is necessary to devise a process for controlling the exothermic. For example, Si having relatively coarse grains is selected and finely pulverized after nitriding. For this reason, the inclusion of impurities is unavoidable (crushing process), and it does not hinder the use as a general heat-resistant material such as bricks, but it is not suitable for high-temperature gas turbines.

また(2)の場合は例えば半導体素子の表面被覆などには
適するが無機耐熱材料には量産的とは云えず工業的製造
には適さない。
In the case of (2), for example, it is suitable for surface coating of semiconductor elements, but it cannot be said to be mass-produced for inorganic heat-resistant materials and is not suitable for industrial production.

(3)の場合、原料として充分精製されたSiO2,C粉末を
用いる必要があり、さらに生成した粉末にSi3N4以外例
えば炭化ケイ素,酸窒化ケイ素等が混在することが多い
と云う欠点がある。しかし反応操作上煩雑さを要しない
利点があり、さらに反応促進と生成粉の粒制御を目的に
あらかじめ出発原料に“種”Si3N4を少量添加すること
で品質の向上と安定化が可能となった。しかしながら高
性能焼結体用原料粉末とは前述の如く、高純度,微粉末
であれば良いと云うものではなく、焼結体を製造する上
で大きな影響を与える特性、例えば原料粉体に含まれる
酸素量などは狭い適正範囲を持っている。このような観
点からシリカ還元Si3N4粉末を見ると、合成反応がSi
O2,C粒子の固相反応を起点としているため、反応円滑
化には過剰Cが不可欠であり、Si3N4生成后は過剰Cの
除去を行なわなければならない。通常は酸化除去(空気
中700℃で熱処理)の手法で行なうが、この工程で生
成したSi3N4粒子表面の微量酸化が避けられず、結果と
して原料粉体中の酸素含有量の増大が避けられない。Si
3N4の焼結はSi3N4に存在するシリカ(含有酸素)と添加
物の反応で生ずるガラス質物質を介した液相焼結で進む
と考えられているが、焼結完了後は高温での機械的特性
は劣化させる原因となるため、ガラス質物質の量を少な
くするため、組成あるいは結晶化処理等が検討されてい
る。
In the case of (3), it is necessary to use sufficiently purified SiO 2 and C powders as a raw material, and in addition to Si 3 N 4 , silicon carbide, silicon oxynitride, etc. are often mixed in the generated powder. There is. However, there is an advantage that the reaction operation does not require complexity, and it is possible to improve and stabilize the quality by adding a small amount of "seed" Si 3 N 4 to the starting material in advance in order to accelerate the reaction and control the particles of the produced powder. Became. However, as described above, the raw material powder for a high-performance sintered body does not have to be a high-purity, fine powder, and the characteristics that greatly affect the production of the sintered body, for example, included in the raw material powder. The amount of oxygen supplied has a narrow proper range. Looking at silica-reduced Si 3 N 4 powder from this perspective, the synthetic reaction
Since the solid phase reaction of O 2 and C particles is the starting point, excess C is indispensable for smoothing the reaction, and excess C must be removed after Si 3 N 4 is produced. Usually, it is carried out by the method of oxidization removal (heat treatment at 700 ° C in air), but a slight amount of oxidation on the surface of the Si 3 N 4 particles generated in this step is unavoidable, and as a result, the oxygen content in the raw material powder increases. Inevitable. Si
Although sintering of 3 N 4 is believed to proceed in the liquid phase sintering through the glassy substance that in the reaction of the additive with the silica (containing oxygen) present in Si 3 N 4, after completion of sintering Since mechanical properties at high temperatures cause deterioration, composition or crystallization treatment is being studied in order to reduce the amount of glassy substances.

〔発明の目的〕[Object of the Invention]

本発明はこのような知見に基づき、煩雑な操作乃至反応
装置を要せずにSi3N4系の高温高応力材料用として適す
るα型Si3N4粉末を高収率で得られる製造方法を提供し
ようとするものである。
The present invention is based on such knowledge, and a production method capable of obtaining a high yield of α-type Si 3 N 4 powder suitable for Si 3 N 4 high temperature and high stress material without requiring complicated operations or reaction devices. Is to provide.

〔発明の概要〕[Outline of Invention]

本発明を詳細に説明すると、比表面積50m2/g以上のシリ
カ(SiO2)粉末1重量部,比表面積50m2/g以上のカーボ
ン(C)粉末0.39〜0.41重量部,および窒化ケイ素(Si
3N4)粉末0.005〜1重量部の割合からなる混合粉末を窒
素を含む雰囲気中1350〜1550℃で加熱処理し、還元,窒
化反応させることを特徴とするα型窒化ケイ素(α・Si
3N4)粉末の製造方法である。
To explain the invention in detail, a specific surface area of 50 m 2 / g or more silica (SiO 2) powder, 1 part by weight, a specific surface area of 50 m 2 / g or more carbon (C) powder 0.39 to 0.41 parts by weight, and silicon nitride (Si
3 N 4 ) powder 0.005 to 1 part by weight of a mixed powder is heat-treated at 1350 to 1550 ° C. in an atmosphere containing nitrogen to carry out reduction and nitriding reactions.
3 N 4 ) This is a method for producing powder.

本発明においてSiO2−C−Si3N4系の重量混合比を1:
0.39〜0.41:0.005〜1.0の割合に選ぶのは次の理由によ
る。即ちSiO21重量部当りCが0.39未満では未還元の残
留SiO2増大し、Si2ON2の生成が顕著となり、合成粉中の
酸素含有率が多く結果として高温高強度Si3N4焼結体の
製造には適さない。また0.41を超えると生成したSi3N4
粉末に予剰Cが不純物として混在するため焼結体用原料
として適当でない。
In the present invention, the weight mixing ratio of the SiO 2 —C—Si 3 N 4 system is 1: 2.
The reason for choosing 0.39 to 0.41: 0.005 to 1.0 is as follows. That is, if C per 0.3 part by weight of SiO 2 is less than 0.39, unreduced residual SiO 2 increases and the formation of Si 2 ON 2 becomes remarkable, and the oxygen content in the synthetic powder is large, resulting in high temperature and high strength Si 3 N 4 firing. Not suitable for the production of ties. Also, when it exceeds 0.41, Si 3 N 4 formed
Since the excess C is mixed as an impurity in the powder, it is not suitable as a raw material for a sintered body.

一方SiO21に対するSi3N4の比が0.005未満ではα型Si3N
4の高収率化効果が少なく、逆に1を超えると酸化物還
元で得られる好ましい粉末特性を有する粉末が得られず
添加したSi3N4粉末の特性が顕著となり本来の目的が達
せられない。しかしてこれらSiO2,CおよびSi3N4の各
原料組成分はいずれも99%程度以上の高純度のものが好
ましく、また粒度についてはSiO2,Cとも平均粒径1μ
m以下である事が好ましくSi3N4はなるべく微粒、たと
えば2μm以下のものがそれぞれ好ましい。尚原料とし
て用いるSi3N4はα型がよいがβ型を含むものでもまた
他の元素例えばAl,Oなど固溶しているものでさしつか
えない。さらにSi3N4の代りに炭化ケイ素SiC酸窒化ケイ
素系化合物例えばSi2ON2などの単独あるいはそれらの混
合物(含Si3N4),またはこれらの1部を金属Siで置き
かけても同様な反応促進効果がえられる。但し、SiC,S
i2ON2を用いた場合には純度の点でやや劣る傾向が認め
られる。以下Si3N4添加を中心に説明を進める。
On the other hand, when the ratio of Si 3 N 4 to SiO 2 is less than 0.005, α-type Si 3 N
4 is less effective in increasing the yield, and conversely, when it exceeds 1, the powder having the preferable powder characteristics obtained by the oxide reduction cannot be obtained, and the characteristics of the added Si 3 N 4 powder become remarkable and the original purpose can be achieved. Absent. However, it is preferable that the raw material composition of each of SiO 2 , C and Si 3 N 4 is high purity of about 99% or more, and the average particle size of SiO 2 and C is 1 μm.
The particle size is preferably m or less, and Si 3 N 4 is preferably as fine as possible, for example, 2 μm or less. The Si 3 N 4 used as a raw material is preferably of α type, but it may be one containing β type or other element such as Al or O in solid solution. Further, instead of Si 3 N 4 , silicon carbide SiC silicon oxynitride compound such as Si 2 ON 2 alone or a mixture thereof (including Si 3 N 4 ), or even if a part of these is placed with metallic Si You can get a great reaction promotion effect. However, SiC, S
When i 2 ON 2 is used, it tends to be slightly inferior in terms of purity. Hereinafter, the description will be focused on the addition of Si 3 N 4 .

本発明においてSiO2−C−Si3N4混合物の加熱焼成に際
し、その雰囲気はN2,NH3,N2−水素(H2),N2−不活性
ガスなどの系が挙げられるが主反応ガスはN2またはNH3
でなければならない。その理由は最終的に高純度のα型
Si3N4の生成に大きく影響することが実験的に確認され
たからである。一方このN2またはNH3を主反応ガスとす
る雰囲気中での加熱焼成温度は1350〜1550℃の範囲内に
選ばれる。その理由は1350℃未満ではSi3N4が生成し難
く、また1550℃を超えるとSiCの生成がみられ、結局所
望の、高温高応力材料用に適するα型Si3N4系粉末を得
られないからである。
In the present invention, when the SiO 2 —C—Si 3 N 4 mixture is heated and calcined, the atmosphere is mainly N 2 , NH 3 , N 2 -hydrogen (H 2 ), N 2 —inert gas or the like system. Reaction gas is N 2 or NH 3
Must. The reason is that high purity α type finally
This is because it was experimentally confirmed that the formation of Si 3 N 4 is greatly affected. On the other hand, the heating and firing temperature in the atmosphere containing N 2 or NH 3 as the main reaction gas is selected within the range of 1350 to 1550 ° C. The reason is that Si 3 N 4 is less likely to be generated below 1350 ° C, and that SiC is generated above 1550 ° C, so that the desired α-type Si 3 N 4 system powder suitable for high temperature and high stress materials is obtained. Because I can't.

上記の如くSiO2の還元,窒化反応において還元作用を働
くCを化学量論比近傍の混合比を用いる一方、所定量の
Si3N4を共存させる本発明によればSiO2の還元が大いに
促進され、生成されるSi3N4が、あらかじめ添加されて
いるSi3N4を核として円滑に成長し、α型Si3N4の含有率
の高い高品位のα型Si3N4系粉末を収率よく得られる。
As described above, while C acting as a reducing action in the reduction and nitriding reaction of SiO 2 is used with a mixing ratio near the stoichiometric ratio,
According to the present invention in which Si 3 N 4 coexists, the reduction of SiO 2 is greatly promoted, and the produced Si 3 N 4 grows smoothly with the previously added Si 3 N 4 as a nucleus, and α-type Si It is possible to obtain a high-quality α-type Si 3 N 4 based powder having a high content of 3 N 4 in a high yield.

しかして本発明によれば高温高応力性の要求されるSi3N
4系焼結体の製造に適するα型Si3N4系粉末が容易に得ら
れるのは次のように考えられる。
Therefore, according to the present invention, Si 3 N that requires high temperature and high stress
The reason why α-type Si 3 N 4 system powder suitable for manufacturing a 4 system sintered body can be easily obtained is considered as follows.

まずCの混合比であるが、シリカ還元反応は前述の如く
起点はSiO2粒子の界面での固相反応と考えられており、
界面が多い反応は円滑に進行する。この場合、界面の多
少(状態)はSiO2,Cの平均粒径にも関係するが、実際
は両者の比表面積に大きく関係する。ここにおいて本発
明では比表面積50m2/g以上の数値を必須条件とするのは
上の理由による。その結果、SiO2を還元するのに必要な
C量が化学量論比近傍であても十分高品質なSi3N4粉末
が合成され、かつ後の脱炭工程も不用となる。
First, regarding the mixing ratio of C, the origin of the silica reduction reaction is considered to be a solid-state reaction at the interface of SiO 2 particles as described above,
Reactions with many interfaces proceed smoothly. In this case, the degree (state) of the interface is also related to the average particle size of SiO 2 and C, but in reality, it is greatly related to the specific surface areas of both. Here, in the present invention, the numerical value of the specific surface area of 50 m 2 / g or more is an essential condition for the above reason. As a result, a sufficiently high-quality Si 3 N 4 powder is synthesized even if the amount of C required to reduce SiO 2 is in the vicinity of the stoichiometric ratio, and the subsequent decarburization step becomes unnecessary.

一方、SiO2−C系にあらかじめ微細なSi3N4粉末を混合
するのは次のように考えられる。
On the other hand, premixing fine Si 3 N 4 powder into the SiO 2 —C system is considered as follows.

即ち一次反応としてSiO2+C→SiO+COが進行する。
この反応は固相反応であり、比表面積の大きい素原料を
用いることで相対的に速くなり、且生成したSiOはN2
たはNH3と容易に反応する。この反応においてはSiOと
N2,NH3は気相状態で存在できるのでカーボン(C)蒸気の
占める割合がSiOの還元,窒化反応を左右すると云え
る。しかして、この場合、Cの比表面積が十分大きいた
め容易にα型Si3N4が生成するに至ると考えられる。
That is, SiO 2 + C → SiO + CO proceeds as a primary reaction.
This reaction is a solid-phase reaction, and is relatively fast when a raw material having a large specific surface area is used, and the produced SiO easily reacts with N 2 or NH 3 . In this reaction, with SiO
Since N 2 and NH 3 can exist in the vapor phase, it can be said that the proportion of carbon (C) vapor influences the reduction and nitriding reactions of SiO. However, in this case, it is considered that the α-type Si 3 N 4 is easily produced because the specific surface area of C is sufficiently large.

しかるに本発明においてはさらに所定量のSi3N4粉末を
反応系に共存せしめている。ところで酸化物還元反応に
よるSi3N4合成は先述のようにSiO2,N2,NH3等が気相状
態で存在するので最終的には固体のSi3N4を生成する場
合、気相状態のSi3N4の早期安定沈着化と、後の成長が
反応速度,収率に非常に影響する。しかるに本発明にお
いてはSi3N4粉末が予じめ共存させてあり上記気相状態
のSi3−N4が沈着,成長するための核として働く。このS
i3N4の沈着,成長効果によってさらにSiCの生成も防止
され、Si3N4の純度向上に大きく貢献するものである。
However, in the present invention, a predetermined amount of Si 3 N 4 powder is allowed to coexist in the reaction system. By the way, in the synthesis of Si 3 N 4 by the oxide reduction reaction, as SiO 2 , N 2 , NH 3 etc. exist in the gas phase state as described above, when solid Si 3 N 4 is finally produced, The early stable deposition of Si 3 N 4 in the as-deposited state and the subsequent growth greatly affect the reaction rate and yield. However, in the present invention, Si 3 N 4 powder is preliminarily made to coexist and acts as a nucleus for depositing and growing Si 3 -N 4 in the vapor phase. This S
The deposition and growth effects of i 3 N 4 further prevent the generation of SiC, which greatly contributes to the improvement of the purity of Si 3 N 4 .

尚、この反応系中にFe系化合物などが存在していても、
本発明は原則的にさまたげられない。
In addition, even if Fe-based compounds and the like are present in this reaction system,
The invention is, in principle, uncontrollable.

〔発明の効果〕〔The invention's effect〕

かくして本発明によれば反応後の脱炭処理を要せずとも
α型Si3N4の含有率の高い、しかもSiCなど不純物の含有
率が著しく少なく高品位の、α型Si3N4系粉末が得られ
るので、本発明方法は高温,高応力を要求されるSi3N4
系焼結構造材料用原料Si3N4系粉末の製造に適するもの
と云える。
Thus, according to the present invention, even if the decarburization treatment after the reaction is not required, the content of α-type Si 3 N 4 is high, and the content of impurities such as SiC is remarkably small, and the high-quality α-type Si 3 N 4 system is used. Since a powder is obtained, the method of the present invention requires Si 3 N 4 which requires high temperature and high stress.
It can be said that this is suitable for the production of the raw material Si 3 N 4 system powder for sintered type structural materials.

〔発明の実施例〕Example of Invention

次に本発明の実施例を記載する。 Next, examples of the present invention will be described.

比表面積200m2/gのSiO2粉末,比表面積100m2/gのC粉末
および平均粒系約0.8μmのSi3N4粉末を表1に示す組成
割合(重量比)ぜ混合粉を調整した。これらをN2,N2
H2,NH3雰囲気下1350〜1550℃で2〜10時間それぞれ
加熱処理を施し還元,窒化させて合成粉を得た。かくし
て得られたそれぞれのSi3N4粉末についてα型Si3N4と含
有率,分析によるSi+N,酸素及び酸素を求めた結果を
第1表に示す。
SiO 2 powder having a specific surface area of 200m 2 / g, a C powder and the average particle systems from about 0.8 [mu] m Si 3 N 4 powder having a specific surface area of 100 m 2 / g was adjusted composition ratio shown in Table 1 (weight ratio) ze mixed powder . These are N 2 , N 2 +
Heat treatment was performed at 1350 to 1550 ° C. for 2 to 10 hours in an atmosphere of H 2 and NH 3 for reduction and nitriding to obtain a synthetic powder. Table 1 shows the α-type Si 3 N 4 content, content of Si 3 N 4 , oxygen and oxygen obtained by analysis for each of the Si 3 N 4 powders thus obtained.

表から明らかなように50m2/g以上の比表面積を有するSi
O2,C粉末を用いることにより、α−Si3N4含有率の高
い、高純度粉末が合成できる。
As is clear from the table, Si having a specific surface area of 50 m 2 / g or more
By using O 2 and C powder, a high-purity powder having a high α-Si 3 N 4 content can be synthesized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】比表面積が50m2/g以上のシリカ(SiO2)粉末
1重量部と、比表面積が50m2/g以上のカーボン粉末0.39
〜0.41重量部と、窒化ケイ素(Si3N4),酸窒化ケイ素(Si
2ON2)及び金属ケイ素(Si)粉末のうち少なくともいずれ
か1種0.005〜1重量部の割合とからなる混合粉末を窒
素を含む非酸化性雰囲気中1350〜1550℃で加熱処理し、
還元・窒化反応させることを特徴とするα型窒化ケイ素
粉末の製造方法。
1. A specific surface area of 50 m 2 / g or more silica (SiO 2) powder 1 part by weight, the carbon the specific surface area is more than 50 m 2 / g powder 0.39
~ 0.41 parts by weight of silicon nitride (Si 3 N 4 ), silicon oxynitride (Si
2 ON 2) and a mixed powder consisting of a proportion of at least one kind 0.005 part by weight of metallic silicon (Si) powder was heat treated at 1350-1550 ° C. in a non-oxidizing atmosphere containing nitrogen,
A method for producing an α-type silicon nitride powder, which comprises performing a reduction / nitriding reaction.
JP60082575A 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder Expired - Lifetime JPH0649565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082575A JPH0649565B2 (en) 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082575A JPH0649565B2 (en) 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS61242905A JPS61242905A (en) 1986-10-29
JPH0649565B2 true JPH0649565B2 (en) 1994-06-29

Family

ID=13778279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082575A Expired - Lifetime JPH0649565B2 (en) 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder

Country Status (1)

Country Link
JP (1) JPH0649565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129840A1 (en) 2018-12-21 2020-06-25 国立研究開発法人物質・材料研究機構 Hot-forged tial-based alloy, method for producing same, and uses for same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162512A (en) * 1986-12-26 1988-07-06 Toshiba Ceramics Co Ltd Production of silicon nitride
JP2646229B2 (en) * 1988-03-07 1997-08-27 東芝セラミックス株式会社 Method for producing ultrafine silicon nitride powder
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
JP5045926B2 (en) * 2007-12-28 2012-10-10 戸田工業株式会社 Method for producing silicon nitride powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606884B2 (en) * 1977-05-07 1985-02-21 株式会社東芝 Method for producing α-type silicon nitride powder
JPS5673604A (en) * 1979-11-22 1981-06-18 Toshiba Corp Manufacture of silicon nitride
JPS5891011A (en) * 1981-11-25 1983-05-30 Toshiba Ceramics Co Ltd Manufacture of silicon nitride powder with high alpha-phase content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129840A1 (en) 2018-12-21 2020-06-25 国立研究開発法人物質・材料研究機構 Hot-forged tial-based alloy, method for producing same, and uses for same

Also Published As

Publication number Publication date
JPS61242905A (en) 1986-10-29

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
US4117095A (en) Method of making α type silicon nitride powder
JPH0134925B2 (en)
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS6112844B2 (en)
JPS61151006A (en) Production of aluminum nitride powder
JP3290686B2 (en) Method for producing aluminum nitride powder
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPH0649565B2 (en) Method for producing α-type silicon nitride powder
JPS6047205B2 (en) Method for producing silicon nitride powder
EP0217633A1 (en) Method for producing sialon powders
US4021529A (en) Non-catalytic synthesis of silicon oxynitride
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
US5108967A (en) Process for producing nonequiaxed silicon aluminum oxynitride
JPS6126485B2 (en)
JPS6120486B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS6259049B2 (en)
JP2835864B2 (en) Method for producing boron-dissolved silicon carbide powder
JP2610156B2 (en) Method for producing silicon nitride powder
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JPH0218310A (en) Preparation of zirconium-containing ceramic powder
JP2646228B2 (en) Method for producing silicon nitride powder
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPS58176109A (en) Production of alpha-type silicon nitride