JPS63162512A - Production of silicon nitride - Google Patents

Production of silicon nitride

Info

Publication number
JPS63162512A
JPS63162512A JP30819186A JP30819186A JPS63162512A JP S63162512 A JPS63162512 A JP S63162512A JP 30819186 A JP30819186 A JP 30819186A JP 30819186 A JP30819186 A JP 30819186A JP S63162512 A JPS63162512 A JP S63162512A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
silica
si3n4
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30819186A
Other languages
Japanese (ja)
Inventor
Toshiji Ishii
敏次 石井
Isao Imai
功 今井
Sho Sano
佐野 省
Kouichi Sueyoshi
耕一 末芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP30819186A priority Critical patent/JPS63162512A/en
Publication of JPS63162512A publication Critical patent/JPS63162512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To efficiently produce the title Si3N4 with a remarkably reduced content of carbon, by heating silica in NH3 or in a gaseous mixture of NH3 and N2 at the time of producing Si3N4 by a silica reduction method. CONSTITUTION:Silica (single or added with seed powder) is heated in NH3 or in a gaseous mixture of NH3 and N2. Consequently, the carbon content in the Si3N4 powder can be remarkably reduced. Since the Si3N4 powder is synthesized in this method without using C as the reducing agent for SiO2, C is not contained in the Si3N4 powder, however the Si3N4 is oxidized by the H2O generated in the reaction of SiO2 and NH3, hence the O content in the powder tends to increase. The reaction can be controlled by decreasing the partial pressure of H2O in the atmosphere, and the flow rate of NH3 is increased or gaseous N2 is mixed to increase the gas flow rate for the purpose.

Description

【発明の詳細な説明】 産   の I この発明はシリカ還元法による窒化ケイ素の製造方法に
関するものである。
[Detailed Description of the Invention] Product I This invention relates to a method for producing silicon nitride by a silica reduction method.

11列えL 高純度の窒化ケイ素を経済的に製造する方法として、シ
リカとカーボンの混合物窒素雰囲気中で加熱するシリカ
還元法は公知である。
Row 11 L A silica reduction method in which a mixture of silica and carbon is heated in a nitrogen atmosphere is known as a method for economically producing high-purity silicon nitride.

例えば、特公昭54−23917号公報においては、シ
リカ粉末と、カーボン粉末と、窒化ケイ素粉末、炭化ケ
イ素粉末、酸窒化ケイ素系粉末のうち少なくともいずれ
か1種とからなる混合粉末を、窒素を含む雰囲気中で加
熱処理して、還元窒化反応させそのあと、未反応C@酸
化除去する窒化ケイ素粉末の製造方法が提案されている
For example, in Japanese Patent Publication No. 54-23917, a mixed powder consisting of silica powder, carbon powder, and at least one of silicon nitride powder, silicon carbide powder, and silicon oxynitride-based powder is used as a nitrogen-containing powder. A method for producing silicon nitride powder has been proposed in which the silicon nitride powder is heat-treated in an atmosphere to cause a reduction-nitridation reaction, and then unreacted C@oxidation is removed.

が トしよ−とする  。Let's do it.

従来のシリカ還元法による窒化ケイ素の製造方法にあっ
ては、製造された窒化ケイ素粉末中に比較的多量の炭素
が含有されることを避は得なかった。しかしながら、窒
化ケイ素粉末中の含有炭素は、周知のように粉末を焼結
する際に焼結体の緻密化を阻害するため、含有炭素量は
可能な限り低減する必要がある。
In the conventional method for producing silicon nitride using a silica reduction method, it was inevitable that the produced silicon nitride powder would contain a relatively large amount of carbon. However, as is well known, carbon content in silicon nitride powder inhibits densification of a sintered body when the powder is sintered, so the amount of carbon content needs to be reduced as much as possible.

また、原料粉末の一つとしてカーボンを使用する場合は
作業環境が汚れやすく、製品奏上り、合成炉効率の点か
らも好ましくない。
Furthermore, when carbon is used as one of the raw material powders, the working environment tends to become dirty, which is unfavorable from the viewpoint of product performance and synthesis furnace efficiency.

さらに、従来法では合成後脱炭処理を必要とするが、こ
れを省くことかできれば、生産コストの点からも望まし
い。
Furthermore, although the conventional method requires decarburization treatment after synthesis, it would be desirable from the viewpoint of production costs if this could be omitted.

11へ1江 この発明は前述のような従来技術の現状に鑑みて、窒化
ケイ素中の含有炭素量を大幅に減少させるとともに生産
効率のよい窒化ケイ素の製造方法を提供することを目的
としている。
In view of the current state of the prior art as described above, it is an object of the present invention to provide a method for producing silicon nitride that significantly reduces the amount of carbon contained in silicon nitride and has high production efficiency.

R」し1亘」L 前述の目的を達成するために、この発明はシリカ還元法
による窒化ケイ素の製造方法において、シリカをNH3
またはNH3とN2との混合ガス中で加熱することを特
徴とする窒化ケイ素の製造方法を要旨としている。
In order to achieve the above-mentioned object, the present invention provides a method for producing silicon nitride by a silica reduction method, in which silica is reduced to NH3.
Alternatively, the gist is a method for producing silicon nitride, which is characterized by heating in a mixed gas of NH3 and N2.

口  を ”するための この発明による窒化ケイ素の製造方法においては、シリ
カを(単独で又は種子粉末を添加して)NH3またはN
H3とN2との混合ガス中で加熱する。それにより窒化
ケイ素粉末中の含有炭素量を大幅に低減するものである
In the method for producing silicon nitride according to the present invention for making silica, silica (alone or with the addition of seed powder) is added to NH3 or N
Heating in a mixed gas of H3 and N2. This significantly reduces the amount of carbon contained in the silicon nitride powder.

本発明者等は、シリカ還元法における窒化ケイ素粉末へ
の炭素含有の原因について究明したところ、従来考えら
れていたものと異なる原因を明らかにすることができた
。従来は、原料カーボンがシリカを還元するのに必要な
齢よりも過剰に配合されており、そのため合成後に余剰
のカーボンを大気中で加熱して酸化除去していたことか
ら、窒化ケイ素への炭素含有の原因は原料カーボンが未
脱炭のまま残留しているからだと考えられていた。しか
しながら、本発明者等の研究の結果、含有炭素は合成中
に生成されるものであり、窒化ケイ素粉末の内部に存在
していることを発見した。それゆえ、窒化ケイ素粉末の
外部からの酸化によっては含有炭素を効果的に除去しが
たいということを究明した。
The present inventors investigated the cause of carbon inclusion in silicon nitride powder in the silica reduction method, and were able to clarify a cause different from that previously thought. Conventionally, raw carbon was added in excess of the age required to reduce silica, and the excess carbon was oxidized and removed by heating in the atmosphere after synthesis. It was thought that the reason for the inclusion was that raw carbon remained undecarburized. However, as a result of research conducted by the present inventors, it was discovered that the carbon contained is generated during synthesis and is present inside the silicon nitride powder. Therefore, it has been found that it is difficult to effectively remove the carbon contained in the silicon nitride powder by external oxidation.

本発明者等の研究成果によれば、窒化ケイ素粉末への炭
素混入の原因は次のとおりである。
According to the research results of the present inventors, the causes of carbon contamination in silicon nitride powder are as follows.

シリカ還元反応は次のような反応によって進行する。式
中、Sは固体、Gは気体をそれぞれ示す。
The silica reduction reaction proceeds through the following reaction. In the formula, S represents a solid and G represents a gas.

Si 02  (S)+C(S) →Si O(G)+CO(G) Si O(G) +C(S) →Si  (G)+CO(G) 3 S i  (G )  + 2 N 2  (G 
)→Si  3  N4  (S) 反応系内のN2分圧が低い場合や、局部的にCOx度が
高くなった場合は、前述の第1番目および第2番目の式
の逆反応が起こり、C(S)が析出し、生成中の窒化ケ
イ素粉末内に炭素が取り込まれる。
Si 02 (S) + C (S) → Si O (G) + CO (G) Si O (G) + C (S) → Si (G) + CO (G) 3 Si (G) + 2 N 2 (G
)→Si 3 N4 (S) When the N2 partial pressure in the reaction system is low or when the COx degree locally increases, the reverse reactions of the first and second equations above occur, and C (S) precipitates and carbon is incorporated into the silicon nitride powder being produced.

また、シリカ還元反応の熱力学平衡関係において、N2
分圧と00分圧とで関係づけられる凝縮相の安定関係を
示すと、第1図のようになる。これは1427℃の例を
示すものであり、st −C−N−0系の凝縮相の安定
関係を示している。このような系では、凝縮相としてS
i 3 N4 、Si C,Si 02およびCが存在
するが、3i 3 N4の生成領域においてもCはSi
 3 N4と平衡に存在し得る。
In addition, in the thermodynamic equilibrium relationship of the silica reduction reaction, N2
The stable relationship of the condensed phase, which is related to the partial pressure and the 00 partial pressure, is shown in Figure 1. This shows an example at 1427°C, and shows the stability relationship of the condensed phase of the st -C-N-0 system. In such systems, S as the condensed phase
i 3 N4 , Si C, Si 02 and C exist, but even in the 3i 3 N4 production region, C is Si
3 Can exist in equilibrium with N4.

したがって、Si 3 N4の合成過程でCはSi 3
 N4粉末の内部に取り込まれる。
Therefore, in the synthesis process of Si 3 N4, C becomes Si 3
It is taken inside the N4 powder.

以上述べたような原因により反応過程で生成したCがS
i 3 N4粉末の内部に取り込まれ、その結果、窒化
ケイ素粉末中に炭素が含有されるのである。
Due to the causes mentioned above, C generated during the reaction process becomes S.
Carbon is incorporated into the i 3 N4 powder, and as a result, carbon is contained in the silicon nitride powder.

したがって、Si 3 N、i粉中にCが含まれないよ
うにするには、SiO2の還元剤として、Cを使用せず
にSi 3 N4粉を合成できればよい。
Therefore, in order to prevent C from being included in the Si 3 N, i powder, it is only necessary to synthesize the Si 3 N4 powder without using C as a reducing agent for SiO2.

このような観点から種々の実験検討を行った結果、粉末
原料としてはSiO2あるいは、これに種子として3i
 3 N4等を添加したものを用い、反応ガスとしては
NH3を用いる方法が最もよいことを発見し、この発明
を完成するに至った。この場合の窒化反応は次式によっ
て表わされる。
As a result of various experimental studies from this point of view, we found that SiO2 as a powder raw material or 3i as a seed in addition to SiO2 was used as a powder raw material.
3 It was discovered that the best method was to use NH3 as the reaction gas with addition of N4, etc., and this invention was completed. The nitriding reaction in this case is expressed by the following equation.

3Si 02  (S)+4NH3(G)−+Si 3
 N4  (S)+6H20(G)以上のようにして合
成された窒化ケイ素粉末の内部には炭素は全く含まれな
いが、前述の反応で生成するH2OにJ:って3i 3
 N4が酸化され、粉末の酸素含有量が高くなる傾向に
ある。
3Si 02 (S) + 4NH3 (G) - + Si 3
N4 (S) + 6H20 (G) Although the silicon nitride powder synthesized as above contains no carbon at all, the H2O produced in the above reaction contains J: 3i 3
N4 is oxidized and the oxygen content of the powder tends to increase.

先の反応式から明らかなように、3モルのSiO2と4
モルのNH3とが反応し、1モルのSi 3 N4と6
モルのH2Oを生成する。
As is clear from the above reaction equation, 3 moles of SiO2 and 4
1 mole of NH3 reacts with 1 mole of Si 3 N4 and 6
Produces moles of H2O.

このとき生成するH2Oは次式によりSi3N4と反応
し、乏Oλを1阪する。
The H2O generated at this time reacts with Si3N4 according to the following equation, reducing Oλ by one.

Si 3 N4 +6H20→3Si 02 +2N2
+6日2 これが粉末中酸素の増大する原因である。
Si 3 N4 +6H20→3Si 02 +2N2
+6 days 2 This is the reason for the increase in oxygen in the powder.

この反応を抑えるには雰囲気中の1−120の分圧を小
さくすればよい。雰囲気中の)−120分圧を小さくす
る方法としてはNH3の流量を多くする、NH3にN2
ガスを混入し、ガス流量を多くする等の方法が考えられ
る。
This reaction can be suppressed by reducing the 1-120 partial pressure in the atmosphere. -120 partial pressure in the atmosphere can be reduced by increasing the flow rate of NH3 or adding N2 to NH3.
Possible methods include mixing gas and increasing the gas flow rate.

種々実験の結果、実用上許容できる品質の粉末を得るに
はNH3の流量(反応の開始から完結までに流したNH
3の81算量)が、先に述べた窒化反応式から求められ
る理論量の3倍すなわち、SiO21モルに対して、4
モル以上でなければならないことがわかった。
As a result of various experiments, it was found that the flow rate of NH3 (NH3 flowed from the start to the completion of the reaction) is required to obtain powder of practically acceptable quality.
81 calculation amount) is three times the theoretical amount obtained from the nitriding reaction equation mentioned above, that is, 4 for 1 mole of SiO2.
It turns out that it has to be more than a mole.

また、合成時に流し得る最大のNH3流量は合成炉の形
式、原料粉の形態等によって異なるが、実用上は理論量
の3000倍程度(4000モル対5iOz1モル)が
限界であり、最も好ましいNH3の流量は理論量の40
0〜2000倍である。
In addition, the maximum flow rate of NH3 that can be flowed during synthesis varies depending on the type of synthesis furnace, the form of the raw material powder, etc., but in practice, the limit is about 3000 times the theoretical amount (4000 mol vs. 1 mol of 5iOz), and the most preferable NH3 flow rate is The flow rate is the theoretical amount of 40
It is 0 to 2000 times.

また、経済的な観点からは、NH3よりも安価に入手で
きるN2ガスをNH3に混合する方法も有効である。こ
の場合NH3の流量が一定であればN2ガスの混入量が
多くなるにつれて、すなわち、NH3の濃度が小さくな
るにつれて、窒化反応の速度は遅くなるので、実用上許
容できるN2の混合割合は0〜60%(容積百分率)で
ある。したがって、混合ガス中のNH3の割合は40〜
100容量%が適当である。要すればN2には不活性ガ
スまたは非酸化性ガスを含有させてもよい。
Furthermore, from an economical point of view, it is also effective to mix N2 gas, which is available at a lower price than NH3, with NH3. In this case, if the flow rate of NH3 is constant, the rate of nitriding reaction will slow down as the amount of N2 gas mixed in increases, that is, as the concentration of NH3 decreases, so the practically acceptable mixing ratio of N2 is 0 to 60% (volume percentage). Therefore, the proportion of NH3 in the mixed gas is 40~
100% by volume is appropriate. If necessary, N2 may contain an inert gas or a non-oxidizing gas.

また、加熱温度は800〜1600℃にするのが好まし
い。加熱温度が800℃よりも低いと実質的に反応が進
まないことがあり得る。
Moreover, it is preferable that the heating temperature is 800 to 1600°C. If the heating temperature is lower than 800°C, the reaction may not substantially proceed.

また、1600℃よりも高いと、NH3自体の熱分解の
速度が速すぎて所望の効果が得がたくなることがある。
Furthermore, if the temperature is higher than 1600°C, the rate of thermal decomposition of NH3 itself may be too fast, making it difficult to obtain the desired effect.

L克i 平均粒径20μmを有する5i02 (シリカ)粉末と
、平均粒径0.1μmを有するSi3N4 (窒化ケイ
素)粉末を表1に示す割合で配合し、一部のものについ
ては触媒を添Doし、表1に示す条件で還元窒化処理を
行なった。
5i02 (silica) powder with an average particle size of 20 μm and Si3N4 (silicon nitride) powder with an average particle size of 0.1 μm were blended in the proportions shown in Table 1, and in some cases a catalyst was added. Then, a reduction nitriding treatment was performed under the conditions shown in Table 1.

そのようにして得られた粉末を調べたところ、含有炭素
量が極めて少なく、かつ窒化ケイ素のみから成る粉末で
あることが明らかとなった。
When the powder thus obtained was examined, it was found that the amount of carbon contained was extremely low and that the powder consisted only of silicon nitride.

また、表1に示す3つの比較例についても実験した。こ
れらの比較例においては、NH3を含みかつその流量が
少ない場合及びNH3を含まないN2  (窒素)のみ
の雰囲気の場合について示した。
In addition, experiments were also conducted on three comparative examples shown in Table 1. In these comparative examples, cases were shown in which the atmosphere contained NH3 and its flow rate was small, and in an atmosphere containing only N2 (nitrogen) without NH3.

また、実施例1および比較例7の生成粉末を用いて焼結
体の特性比較を行なった。それぞれの粉末にY2035
重湯部と△Q2035重量部を添加し、n−ブタノール
中で40時間混合した。その後、溶媒を蒸発させて得ら
れた混合粉をタテ5Qmm、ヨコ5Qmm1厚み4Qm
mになるように金型で成形したのち、1ton /c 
m2の圧力で混合粉をラバープレスにより加圧成形して
成形体を得た。この成形体を1760℃の窒素雰囲気中
で3時間焼成したところ、実施例1の粉末を使用した焼
結体のかさ密度が3.20g/cm3であるのに対し、
比較例7の方は2.91g/cm3であり、比較例の方
は極めて低い値であった。
Further, the properties of the sintered bodies were compared using the powders produced in Example 1 and Comparative Example 7. Y2035 in each powder
A portion of heavy water and 35 parts by weight of ΔQ were added and mixed in n-butanol for 40 hours. After that, the mixed powder obtained by evaporating the solvent is 5Qmm vertically, 5Qmm horizontally, and 4Qm thick.
After molding with a mold to a size of m, 1 ton/c
The mixed powder was pressure-molded using a rubber press at a pressure of m2 to obtain a molded body. When this compact was fired in a nitrogen atmosphere at 1760°C for 3 hours, the bulk density of the sintered compact using the powder of Example 1 was 3.20 g/cm3, whereas
The value of Comparative Example 7 was 2.91 g/cm3, which was an extremely low value.

11弘立l この発明による窒化ケイ素の製造方法においては、シリ
カ還元法によるにもかかわらず炭素が全く含まれない窒
化ケイ素を得ることができる。
11 Kotatsul In the method for producing silicon nitride according to the present invention, silicon nitride containing no carbon at all can be obtained despite the silica reduction method.

また、NH3は5iOzと反応しゃすいため合成温度を
低く設定できるという実用上大きな効果も得られる。
Furthermore, since NH3 does not easily react with 5iOz, a great practical effect can be obtained in that the synthesis temperature can be set low.

さらに、N1−13とN2どの混合ガスにすることによ
り製造コストを低減できる効果も得られる。
Furthermore, by using a mixture of N1-13 and N2, it is possible to reduce manufacturing costs.

また、従来還元剤として使用していたカーボンを全く使
用しないため、従来環境の改善や製造コストの低減が容
易である。合成後の脱炭工程が不要である。
Furthermore, since carbon, which has conventionally been used as a reducing agent, is not used at all, it is easy to improve the conventional environment and reduce manufacturing costs. No decarburization step is required after synthesis.

なお、原料中に種子粉末としてSi 3 N4、Si 
C,Si 2 N20.Si等を添加することができる
。さらに原料の中に触媒としてMg 、 Ca 、 Z
r 、 3e 、 Sr 、 Sn 、 Ge 。
In addition, Si 3 N 4, Si
C, Si 2 N20. Si or the like can be added. Furthermore, Mg, Ca, Z as catalysts are contained in the raw materials.
r, 3e, Sr, Sn, Ge.

’li、)lfやこれらの化合物などを添加することが
できる。
'li, )lf, these compounds, etc. can be added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はs+ −C−N−0系の凝縮相の安定関係を示
す図である。
FIG. 1 is a diagram showing the stability relationship of the condensed phase of the s+ -C-N-0 system.

Claims (6)

【特許請求の範囲】[Claims] (1)シリカ還元法による窒化ケイ素の製造方法におい
て、シリカをNH_3またはNH_3とN_2との混合
ガス中で加熱することを特徴とする窒化ケイ素の製造方
法。
(1) A method for producing silicon nitride by a silica reduction method, which comprises heating silica in NH_3 or a mixed gas of NH_3 and N_2.
(2)混合ガスの混合比は、NH_3が40〜100容
量%である特許請求の範囲第1項に記載した窒化ケイ素
の製造方法。
(2) The method for producing silicon nitride according to claim 1, wherein the mixing ratio of the mixed gas is 40 to 100% by volume of NH_3.
(3)NH_3の積算流量は、シリカ1モルに対し4〜
4000モルである特許請求の範囲第1項に記載した窒
化ケイその製造方法。
(3) The cumulative flow rate of NH_3 is 4 to 1 mole of silica.
4000 mol of silicon nitride as claimed in claim 1.
(4)加熱温度が800〜1600℃である特許請求の
範囲第1項、第2項又は第3項に記載された窒化ケイ素
の製造方法。
(4) The method for producing silicon nitride according to claim 1, 2, or 3, wherein the heating temperature is 800 to 1600°C.
(5)窒化ケイ素の総炭素含有量が0.2重量%以下で
、かつ総酸素量が4.0重量%以下になるようにした特
許請求の範囲第1項〜第4項のいずれか1項に記載され
た窒化ケイ素の製造方法。
(5) Any one of claims 1 to 4, wherein the total carbon content of silicon nitride is 0.2% by weight or less and the total oxygen amount is 4.0% by weight or less. The method for producing silicon nitride described in Section.
(6)シリカが、さらに、シリカ1重量部に対し種子粉
末として窒化ケイ素粉末、炭化ケイ素粉末、酸窒化ケイ
素粉末、金属ケイ素粉末のうち少なくともいずれか1種
を0.005〜1重量部、さらに、もしくは触媒として
Mg、Ca、Zr、Be、Sr、Ge、Ti、Hfやこ
れらの化合物を少なくとも1種を各元素重量に換算して
0.001〜0.1重量部を含む特許請求の範囲の第1
項〜第5項のいずれか1項に記載された窒化ケイ素の製
造方法。
(6) The silica further contains 0.005 to 1 part by weight of at least one of silicon nitride powder, silicon carbide powder, silicon oxynitride powder, and metal silicon powder as a seed powder per 1 part by weight of silica; or a claim containing 0.001 to 0.1 parts by weight of Mg, Ca, Zr, Be, Sr, Ge, Ti, Hf, or at least one of these compounds as a catalyst in terms of the weight of each element. 1st of
The method for producing silicon nitride as described in any one of Items 1 to 5.
JP30819186A 1986-12-26 1986-12-26 Production of silicon nitride Pending JPS63162512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30819186A JPS63162512A (en) 1986-12-26 1986-12-26 Production of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30819186A JPS63162512A (en) 1986-12-26 1986-12-26 Production of silicon nitride

Publications (1)

Publication Number Publication Date
JPS63162512A true JPS63162512A (en) 1988-07-06

Family

ID=17978009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30819186A Pending JPS63162512A (en) 1986-12-26 1986-12-26 Production of silicon nitride

Country Status (1)

Country Link
JP (1) JPS63162512A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771806A (en) * 1980-10-17 1982-05-04 Nec Corp Forming method of nitrided film
JPS61242905A (en) * 1985-04-19 1986-10-29 Toshiba Corp Production of alpha-silicon nitride powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771806A (en) * 1980-10-17 1982-05-04 Nec Corp Forming method of nitrided film
JPS61242905A (en) * 1985-04-19 1986-10-29 Toshiba Corp Production of alpha-silicon nitride powder

Similar Documents

Publication Publication Date Title
US4680278A (en) Process for preparing aluminum nitride powder
JPS5891005A (en) Production of silicon nitride powder
JPS6112844B2 (en)
JPS63162511A (en) Production of silicon nitride
JPS6111886B2 (en)
JPS63162512A (en) Production of silicon nitride
JPS63162516A (en) Production of silicon nitride
JPS63162514A (en) Production of silicon nitride
JPS63162513A (en) Production of silicon nitride
JPS63162515A (en) Production of silicon nitride
JPH0524849B2 (en)
US5108967A (en) Process for producing nonequiaxed silicon aluminum oxynitride
JP3385059B2 (en) Method for producing high-purity aluminum nitride powder
JP2582281B2 (en) Method for producing metal nitride powder
JPH04114907A (en) Production of alpha type silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH10203808A (en) Production of high alpha silicon nitride
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPS6324924B2 (en)
JPS5933523B2 (en) Manufacturing method of silicon nitride powder
JPH03271108A (en) Production of aluminum nitride powder
JP2646228B2 (en) Method for producing silicon nitride powder
JPS6077110A (en) Synthesis of cubic boron nitride
JPH0483707A (en) Aluminum nitride power and production thereof
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride