JPS63162516A - Production of silicon nitride - Google Patents

Production of silicon nitride

Info

Publication number
JPS63162516A
JPS63162516A JP30819586A JP30819586A JPS63162516A JP S63162516 A JPS63162516 A JP S63162516A JP 30819586 A JP30819586 A JP 30819586A JP 30819586 A JP30819586 A JP 30819586A JP S63162516 A JPS63162516 A JP S63162516A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
carbon
silica
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30819586A
Other languages
Japanese (ja)
Other versions
JPH0791043B2 (en
Inventor
Toshiji Ishii
敏次 石井
Isao Imai
功 今井
Sho Sano
佐野 省
Kouichi Sueyoshi
耕一 末芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP30819586A priority Critical patent/JPH0791043B2/en
Publication of JPS63162516A publication Critical patent/JPS63162516A/en
Publication of JPH0791043B2 publication Critical patent/JPH0791043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To remarkably reduce the carbon content in the title silicon nitride as well as to efficiently obtain silicon nitride, by heating silica (SiO2) in a gaseous mixture of NH3 and a gaseous hydrocarbon. CONSTITUTION:SiO2 with or without seed powder is heated in a gaseous mixture of NH3 and a gaseous hydrocarbon (e.g., C3H8). N2 or other inert gases can be incorporated, as required, into the gaseous mixture, and the carbon content in the silicon nitride powder to be formed can be remarkably reduced. Silicon nitride having extremely low contents of carbon and oxygen can be obtained in the production of silicon nitride (Si3N4) by this invention even if a silica reduction method is used. Besides, since raw material carbon is not used, the operation for mixing silica and carbon can be dispensed with.

Description

【発明の詳細な説明】 産 土の1 この発明はシリカ還元法による窒化ケイ素の製造方法に
関するものである。
[Detailed Description of the Invention] Production Field 1 This invention relates to a method for producing silicon nitride by a silica reduction method.

【Lへ11 高純度の窒化ケイ素を経済的にt3Ij造する方法とし
て、シリカとカーボンの混合物を窒素雰囲気中で加熱す
るシリカ還元法は公知である。例えば、特公昭54−2
3917号公報においては、シリカ粉末、カーボン粉末
、窒化ケイ素粉末と、炭化ケイ素粉末と、酸窒化ケイ素
系粉末のうち少なくともいずれか1種とからなる混合粉
末を、窒素を含む雰囲気中で加熱処理して、還元窒化反
応させそのあと、脱炭工程により、未反応カーボンを酸
化除去する窒化ケイ素粉末の製造方法が提案されている
[To L11] A silica reduction method in which a mixture of silica and carbon is heated in a nitrogen atmosphere is known as a method for economically producing high-purity silicon nitride. For example, Tokuko Sho 54-2
In Publication No. 3917, a mixed powder consisting of silica powder, carbon powder, silicon nitride powder, silicon carbide powder, and at least one of silicon oxynitride-based powders is heat-treated in an atmosphere containing nitrogen. A method for producing silicon nitride powder has been proposed in which a reductive nitriding reaction is performed, followed by a decarburization step to oxidize and remove unreacted carbon.

11  蒐 ゛シ:′″と る 1′−1従来のシリカ
還元法による窒化ケイ素の製造方法にあっては、製造さ
れた窒化ケイ素粉末中に比較的多量の炭素が含有される
ことを避は得なかった。しかしながら、窒化ケイ素粉末
中の含有炭素は、周知のように粉末を焼結する際に焼結
体の緻密化を阻害するため、含有炭素量は可能な限り低
減Jる必要がある。
11 蒐゛し:'"1'-1 In the conventional method for producing silicon nitride using the silica reduction method, it is necessary to avoid containing a relatively large amount of carbon in the produced silicon nitride powder. However, as is well known, the carbon content in silicon nitride powder inhibits the densification of the sintered body when the powder is sintered, so it is necessary to reduce the amount of carbon content as much as possible. .

また、原料粉末の一つとしてカーボンを混合する作業は
汚く、製品歩留り、合成炉効率〃の点からも好ましくな
いので、カーボン粉末を含まない原料系が望まれる。さ
らに、従来法では合成粉の脱炭処理を必要とするが、こ
れを削除できれば生産コストの点からも望ましい。
Further, since the work of mixing carbon as one of the raw material powders is dirty and undesirable from the viewpoint of product yield and synthesis furnace efficiency, a raw material system that does not contain carbon powder is desired. Furthermore, conventional methods require decarburization of synthetic powder, but it would be desirable from the viewpoint of production costs if this could be eliminated.

2111月」1 この発明は前)蚤のような従来技術の現状に鑑みて、窒
化ケイ素中の含有炭素量を大幅に減少させるとともに効
率のよい窒化ケイ素の製造方法を提供することを目的と
している。
21 November 1 This invention aims to significantly reduce the amount of carbon contained in silicon nitride and to provide an efficient method for producing silicon nitride, in view of the current state of the prior art such as fleas. .

LL些11 前述の目的を達成するために、この発明はシリカ還元法
による窒化ケイ素の製造方法において、シリカをNHa
と炭化水素ガス(CmHn)との混合ガス中で加熱する
ことを特徴とする窒化ケイ素の製造方法を要旨としてい
る。
LL Minor 11 In order to achieve the above-mentioned object, the present invention provides a method for producing silicon nitride using a silica reduction method, in which silica is converted into NHa.
The gist of this article is a method for producing silicon nitride, which is characterized by heating in a mixed gas of CmHn and hydrocarbon gas (CmHn).

1  を   るための この発明による窒化ケイ素の製造方法においては、シリ
カを(種子粉末を添加し又は添加せずに>NH3と炭化
水素ガス(Cm Hn )との混合ガス中で加熱する。
In the method for producing silicon nitride according to the present invention for preparing silicon nitride, silica (with or without addition of seed powder) is heated in a mixed gas of NH3 and hydrocarbon gas (Cm Hn ).

なお本発明の炭化水素ガスとは合成雰囲気中で炭化水素
になるガスを含む。必要に応じて混合ガスにN2または
他の不活性ガスを含める。それにより窒化ケイ素粉末中
の含有炭素量を大幅に低減するものである。
Note that the hydrocarbon gas of the present invention includes gases that become hydrocarbons in the synthesis atmosphere. Include N2 or other inert gas in the gas mixture as needed. This significantly reduces the amount of carbon contained in the silicon nitride powder.

本発明者等は、シリカ還元法における窒化ケイ素粉末へ
の炭素含有の原因について究明したところ、従来考えら
れていたものと異なる原因を明らかにすることができた
。従来は、原料カーボンがシリカを還元するのに必要な
邑よりも過剰に配合されており、そのため合成後に余剰
のカーボンを大気中で加熱して酸化除去していたことか
ら、窒化ケイ素への炭素含有の原因は原料カーボンが未
脱炭のまま残留しているからだと考えられていた。しか
しながら、本発明者等の研究の結果、含有炭素は合成中
に生成されるものであり、窒化ケイ素粉末の内部に存在
していることを発見した。それゆえ、窒化ケイ素粉末の
外部からの酸化によっては含有炭素を効果的に除去しが
たいということを究明した。
The present inventors investigated the cause of carbon inclusion in silicon nitride powder in the silica reduction method, and were able to clarify a cause different from that previously thought. Conventionally, the raw material carbon was added in excess of the amount necessary to reduce silica, and the excess carbon was oxidized and removed by heating in the atmosphere after synthesis. It was thought that the reason for the inclusion was that raw carbon remained undecarburized. However, as a result of research conducted by the present inventors, it was discovered that the carbon contained is generated during synthesis and is present inside the silicon nitride powder. Therefore, it has been found that it is difficult to effectively remove the carbon contained in the silicon nitride powder by external oxidation.

本発明者等の研究成果によれば、窒化ケイ素粉末への炭
素混入の原因は次のとおりである。
According to the research results of the present inventors, the causes of carbon contamination in silicon nitride powder are as follows.

シリカ還元反応は次のような反応によって進行する。式
中、Sは固体、Gは気体をそれぞれ示す。
The silica reduction reaction proceeds through the following reaction. In the formula, S represents a solid and G represents a gas.

Si 02  (S)+C(S) →Si O(G)+CO(G) Si O(G) +C(S) →Si  (G)+CO(G) 3Si  (G)+2N2  (G) →Si 3 N4  (S) 反応系内のN2分圧が低い場合や、局部的にCO淵度が
高くなった場合は、前述の第1番目および第2番目の式
の逆反応が発生し、C(S)が析出し、生成中の窒化ケ
イ素粉末内に炭素が取り込まれる。
Si 02 (S) + C (S) → Si O (G) + CO (G) Si O (G) + C (S) → Si (G) + CO (G) 3Si (G) + 2N2 (G) → Si 3 N4 ( S) When the N2 partial pressure in the reaction system is low or when the CO depth locally increases, the reverse reactions of the first and second equations above occur, and C(S) Carbon is precipitated and incorporated into the forming silicon nitride powder.

また、シリカ還元反応の熱力学平衡関係において、N2
分圧と00分圧とで関係づけられる凝縮相の安定関係を
示すと、第1図のようになる。これは1427℃の例を
示すものであり、sr −C−N−0系の凝縮相の安定
関係を示している。このような系では、凝縮相としてS
i 3 N4 、Si C,Si 02およびCが存在
するが、Si 3 N4の生成領域においてもCはSi
 3 N4と平衡に存在し得る。
In addition, in the thermodynamic equilibrium relationship of the silica reduction reaction, N2
The stable relationship of the condensed phase, which is related to the partial pressure and the 00 partial pressure, is shown in Figure 1. This shows an example at 1427°C, and shows the stable relationship of the condensed phase of the sr -C-N-0 system. In such systems, S as the condensed phase
i 3 N4, Si C, Si 02 and C exist, but even in the Si 3 N4 generation region, C is Si
3 Can exist in equilibrium with N4.

したがって、Si 3 N4の合成過程でCはSi 3
 N4粉末の内部に取り込まれる。
Therefore, in the synthesis process of Si 3 N4, C becomes Si 3
It is taken inside the N4 powder.

以上述べたような原因により反応過程で生成したCがS
i 3N4粉末の内部に取り込まれ、その結果、窒化ケ
イ素粉末中に炭素が含有されるのである。
Due to the causes mentioned above, C generated during the reaction process becomes S.
Carbon is incorporated into the i3N4 powder, and as a result, carbon is contained in the silicon nitride powder.

そこで、本発明においては、Cを使用せずに、窒化ケイ
素を次の反応によって生成させるものである。
Therefore, in the present invention, silicon nitride is produced by the following reaction without using C.

3Si 02  (S)+4NH3(G)→Si 3 
N4  (S)+6820 (G)以上のようにして合
成された窒化ケイ素粉末の内部には炭素は含まれないが
、前述の式の反応で生成するN20によって3i 3 
N4が酸化する。N20によるSi 3 N4の酸化を
防止するには、雰囲気ガス中の820の分圧を低くすれ
ばよい。N20の分圧を低くする方法としては、NH3
ガスの流速を速くする、NH3ガスにN2等の不活性ガ
スを混合して流速を速くする。あるいはNH3ガスにC
l1l 1−1nガスを混入する等が考えられる。Cm
Hnを混入した場合には次式の反応によって1−120
を除去できる。。
3Si 02 (S) + 4NH3 (G) → Si 3
N4 (S) + 6820 (G) Although the silicon nitride powder synthesized as above does not contain carbon, 3i 3
N4 oxidizes. In order to prevent the oxidation of Si 3 N4 by N20, the partial pressure of 820 in the atmospheric gas may be lowered. As a method to lower the partial pressure of N20, NH3
Increase the gas flow rate. Mix NH3 gas with an inert gas such as N2 to increase the flow rate. Or C in NH3 gas
Possible solutions include mixing l1l 1-1n gas. Cm
When Hn is mixed, 1-120
can be removed. .

m t−120+Cm Hn −+m CO+ (m 
Hn /2 )また、炭化水素ガスの混入量が多い場合
には炭化水索致iが熱分解する際に生ずるカーボンはシ
リカの還元剤としても作用する。
m t-120+Cm Hn −+m CO+ (m
Hn/2) Furthermore, when a large amount of hydrocarbon gas is mixed in, the carbon produced when the hydrocarbon gas is thermally decomposed also acts as a reducing agent for silica.

特公昭57−44602号公報には、シリカを炭化水素
ガス、アンモニアガス及び水素ガスの混合ガス中で還元
窒化する方法が開示されている。水沫においてはNH3
の加熱分解過程で生ずる活性期の水素、窒素を利用して
還元窒化作用を生じさせるものである。本発明者等の実
験結果では特公昭57−44602号公報のようにもと
のガス中に水素を添加することはNH3の分解をかえっ
て抑制し、Si3N4合成反応を遅延させるのみであり
、水素を添加する硬化を見出すことができなかった。
Japanese Patent Publication No. 57-44602 discloses a method of reducing and nitriding silica in a mixed gas of hydrocarbon gas, ammonia gas and hydrogen gas. In water droplets, NH3
This method uses hydrogen and nitrogen in the active phase generated during the thermal decomposition process to produce a reductive nitriding effect. According to the experimental results of the present inventors, adding hydrogen to the original gas as in Japanese Patent Publication No. 57-44602 only suppresses the decomposition of NH3 and delays the Si3N4 synthesis reaction. No additional curing could be found.

火11 平均粒径20μIを有するSiO2(シリカ)粉末と、
平均粒径0.1μmを有するSi3N4 (窒化ケイ素
)粉末を表1に示す割合で配合し、一部のものについて
は触媒を添b口し、表1に示す条件で還元窒化処理を行
なった。
Tue 11 SiO2 (silica) powder having an average particle size of 20μI,
Si3N4 (silicon nitride) powder having an average particle size of 0.1 μm was blended in the proportions shown in Table 1, and some of the powders were added with a catalyst and subjected to reductive nitriding treatment under the conditions shown in Table 1.

そのようにして得られた窒化ケイ素粉末を調べたところ
、含有炭素量が極めて少ないことが明らかとなった。
When the silicon nitride powder thus obtained was examined, it was found that the amount of carbon contained was extremely small.

また、表1に示す4つの比較例についても実験した。こ
れらの比較例においては、N 1−13を含まないN2
  (窒素)のみ又はH2、NH3、Ca Ha混合ガ
スの雰囲気で還元窒化及び脱炭処理を行なった。
In addition, experiments were also conducted on four comparative examples shown in Table 1. In these comparative examples, N2 which does not contain N1-13
Reductive nitriding and decarburization were performed in an atmosphere of (nitrogen) alone or a mixed gas of H2, NH3, and CaHa.

また、実施例1および比較例7の生成粉末を用いて焼結
体の特性比較を行なった。それぞれの粉末にYz 03
5重量部とΔ112035重市部を添加し、n−ツクノ
ール中で40時間混合した。その後、溶媒を蒸発させて
得られた混合粉をタテ50mm、ヨコ50IllIl1
1厚み40raIIlになるように金型で成形したのち
、1ton /c m2の圧力で混合粉をラバープレス
により加圧成形して成形体を得た。この成形体を176
0℃の窒素雰囲気中で3時間焼成したところ、実施例1
の粉末を使用した焼結体のかさ密度が3.19!J /
Cm3であるのに対し、比較例7の方は2.91g/C
m3であり、比較例の方は極めて低い値であった。
Further, the properties of the sintered bodies were compared using the powders produced in Example 1 and Comparative Example 7. Yz 03 in each powder
5 parts by weight and Δ112035 weight part were added and mixed in n-tsukunol for 40 hours. After that, the mixed powder obtained by evaporating the solvent was placed in a size of 50 mm vertically and 50 mm horizontally.
After molding with a metal mold to a thickness of 40 raIIl, the mixed powder was press-molded with a rubber press at a pressure of 1 ton/cm2 to obtain a molded body. This molded body is 176
When baked for 3 hours in a nitrogen atmosphere at 0°C, Example 1
The bulk density of the sintered body using this powder is 3.19! J/
Cm3, whereas in Comparative Example 7 it was 2.91g/C
m3, and the comparative example had an extremely low value.

本件発明による窒化ケイ素の!!4造方法における最適
の条件について説明すると、混合ガスの混合比は、(:
、m )inを炭素基準のCH4に換算してNH3/C
H4=0.5〜2000(容世比)が適当である。さら
に必要に応じてN2又は他の不活性ガスを含有するよう
にする。NH3の量がNH3/CH4=2000よりも
少ないと、NH3によるシリカの還元作用が弱くなり、
反応が進行せず窒化ケイ素が生成し難くなる。。逆にN
H3の曇がNH3/CH4=2000J:りも多いと、
反応中に生成するl−120を除去する炭化水素ガスの
効果が低くなり、合成粉の全酸素量が多くなる。。また
、加熱温度は800〜160O℃にするのが好ましい。
Silicon nitride according to the present invention! ! To explain the optimal conditions for the 4-method, the mixing ratio of the mixed gas is (:
, m)in converted to carbon-based CH4, NH3/C
H4=0.5 to 2000 (Yoyo Ratio) is appropriate. Furthermore, N2 or other inert gas may be contained as necessary. When the amount of NH3 is less than NH3/CH4 = 2000, the reducing effect of silica by NH3 becomes weak,
The reaction does not proceed and it becomes difficult to produce silicon nitride. . On the contrary, N
If the H3 cloudiness is NH3/CH4=2000J:
The effectiveness of the hydrocarbon gas in removing l-120 generated during the reaction becomes lower, and the total amount of oxygen in the synthetic powder increases. . Moreover, it is preferable that the heating temperature is 800 to 160O<0>C.

加熱温度が800℃よりも低いと実質的に反応が進まな
いことがあり得る。また、1600℃よりも高いと、N
H3自体の熱分解の速度が速すぎて所望の効果が得がた
くなることがある。
If the heating temperature is lower than 800°C, the reaction may not substantially proceed. Also, if the temperature is higher than 1600℃, N
The rate of thermal decomposition of H3 itself may be too fast, making it difficult to obtain the desired effect.

11飢U この発明による窒化ケイ素の製造方法においては、シリ
カ還元法によるにもかかわらず炭素含有量と酸素含有量
が極端に少ない窒化ケイ素を得ることができる。
11 Starvation In the method for producing silicon nitride according to the present invention, silicon nitride with extremely low carbon content and oxygen content can be obtained despite using the silica reduction method.

さらには、原料カーボンを使用しないため、シリカとカ
ーボンとの混合作業がなくなる。
Furthermore, since raw carbon is not used, there is no need to mix silica and carbon.

製品歩留りが向上する。また合成に引き続いてNH3に
より脱炭する必要がない。それゆえ作業環境の改善が容
易である。
Product yield is improved. Further, there is no need for decarburization with NH3 subsequent to the synthesis. Therefore, it is easy to improve the working environment.

なお、原料中に種子粉末としてSi 3 H4、Si 
C,Si 2 N20.Si等を添加することができる
。さらに原料の中に触媒としてMQ 、Ca 1Zr 
、 [3e 1sr 、 3n 、 Qe 1Ti 、
Hfやこれらの化合物などを添加することができる。
In addition, Si 3 H4, Si
C, Si 2 N20. Si or the like can be added. Furthermore, MQ, Ca 1Zr as catalysts are included in the raw materials.
, [3e 1sr, 3n, Qe 1Ti,
Hf, these compounds, etc. can be added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5i−C−N−0系の凝縮相の安定関係を示す
図である。
FIG. 1 is a diagram showing the stability relationship of the condensed phase of the 5i-C-N-0 system.

Claims (6)

【特許請求の範囲】[Claims] (1)シリカ還元法による窒化ケイ素の製造方法におい
て、シリカをNH_3と炭化水素ガス(CmHn)との
混合ガス中で加熱することを特徴とする窒化ケイ素の製
造方法。
(1) A method for producing silicon nitride by a silica reduction method, which is characterized in that silica is heated in a mixed gas of NH_3 and hydrocarbon gas (CmHn).
(2)混合ガスの混合比は、CmHnを炭素基準のCH
_4に換算するとNH_3/CH_4=0.5〜200
0(容量比)である特許請求の範囲第1項に記載した窒
化ケイ素の製造方法。
(2) The mixing ratio of the mixed gas is CmHn to CH based on carbon.
When converted to _4, NH_3/CH_4=0.5~200
0 (capacity ratio).
(3)加熱温度が800〜1600℃である特許請求の
範囲第1項又は第2項に記載された窒化ケイ素の製造方
法。
(3) The method for producing silicon nitride according to claim 1 or 2, wherein the heating temperature is 800 to 1600°C.
(4)窒化ケイ素の総炭素含有量が0.3重量%以下で
、総酸素量が3.5重量%以下になるようにした特許請
求の範囲第1項〜第3項のいずれか1項に記載された窒
化ケイ素の製造方法。
(4) Any one of claims 1 to 3, wherein the total carbon content of silicon nitride is 0.3% by weight or less and the total oxygen amount is 3.5% by weight or less. The method for producing silicon nitride described in .
(5)混合ガスが、さらにN_2又は他の不活性ガスを
含む特許請求の範囲第1〜4項のいずれか1項に記載さ
れた窒化ケイ素の製造方法。
(5) The method for producing silicon nitride according to any one of claims 1 to 4, wherein the mixed gas further contains N_2 or other inert gas.
(6)シリカが、さらに、シリカ1重量部に対し種子粉
末として窒化ケイ素粉末、炭化ケイ素粉末、酸窒化ケイ
素粉末、金属ケイ素粉末のうち少なくともいずれか1種
を0.005〜1重量部、さらに、もしくは触媒として
Mg、Ca、Zr、Be、Sr、Sn、Ge、Ti、H
fやこれらの化合物を少なくとも1種を各元素重量に換
算して0.001〜0.1重量部を含む特許請求の範囲
の第1項〜第5項のいずれか1項に記載された窒化ケイ
素の製造方法。
(6) The silica further contains 0.005 to 1 part by weight of at least one of silicon nitride powder, silicon carbide powder, silicon oxynitride powder, and metal silicon powder as a seed powder per 1 part by weight of silica; , or as a catalyst Mg, Ca, Zr, Be, Sr, Sn, Ge, Ti, H
The nitriding agent according to any one of claims 1 to 5, which contains at least one of f and these compounds in an amount of 0.001 to 0.1 part by weight in terms of the weight of each element. Method of manufacturing silicon.
JP30819586A 1986-12-26 1986-12-26 Method for manufacturing silicon nitride Expired - Fee Related JPH0791043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30819586A JPH0791043B2 (en) 1986-12-26 1986-12-26 Method for manufacturing silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30819586A JPH0791043B2 (en) 1986-12-26 1986-12-26 Method for manufacturing silicon nitride

Publications (2)

Publication Number Publication Date
JPS63162516A true JPS63162516A (en) 1988-07-06
JPH0791043B2 JPH0791043B2 (en) 1995-10-04

Family

ID=17978061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30819586A Expired - Fee Related JPH0791043B2 (en) 1986-12-26 1986-12-26 Method for manufacturing silicon nitride

Country Status (1)

Country Link
JP (1) JPH0791043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278405A (en) * 1988-05-02 1989-11-08 Toshiba Ceramics Co Ltd Production of acicular silicon nitride
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278405A (en) * 1988-05-02 1989-11-08 Toshiba Ceramics Co Ltd Production of acicular silicon nitride
JPH0511047B2 (en) * 1988-05-02 1993-02-12 Toshiba Ceramics Co
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
US5643843A (en) * 1994-04-14 1997-07-01 The Dow Chemical Company Silicon nitride/silicon carbide composite densified materials prepared using composite powders

Also Published As

Publication number Publication date
JPH0791043B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
JPS6112844B2 (en)
EP0122897B1 (en) A process for the production of silicon nitride
JPS6111886B2 (en)
JPS62241812A (en) Manufacture of silicon nitride
JPS63162511A (en) Production of silicon nitride
JPS63162516A (en) Production of silicon nitride
US4986972A (en) Method for making silicon nitride powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0524849B2 (en)
US5108967A (en) Process for producing nonequiaxed silicon aluminum oxynitride
JPS63162515A (en) Production of silicon nitride
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JP2797678B2 (en) Method for producing α-type silicon nitride powder
JPS63162513A (en) Production of silicon nitride
JPS63162512A (en) Production of silicon nitride
JP2511337B2 (en) Method for manufacturing boron nitride atmospheric pressure sintered body
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS6324924B2 (en)
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPH10203808A (en) Production of high alpha silicon nitride
JPS63162514A (en) Production of silicon nitride
JPH0218310A (en) Preparation of zirconium-containing ceramic powder
JPS6259049B2 (en)
JPS61168509A (en) Production of hexagonal boron nitride

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees